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Abstract 14 

Volcanic tremor signals are usually observed before or during volcanic eruptions and must be 15 

monitored to evaluate the volcanic activity. A challenge in studying seismic signals of volcanic 16 

origin is the coexistence of transient signal swarms and long-lasting volcanic tremor signals. 17 

Separating transient events from volcanic tremors can therefore contribute to improving upon our 18 

understanding of the underlying physical processes. Exploiting the idea of harmonic-percussive 19 

separation in musical signal processing, we develop a method to extract the harmonic volcanic 20 

tremor signals and to detect transient events from seismic recordings. Based on the similarity 21 

properties of spectrogram frames in the time-frequency domain, we decompose the signal into 22 

two separate spectrograms representing repeating (harmonic) and non-repeating (transient) 23 

patterns, which correspond to volcanic tremor signals and earthquake signals, respectively. 24 

 25 

We reconstruct the harmonic tremor signal in the time domain from the complex spectrogram of 26 

the repeating pattern by only considering the phase components for the frequency range where 27 

the tremor amplitude spectrum is significantly contributing to the energy of the signal. The 28 

reconstructed signal is, therefore, clean tremor signal without transient events. 29 

 30 

Furthermore, we derive a characteristic function suitable for the detection of transient events 31 

(e.g., earthquakes) by integrating amplitudes of the non-repeating spectrogram over frequency at 32 

each time frame. Considering transient events like earthquakes, 78% of the events are detected 33 

for Signal to Noise Ratio (SNR) = 0.1 in our semi-synthetic tests. In addition, we compared the 34 

number of detected earthquakes using our method for one month of continuous data recorded 35 

during the Holuhraun 2014-2015 eruption in Iceland with the bulletin presented in Ágústsdóttir 36 
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et al. (2019). Our single station event detection algorithm identified 84% of the bulletin events. 37 

Moreover, we detected a total of 12619 events, which is more than twice the number of the 38 

bulletin events. 39 

 40 

Plain Language Summary 41 

Volcanic tremors are important signals in volcano seismology because they usually precede or 42 

accompany volcanic eruptions, and might be considered as a forecasting signal for them. While 43 

there are unsolved questions about the origin of these signals, they are usually recorded along 44 

with many earthquake signals during periods of unrest. This makes the study of volcanic tremors 45 

more complicated. A reliable signal processing scheme is therefore required to extract volcanic 46 

tremor signals from seismological records. Inspired by the algorithms for separating harmonic 47 

and percussive components in musical signal processing, we have developed a method to 48 

separate volcanic tremor signals from earthquake signals within seismic waveforms. As by-49 

product, we have obtained a new approach for transient signal detection (e.g., earthquakes) that 50 

allows for the detection of smaller seismic events. 51 

 52 

1 Introduction 53 

Volcanic tremors are long-lasting low-frequency seismic signals that frequently precede 54 

or accompany volcanic eruptions (McNutt, 1992). They can reveal information about eruptive 55 

activities (Alparone et al., 2003; Eibl et al., 2017a, 2017b) and are one of the most commonly 56 

studied signals in volcano seismology (Falsaperla et al., 2005) for use in eruption forecasting as 57 
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well as investigating the physics of the underlying volcanic processes (Chouet, 1996; Yukutake 58 

et al., 2017). 59 

 60 

Despite different hypothesis about the generation mechanisms of volcanic tremors, the details are 61 

not yet well understood (Eibl et al., 2017b; Davi et al., 2012) and a variety of physical processes 62 

may explain the seismological evidence observed so far (Hellweg, 1999). Volcanic tremor sig-63 

nals are usually seen in the seismic records alongside many tectonic earthquakes or other transi-64 

ent signals occurring during a period of volcanic unrest (Dmitrieva et al., 2013; Eibl et al., 65 

