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Comparison of 2D modelling methods: rapid inversion vs. polynomial fitting 

Introduction 

Some years ago, a paper describing a new 2D MT modelling scheme drew the 
attention of the induction community (Smith and Booker 1991 ). Known as the 
« Rapid Relaxation Inverse » (RRI) method, its corresponding FORTRAN 
programme has been made publicly available a short time after. Since then, it 
has probably become the m?st used 2D MT modelling method, owing its 
success to the short computing time required, even for large models. 
This scheme has its drawbacks, however. The main one is that the resulting 
model Jacks focus. This behaviour can be particularly well observed in the Fig. 3 
of the article by the RRI programme authors. The most striking effect is the 
downward distortion of the model prism. 
In this article we compare the results of the RRI method with those of the 
polynomial fitting method (Schnegg 1993.) published in the framework of the 
MT-DIWl interpretation workshop (Jones 1993). 

The Rapid Relaxation Inverse method 

The reader will find the füll scheme description in the paper by Smith and 
Booker. But let us recall how RRI works: . Starting from a guessed 2D 
conductivity distribution 00 (y,z) (which can also be a simple homogeneous half­
space ), the field E0 (y,z) (for TM mode: H0 (y,z)) is calculated. A perturbation öa 
is applied to 00 and the produced variation ö V of the field at the surface is 
computed. This computation is made easier by neglecting the horizontal field 
gradients with respect to the vertical ones, and results from an upward 
integration of an exact differential at each site and each frequency. The misfit 
between the measured and the predicted data is used to update 00 and the process 
is repeated iteratively until convergence is reached. 

The polynomial fitting method 

A 2D conductivity distribution can always be approximated by a patchwork of 
rectangular pieces of constant conductivity. When P.E. Wannamaker published 
bis famous 2D forward modelling programme (Wannamaker 1985), most of the 
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modellers were varying manually the size, the shape and the conductivity of 

each individual block until a reasonable model was found. The finite element 

mesh had to be rebuilt after every alteration of the model. This method was quite 

demanding in human resources and is probably no more used. 

An attempt to make this task more automatic comes up against the problem of 
the large amount of free parameters that must be fed to the minimisation routine. 

However, numerous fast conductivity changes in the vertical and horizontal 

directions are rarely expected. A simplified model parametrisation could 

appropriately represent the conductivity distribution. The one which is used here 

is based on the representation by low-order polynomials of functions of the 

distance on the profile (Schnegg 1993). The half-space is divided into n. 

contiguous vertical 1 D models, one per measuring site, extending laterally 

between the points situated at half way to the right and left neighbouring sites 

(Fig. 1). 
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f ig. 1. 2D model showing contiguous 

1 D models with layer thicknesses 
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Fig. 2. Resistivities and thicknesses 

as polynomial functions of the 

profile distance y. 

Two additional ID models at both ends extend laterally to infinity (i.e., to the 

mesh limits ). All these models have the same number of layers. The logarithm of 
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the layer thicknesses and resistivities are described by low-order polynomials of 
the abscissa y (Fig. 2). The coefficients of these polynomials are the parameters 
of the model. Their total number is independent ofthe number of sites: 
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where N is the number of layers, Rk and Tk the order of the polynomials for the 
resistivity and the thickness of layer k. 
To prevent the minimising routine from assigning negative values to the 
resistivity and/or to the layer thickness, the logarithm of these values is used 

instead. The minimising routine varies the parameters until a minimum of the 
objective function is found. The objective function is the misfit between the 
measured data and the response of the model to the finite element forward 
routine of P.E. Wannamaker. A layered half-space can be used as starting model, 
although a better one can be derived from a ID modelling of the invariant. 

Comparison using model 1: plunging conductive ramp 

Fig. 3 (top) shows the model used to generate synthetic test data, along with the 

models resulting from (right) RRI and (left) POLY2D modelling. Apparent 
resistivity and phase of both TE and TM modes, as well as the real and 

imaginary Hz induction coefficients have been used simultaneously to compute 
the misfit. In both cases, the starting model was a 3-layer half-space with 

resistivities of 5000, 10, 500 Qm and thicknesses of 3.5, 1 km. CPU time for 

POLY2D was about 30 times longer than for RRI. However, the final results 
show that the POL Y2D model is much sharper and closer to the starting model 

than the RRI model. 

Comparison using model 2: conducting square box 

Fig. 4 shows the situation for a conductive rectangular prism of 10 Qm in a 300 

Qm matrix. Here the starting model is an homogeneous half-space of 50 Qm. 
The same conclusions as for the ramp can be drawn for this model. 

Although it looks simpler than the ramp model, it is more demanding due to its 
abrupt, discontinuous lateral character. If the value of the resistivity is not 

allowed lateral variations (zero degree polynomial), then the excess conductance 
at both sides of the box must be handled by the polynomials which control the 

layer thicknesses. 
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Fig. 3. Top: Model used to generate synthetic test data, and models resulting 

from (right) RRI and (left) POLY2D modelling. 
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Fig. 4. Final models resulting from (right) RRI and (left) POLY2D modelling. 

The original model from which the synthetic data have been computed is 

superimposed on the POL Y2D model. 

This is obvious on the intermediate model of Fig. 5, where the 2 troublesome 

side blocks are pushed downwards. To remove any useless structure, a second 

modelling stage can be applied to this intermediate model. This time, the block 

thickness geometry is kept fixed, and the individual block resistivities (the 

Iogarithm of them) are used as parameters. The objective function is now the 

product of the data misfit and of the model resistivity roughness R: 

Nsites Nlayer-1 

R == � � log 
p J. i+i 

1-1 ;.1 P1,; 

The final model shows that the side blocks have been successfully removed 

(Fig. 5.). 
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Intermediate model Final model 

Fig. 5. POL Y2D model before and after the 2nd modelling stage. The 

conductive side blocks are removed. The intermediate model is shown 

with the polynomials describing the layer thickness. 

Some modelling experience is needed to choose a convenient number of layers 

and the order of the polynomials, although this choice is not critical. To avoid to 

be trapped into secondary local minima of the objective function, it proves safer 

to start with polynomials of order smaller than 3 and to increase the order on 

subsequent modelling runs. 
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