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A scheme for 3D MT modelling using polynomials 

Introduction 

Tue 3D MT modelling scheme described here employs a forward calculation 
developed at the Earth Resources Laboratory of the MIT, Cambridge, U.S.A. 
(Mackie, Madden et al. 1993; Mackie, Smith et al. 1994). This calculation is 
based upon the integral form of Maxwell's equations where accelerated 
conjugate gradient relaxation is used to solve for Hx, HY and H

2
• Occurrence of 

Mackie's new forward technique and tremendous, presently available increase 
of PC computing throughput have given rise to publication of numerous studies 
directed toward three-dimensional lithologies. Examples of such studies can be 
found in Pous 1995; Livelybrooks 1996; Masero, Fischer et al. 1997; Park 1997. 

So far, some MT researchers carry out 3D modellings in very lengthy ways, 
modifying by band the parameters of their conductivity models until they are 
satisfied with the results. To make the search for the best model a smoother, 
unattended work, we have incorporated Mackie's code into a main computer 
programme which automatically handles tedious operations like model build
up, misfit calculation and parameter fitting. At each iteration, the main 
programme carries out a Mackie's forward calculation. Because every five EM 
field components are computed in the forward code, it is possible to look for 
conductivity models which either use a subset of the MT parameters (TE, TM 
mode and/or vertical magnetic field), or all of the available data in the 
calculation of the objective function. 

There is an important restriction in the search for the best model: Somehow , the 
conductivity distribution should be described by a limited number of 
parameters . Moreover, this number must be kept within reasonab ly small values 
( < 20) to avoid convergence problems caused by over-determination . 

Method description 

Tue scheme implied in the proposed method differs little from the approach 
used in previous papers on 2D MT modelling (Schnegg 1993; Schnegg 1996), . 
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where the geometry and resistivity of a conducting structure was represented by 
a set of simple polynomials. Similarly, a conductivity model is described by a 
set of k given functions 

of the generalized coordinates ~ and o/ , in which the nk parameters P; are 
controlled by an optimization routine. Depending on the topology of the 
assumed model, these functions can vary from simple polynomials of the 
cartesian coordinates x and y ( distorted dipping layered structure ), to any 
combination of orthogonal polynomials, like spherical harmonics and Legendre 
polynomials (required for axi-symmetric geometries found in salt domes, 
volcanoes with magma chambers, astroblems). Obviously, once a set of 
functions has been chosen, the model will only assume a limited freedom in its 
variations of the topology. 

The programme flowchart is shown on 
Fig. 1. The first step is executed only 
once: Initial values of the parameters 
and weights are read in. At this stage, 
preliminary information on the model 
gained by other methods (1D, 2D 
magnetotellurics, seismic lines, 
gravimetry) can be advantageously 
used. Weights allow for individual 
adjustment of parameter sensitivities, 
and can be set to zero to freeze the 
variation of a given parameter, 
applying thus deliberate constraints to 
the model. 

Calculate ap. res. . 

Eoter 
polynomials as 
staning model 

Launch 
minimisation of 

obj~-tive function 

phase, induction ",· · .,< · 
coefficients ....,..- ___ .... 

from fields 

Compute 
3D rnesh 

Figure 1: Programme flowchart 

The next programme steps are repeated at will in an endless loop or as long as a 
misfit criterion is not met and occur under control of the optimizing routine . As 
usually, the misfit is the error between the measured data and the model 
response, summed over all measuring sites, periods, and polarizations , including 
apparent resistivities, induction coefficients and their respective phases. 

Tue conductivity model is built up by the programme, according to Mackie's 
recommendations for mesh design. The resistivity value of the cell located at 
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coordinates (x,y) is detennined by a selected set of functions Fk, while the 
parameters are furnished by the optimizing routine. Forward calculation of the 
model response is then launched. This is of course the most demanding part of 
the code, in terms of computing time. Once available, model response is 
compared to the measured data to yield a misfit value which, in turn, is used by 
the optimizing routine to alter the parameter set, and determine the steepest 
descent toward convergence in the parameter space. The computation can run 
unattended during several hours or days. 

Field example 

To illustrate the method on real MT field data, we use the results of a survey 
carried out in the Penninic Alps of Valais, Switzerland. MT and vertical 
magnetic field data have been recorded at 24 sites scattered over an area of 60 x 
40 km. Tue Rhone valley represents a natural separation between the external, 
"helvetic " and internal "penninic" zone of the Central Alps. Tue helvetic 
domain corresponds to the south-eastern edge of the f ormer European continent . 
Tue penninic zone, on the other hand, consists in a complex stack of basement 
and cover nappes. Of particular interest to our study is the deepest, 
northernmost « Zone Houillere » . Its high carbon content, makes this 
« nappe » a good candidate for a geoelectric anomaly. Moreover, this lithology 
crops out at the surface along the Rhone river. Laboratory study of drill cores 
from a nearby borehole evidenced the presence of low-grade carbonated 
material . Measurements on the samples revealed resistivities as low as 0.6 .Qm. 
Conductivity increase with hydrostatic pressure indicated reconnection of 
carbon film at the grain boundaries. 