2017a; Hotovec et al., 2013), affecting the observability of the tremor signal. Both volcanic 66 

tremors and earthquakes may help to better understand the underlying physical processes of vol-67 

canic eruptions, however, the superposition of signals makes it challenging to study the details of 68 

each signal separately. A reliable signal processing operation is thus required to separate earth-69 

quakes as well as other transient signals from the volcanic tremor signals in the recorded seismic 70 

waveforms during periods of volcanic unrest. There have been attempts in terms of the detection 71 

and discrimination of volcanic tremor and tectonic earthquake signals in previous studies. For 72 

example, an automatic P-and S-wave detection was used in Rouland et al. (2009) in order to 73 

identify volcanic tremors as events containing only P-type wave, and tectonic earthquakes, con-74 

taining both P- and S-waves. However, this study introduces for the first time the topic of ex-75 

tracting tremor signals from seismic waveforms and reconstructing the volcanic tremor signal 76 

with related phase information. 77 

 78 

Inspired by similarities of seismic and acoustic signals, we take advantage of the expertise de-79 

veloped in the field of Music Information Retrieval (MIR) and audio signal processing. A seis-80 
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mic waveform is the record of Earth vibrations, which, in terms of signal properties and genera-81 

tion mechanism, can be seen to be similar to sound signals generated by musical instruments 82 

(including the human voice) (Johnson & Watson, 2019; Schlindwein et al. 1995). Exploiting the 83 

extensive research results in MIR (e.g., Müller, 2015), we have developed a seismological data 84 

processing scheme for the purpose of separating volcanic tremor signals from transient signals 85 

generated during a volcanic crisis. 86 

 87 

The separation of harmonic and percussive components of sound is of great interest in musical 88 

signal processing (e.g., Rafii & Pardo, 2011). Pop music, for example, often consists of a repeti-89 

tive percussive background and a vocal foreground, which is locally non-repetitive (FitzGerald 90 

2012). In this type of music, the different characteristics of harmonic and percussive sounds in 91 

the spectrogram domain (see Müller, 2015) allow a separation of foreground vocals from the 92 

more percussive background sound (FitzGerald & Gainza, 2010). Similarly, a seismic waveform 93 

during an eruption may consist of (harmonic) volcanic tremor signals over which transient seis-94 

mic signals are superimposed. The long-duration volcanic tremor signal that lasts minutes to 95 

days with a restricted frequency range (1-9 Hz according to McNutt, 1992) contrasts with transi-96 

ent seismic signals such as earthquakes with a wider range of frequencies (0.1-30 Hz in this 97 

study). In particular, harmonic volcanic tremor signals with distinct spectral lines are readily 98 

distinguishable from transient, short-duration (seconds) seismic events in the time-frequency 99 

domain. In musical signal processing, the goal of harmonic-percussive source separation (HPSS) 100 

is to decompose an input signal into the sum of two signals, one consisting of all harmonic com-101 

ponents and the other of all percussive components (Müller, 2015). The same algorithms could 102 

be implemented in the seismology domain to decompose a seismic signal into its harmonic com-103 
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ponents (harmonic volcanic tremors) and percussive components (transient events such as earth-104 

quakes). In musical signal processing, several methods for Harmonic-Percussive Separation 105 

(HPS) have been suggested (Müller, 2015). 106 

 107 

Here, in the first step of our method, we adopted the repetition/similarity (REPET-SIM) method 108 

(Rafii & Pardo 2012; Rafii et al., 2014) to separate volcanic tremors from transient earthquakes. 109 

The advantage of this method is its ability to process music pieces with quickly-varying repeat-110 

ing structures without the need to identify periods of the repeating structure beforehand. The 111 

approach evaluates the underlying repeating structure by looking for the similarities in the spec-112 

trogram time frames. This repeating part of the signal is then subtracted from the original spec-113 

trogram. The remaining time frames contain the percussive events. We use this approach and 114 

apply it to seismic data collected from a volcano. In this setting, repeating structures, which re-115 

sult in a harmonic spectrum, correspond to volcanic tremors and percussive (non-repeating and 116 

impulsive) elements correspond to transient events like earthquakes. Another method similar to 117 

REPET-SIM for HPS was proposed by FitzGerald (2010), which we use in the second step of 118 

our method in order to remove remaining percussive components in the repeating spectrogram 119 

and vice versa. 120 

 121 

The remainder of this paper is organized as follows. In section 2, we describe existing methods 122 

in MIR for our problem (section 2.1) and explain how we developed our method based on these 123 

algorithms. Modifications to and the application of the REPET-SIM method (Rafii & Pardo 124 

2012; Rafii et al., 2014) and the HPS using median filtering (FitzGerald ,2010) for extracting 125 

seismic tremor signals are outlined in section 2.2, while section 2.3 describes the detection and 126 
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timing of the remaining transient events (e.g., earthquakes). Section 2.4 outlines the selection of 127 

the method’s parameters. Section 3 presents the generation of semi-synthetic data (3.1), an 128 

evaluation of the proposed method based on a semi-synthetic test on tremor extraction (3.2) and 129 

earthquake detection (3.3), as well as real data tests (3.4). The feasibility of the method with 130 

respect to processing speed is discussed in section 3.5. In section 4 we discuss the results and 131 

provide our conclusions about the applicability of the method. 132 

 133 

2 Method 134 

2.1 Harmonic-percussive separation algorithms 135 

Harmonic-Percussive Separation (HPS) as an application of musical source separation (Cano et 136 

al., 2018) has attracted significant attention in MIR research in recent years (Rafii et al., 2018). 137 

HPS algorithms are based on the different characteristics of harmonic and percussive compo-138 

nents in a music signal. 139 

 140 

Harmonicity expresses the situation in which the complete signal can be seen as the superposi-141 

tion of spectral components (partials) whose frequencies are all integer multiples of a fundamen-142 

tal frequency. Harmonics form stable horizontal ridges in a Short Time Fourier Transform 143 

(STFT) spectrogram, which means constant frequencies exist along the time axis. A percussive 144 

(impulsive) sound is short and similar to the sound of hitting a drum. Percussive signals form 145 

vertical ridges in a STFT spectrogram, corresponding to the existence of different frequencies in 146 

an instant, i.e., a broadband characteristic of short duration. 147 

 148 
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In order to separate harmonic and percussive elements, one simple approach is to apply a median 149 

filter to the STFT spectrogram of the signal (FitzGerald, 2010). Median filters are usually used to 150 

remove noisy parts of a signal by replacing each sample by the median value determined from 151 

the neighboring samples within a specific window. Within the HPS, a median filter applied along 152 

the horizontal axis of the spectrogram (time) suppresses ‘short-lived’ broadband percussive 153 

components interrupting the long-lasting horizontal narrowband ridges. This results in a ‘de-154 

noised’ harmonic spectrogram. Similarly, applying a median filter along the vertical axis of a 155 

spectrogram (frequency) emphasizes short-lived broadband features while suppressing long-156 

lasting narrowband horizontal frequency lines (harmonic components) and results in a ‘denoised’ 157 

percussive spectrogram. These two median filters are used separately in order to generate the 158 

related spectrograms with dominant harmonic or percussive content, respectively. 159 

 160 

Another promising approach for our purpose is REPET-SIM, which treats repetition as a basic 161 

property in generating and perceiving structure in music (Rafii & Pardo 2012; Rafii et al., 2014). 162 

The main step in this method is to identify similar patterns using a calculated similarity matrix. 163 

Given a music signal, first its complex STFT is calculated, which is named X here. Considering 164 

V as the amplitude spectrogram V = |X|, the similarity matrix S is calculated to measure the 165 

cosine similarity (the similarity between two vectors of an inner product space) between time 166 

frames of the spectrogram V. As shown in equation (1), the cosine similarity is calculated 167 

through the multiplication of the transposed V by V with normalization of the V time frames. 168 

 
𝑆(𝑗௔,j௕) =

∑ ௏(i,jೌ)௏(i,j್)
೙
i=భ

ට∑ ௏(i,jೌ)మ
೙
i=భ ට∑ ௏(i,j್)

మ೙
i=భ

. 
 

(1) 
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where ∀𝑗௔,j௕ ∈ [1,m], where m is the number of time frames and n equaling N/2+1 is the number 169 

of frequency channels for each time frame of length N (samples). S(ja,jb) is then the cosine 170 

similarity between the time frames ja and jb of the spectrogram V. 171 

 172 

For all the frames j in V, similar frames are identified using a threshold in the similarity matrix 173 

and stored in an array J. A repeating spectrogram model (W) is then derived using the similar 174 

frames. For all the frames j, the corresponding frame in W is derived by taking the median of J 175 

for each frequency. Repeating time-frequency bins are captured by the median and build the 176 

repeating spectrogram model W. A refined repeating spectrogram model 𝑊′ is created by taking 177 

the minimum between W and V. The rationale is that the non-negative spectrogram V is the sum 178 

of two non-negative spectrograms of repeating and non-repeating patterns, hence, W is less than 179 

or at most equal to V. 180 

 181 

In the following, a time-frequency mask M is derived by normalizing 𝑊′ by V. Time-frequency 182 

bins with repeating patterns will have values close to 1 in M and time-frequency bins without 183 

repeating patterns will have values close to 0. The mask M is applied to STFT X and the 184 

repeating spectrogram will be created. Finally, the harmonic signal in music is obtained by 185 

inverting the repeating spectrogram into the time domain. The percussive signal is obtained by 186 

subtracting the harmonic signal from the input signal (Rafii & Pardo 2012). 187 

 188 
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2.2 Volcanic tremor extraction approach 189 