A preliminary 2D modelling was 
carried out with a subset of sites 
selected in the neighbourhood of a 
well-centred profile line. This 
modelling revealed the shape and 
extension of a high-conducting , 
dipping slab, embedded in a resistive 
rock matrix (Fig.2). We used this 
model as starting point for the 3D 
modelling and worked with the füll set 
of MT sites. Tue region of study was 
subdivided into 24x14x20 rectangular 
boxes of size 3x3x0.5 km. Three 
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Figure 2: Starting model 



columns and three rows were appended on each external side of the model, with 
increasing widths of 6, 12 and 24 km, dividing thus the space into 30x20x20 
blocks . Each vertical slice of this model was embedded in a larger 2D model 
which extended the regional features. A lD structure (a half-space in this case) 
was added at the bottom . This mesh geometry was kept unaltered during the 
whole modelling process. Only the cell resistivities were allowed to vary. 

According to the results of the 2D modelling, we restricted the 3D topology to 
models which could also be described by 3 layers only. Tue slab resistivity and 
thickness were given fixed values of 0.2 Qm and 1 km. Tue parameters which 
have been automatically fitted by the programme are the decimal logarithms of 

• the slab depth , fi( x,y ), 
• the resistivity of the rock matrix above the slab, fi(x ,y ), 
• the resistivity of the rock matrix beneath the slab, l(x,y ). 

(Note that we used logarithms instead of the value itself to avoid zero crossing 
of the resistivity and thickness). These parameters are polynomials of the 
coordinates x and y with degrees set (quite arbitrarily, but with regard to 
computing resources) to 3, 2 and 2 respectively . No vertical resistivity variation 
was allowed within a given layer. Constant polynomials have been given to 
initialize fi andl _ 

Because computing time is proportional to the number of period values at which 
the misfit is calculated, we restricted the values to 1 and 100 seconds . 3D view 
of the final model after 400 iterations is shown in Fig . 3. 

Tue result of the 3D modelling rnust 
be regarded as semi-quantitative only, 
since many simplifications were 
required to ease the computing task 
( constant thickness and resistivity of 
the slab) . However the model clearly 
shows that the shape of the conducting 
slab strongly departs from a cylindrical 
geometry and closely matches the 
uppermost crustal boundary , as 
determined with seismic profiles 
(Valasek 1997). There is no doubt that 
the real shape of the conducting body 
is more complicated than can be 
described by our 3D model. However , 

241 

.- · 0 . 

-2- . 

.... 
·12 

-14 ~ . 

-16 . · 

-1& . .. • 

""- CJr,L, WII'.): 1'0 " - ~ 

Figure 3: 3D view of the final model 
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the general trend should not differ significantly from th~ reality, since it 
displays the same curvature as the Alpine arc and shows a marked depression 
matching the large scale geometry of tectonic units bordered by features such as 
the external crystalline massif domes and the Rawil saddle to the NW and the 
Insubric backfold to the south-east. 

Tue final model response is compared with the field data on Fig. 4 (MT) and 
Fig. 5 (induction arrows). Tue misfit of the model response is noticeably larger 
for 3D than for 2D modelling. Tue cause is obviously the oversimplification of 
the 3D model and the limited number of period values which were imposed by 
the computing time requirements. Moreover, static effects are likely to occur on 
MT data recorded on such rough topographic area. However, the quite large 
number of sites used in the modelling mitigates somehow these effects. Because 
real induction data was significantly better than MT, in terms of scatter, we 
gave them a weight of 3, compared to 1 for MT. 

W e also noticed that the modelling scheme was able to converge almost as fast 
if a non-dipping conducting slab was given as starting model. 

Conclusion 

Modelling 2D and 3D MT data by hand can be a very wearing task. Quite 
frequently, automated methods like the one presented here, can be used 
successfully, feeding the computer programme with a good guessed initial · 
model, and leaving the modelling work unattended during several days. 

Every smooth geologies without lateral discontinuities of the resistivity can be 
approximated by simple polynomial expressions. This is particularly the case 
for structures produced in collisions ( or extensions; suture zones, crustal 
decollements and shear zones). Discontinuities can be dealt with by combining 
several polynomials, or by adding appropriate boundary conditions, at the 
expense of enhanced computing task, however. Tue only (but important) point 
requiring some feeling lies in the correct choice of parameters. 
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