Among the different tremor observations in volcanic seismology, the so-called harmonic 190 

tremor is a special signal showing a band-limited harmonic spectrum. It has been observed at 191 

many volcanoes and has been reported often during times of increased volcanic activity, and is 192 

thought to be connected to fluid flow or (de-) pressurization of the volcanic system (e.g., 193 

Montegrossi et al., 2019). This is the motivation for using HPS algorithms in order to separate 194 

harmonic volcanic tremor signals from earthquake signals representing the percussive event type. 195 

Being able to extract this special kind of tremor signal from seismic waveforms provides the 196 

opportunity to improve the observations and analyses of harmonic tremors. In particular, 197 

extracting low-amplitude harmonic tremor signals that are hidden in the background seismic 198 

noise or overprinted by earthquake sequences accompanying volcanic activity may allow new 199 

insights into the generation processes and their relationships to volcanic eruptive activity. 200 

In this study we analyze the seismic waveforms of the Holuhraun 2014-2015 eruption in Iceland 201 

(FLUR station from network 7Z (White, R. 2010)) to separate the harmonic and percussive 202 

components. Figure 1 shows the eruption site and the station location in Iceland with an example 203 

of one day of seismic waveforms (Figure1a & b), the PSD (power spectral density), and the 204 

spectrogram (Figure1c & d). The PSD and spectrogram of the extracted harmonic components 205 

are shown in Figure 1e & f. 206 

 207 

Our method is derived from a combination of the REPET-SIM method (Rafii & Pardo 2012; 208 

Rafii et al., 2014) and the HPS algorithm given by FitzGerald (2010) after tuning parameters to 209 

adapt it to seismic data. For building our method, we used Librosa, a Python package for audio 210 

and music signal processing (McFee et al., 2020). Furthermore, we implement a phase 211 
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reconstruction procedure for the volcanic tremor signal. A detection algorithm for earthquakes as 212 

transient signals has been derived as a by-product of the applied processing. 213 

 214 

The REPET-SIM, as described in section 2.1, is used to create a similarity matrix and to derive a 215 

time-frequency model of repeating patterns. We derive the non-repeating spectrogram model by 216 

subtracting 𝑊ᇱ from V. Once the model spectrograms are calculated, they are used to derive two 217 

time-frequency masks for repeating and non-repeating patterns. 218 

 219 

We modified the REPET-SIM algorithm by using a soft mask via Wiener filtering (Vaseghi, 220 

1998) instead of a binary mask. The calculation of the soft mask M1 and M2 are shown below as 221 

equations (2) and (3): 222 

 
𝑀1௡.௠ =

𝑊′௡,௠
௉

𝑊′௡,௠
௉
+ ൫𝑉௡,௠ −𝑊′௡,௠൯

௉ 
(2) 

 223 

 
𝑀2௡.௠ =

൫𝑉௡,௠ −𝑊′௡,௠൯
௉

൫𝑉௡,௠ −𝑊′௡,௠൯
௉
+𝑊′௡,௠

௉
 

(3) 

where M1 is a repeating mask and M2 is a non-repeating mask. A power factor P is applied to 224 

the model spectrograms to further enhance the signal-to-noise ratio. We use a power factor of 2 225 

in our calculations. 226 

 227 
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Once we have constructed the masks, we multiply them with the input amplitude spectrograms to 228 

separate the components. Equation (4) shows the element-wise multiplication of the repeating 229 

mask (M1) and the input amplitude spectrogram (V). 230 

 R=M1⊗V, (4) 

where R denotes the repeating amplitude spectrogram. The same element-wise multiplication 231 

operation is applied for the non-repeating mask and the input amplitude spectrogram as it is 232 

shown is equation (5):  233 

 NR=M2⊗V, (5) 

where NR denotes the non-repeating amplitude spectrogram. 234 

 235 

From this we obtain two spectrograms, one for repeating patterns and one for non-repeating 236 

patterns. The harmonic and percussive components of the signals are separated into their 237 

respective masked spectrograms, although small traces of percussive components are still visible 238 

in the repeating spectrogram, and remnants of the harmonic components can be recognized in the 239 

non-repeating spectrogram. Therefore, a second HPS approach is subsequently applied to the 240 

resulting spectrograms from the first processing step by using the median filtering method of 241 

FitzGerald (2010). In particular, we use median filtering along the time axis, enhancing the 242 

harmonic components within the spectrogram. Applying another median filtering along the 243 

frequency axis results in a denoised spectrogram of the percussive components. Following the 244 

above notation, each spectrogram of R and NR will be decomposed into two spectrograms of 245 

their harmonic and percussive components. Equation (6) and (7) show this separation: 246 
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 𝑅 = 𝐻1 + 𝑃1, (6) 

 247 

 𝑁𝑅 = 𝐻2 + 𝑃2, (7) 

where H1 and P1 are harmonic and percussive components of the repeating spectrograms, and  248 

H2 and P2 are harmonic and percussive components of the non-repeating spectrograms. We 249 

create a soft mask using H1 and multiply it the R spectrogram, which results in the final 250 

harmonic spectrogram, which we name HARM. Another soft mask is created using P2 and is 251 

multiplied by the NR spectrogram to derive the final transient spectrogram that we have named 252 

TRAN (see Figure 2). 253 

 254 

Figure 2 shows the flow-chart of the method with an example of a seismic waveform from 3 255 

September 2014 during the Holuhraun 2014-2015 eruption in Iceland (FLUR station from 256 

network 7Z (White, R. 2010)). On this day we were 4 days into a 6-month long fissure eruption 257 

accompanied by tremors and long-period and volcano-tectonic earthquakes (Eibl et al. 2017a). 258 

For further details on the background of the Holuhraun eruption event, the reader is referred to 259 

Sigmundsson et al. (2015) and Gudmundsson et al. (2016). For details on the events on 3 260 

September 2014, the reader is referred to Eibl et al. (2017a) and Woods et al. (2018). 261 

 262 

Besides describing the processing steps (Figure 2a), we show an input waveform and its 263 

spectrogram, which is decomposed in two steps (Figure 2b). In the first step using the modified 264 

REPET-SIM algorithm, we decompose the X spectrogram into a ‘repeating’ spectrogram (R 265 

spectrogram) and a ‘non-repeating’ spectrogram (NR spectrogram). Each of these two 266 
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spectrograms are then decomposed into their harmonic and percussive components in the 267 

subsequent step, following the algorithm of FitzGerald (2010). The harmonic component of the 268 

repeating spectrogram shows the final result for the harmonic spectrogram (HARM spectrogram) 269 

and the percussive component of the non-repeating spectrogram shows the final result for the 270 

transient or percussive spectrogram (TRAN spectrogram). The HARM spectrogram corresponds 271 

to the tremor spectrogram according to our assumptions of the generating process. From the 272 

tremor spectrogram in the frequency domain, the tremor signal can be reconstructed in the time 273 

domain. The problem of reconstructing a signal from its modified STFT has varieties of 274 

applications in audio signal processing, where modifications are applied to the amplitude STFT 275 

and the phase information is lost (Sturmel & Daudet, 2011). The standard phase reconstruction 276 

Griffin-Lim algorithm (Griffin & Lim., 1984) which is based on random phase initialization 277 

followed by the minimization of the squared error between the STFT of the estimated signal and 278 

the modified STFT, shows poor performance for our seismological test signals. The random 279 

initialization of phase is an inadequate starting model for the inversion procedure and results in 280 

an unreliable signal estimate. The problem of this inadequate signal reconstruction is illustrated 281 

by an example (Figure 3d) and is described at the end of this section. 282 

 283 

We must use phase information of the original STFT X in order to reconstruct the signal in the 284 

time domain. Considering the notation in section 2.1, we calculate the similarity matrix based on 285 

V as the amplitude spectrogram. Therefore, we need to separate the complex-valued spectrogram 286 

X into its amplitude (V) and phase components using equation (8). 287 

  

𝑋 = 𝑉 ∗ 𝑒𝑥𝑝(1𝑗 ∗ 𝜑), 

(8) 
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where 𝜑 denotes the phase of X and j is the imaginary unit. The procedure of using the initial 288 

phase matrix is more problematic than it might seem at first glance. Simply using the phase 289 

information of X can lead to a noisy reconstructed signal due to the noise contributions in the 290 

phase matrix of the seismic waveform. Therefore, we use the values of the phase matrix only in 291 

the dominant frequency band of the HARM spectrogram. We do so by integrating the HARM 292 

spectrum amplitude squared for all time frames and determine the starting frequency as the 5% 293 

quantile of the total energy in the spectrum and the stop frequency as the 95% quantile, 294 

respectively. The dominant frequency band is between the start and stop frequencies. Then, we 295 

add this modified phase information (weighted phase information) named 𝜑௧ to the HARM 296 

spectrogram using equation (9). 297 

   

𝑇 = 𝐻𝐴𝑅𝑀 ∗ 𝑒𝑥𝑝(1𝑗 ∗ 𝜑௧), 

(9) 

where T is the complex tremor spectrogram and HARM is the harmonic amplitude spectrogram. 298 

Finally, we reconstruct the tremor signal time series from the complex spectrogram T, using the 299 

inverse short-time Fourier transform. The inversion process is done using the Griffin-Lim 300 

algorithm (Griffin & Lim., 1984) for converting a complex-valued spectrogram to a time-series 301 

by minimizing the mean squared error between the complex STFT of the estimated signal and 302 

the modified STFT T. Note that using a part of the phase information sees the Griffin-Lim 303 

algorithm converging to a reasonable time domain signal, whereas it won’t if starting with 304 

randomly selected phases. 305 

 306 

Figure 3 shows the seismic signal (Figure 3a blue) and a comparison of the reconstructed 307 

volcanic tremor signal for one minute of seismic waveform from 3 September 2014 using our 308 

approach (Figure 3a green and 3b) and two other methods (Figure 3c and d) described below. As 309 
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shown in Figure 3 (b) the reconstructed tremor signal using our method is not noisy and shows 310 

almost no trace of transient signals. Figure 3 (c) shows the reconstructed signal using the inverse 311 

short-time Fourier transform, after applying horizontal median filtering (FitzGerald 2010) on the 312 

STFT spectrogram with the aim of separating and extracting the harmonic tremor signal. In this 313 

case, the tremor signal is reconstructed by adding the phase of the original seismic waveform to 314 

the modified STFT. Transient signal energy still exists in the reconstructed harmonic signal, 315 

which demonstrates that horizontal median filtering is not sufficient for extracting a clean tremor 316 

signal without signs of transient events. 317 

 318 

In Figure 3 (d), we show the estimated tremor signal using the original Griffin-Lim algorithm for 319 

phase reconstruction. The effect of earthquake signals is almost eliminated, as in Figure 3 (b), 320 

which is reasonable as both Figure 3 (b) and (d) are extracted from the HARM spectrogram. 321 

However, a significant difference compared to the seismic signal is visible in Figure 3 (d) in 322 

terms of the shape of the signal. Also, the phase is not reconstructed correctly. Therefore, this 323 

signal (Figure 3d) is not applicable for seismological purposes. This shows the importance of 324 

using appropriate phase information for reconstructing a seismic signal in the time domain. 325 

We note that a pre-filtering of the original seismic data is necessary to remove microseismic 326 

signals before applying our algorithm. Indeed, microseisms are harmonic signals, which may 327 

have a dominant energy in the tremor spectrogram. Therefore, the amplitude and the phase of the 328 

reconstructed tremor signal could be significantly affected by such microseism signals if they are 329 

not filtered out beforehand. We applied a high-pass filter with a cut-off frequency of 0.5 Hz on 330 

our real dataset. 331 

 332 
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2.3 Transient signal detection and timing estimation 333 

In a second step, we use the transient spectrogram to locate the occurrence of transient 334 

signals in time. We do so by integrating the spectral amplitudes over the full frequency band at 335 

each time frame, thus deriving a characteristic function suitable for detecting transient events. At 336 

the time of transient events, this function has large values compared to zero or very small values 337 

in other parts of the function. 338 

 339 

Most observed transient signals in the seismic recordings can be interpreted as seismic wave 340 

arrivals of earthquakes. A standard task in observational seismology is then to estimate arrival 341 

times of wave groups from timing the onset of transient signals. Proposing the detection of 342 

transient signals with the characteristic function described above, we further aim to extract an 343 

accurate onset time of the transient signals. For detection, we use a local maximum (peak) search 344 

on the transient characteristic function. Two thresholds are applied to the characteristic function; 345 

the upper threshold and the lower threshold. The upper threshold is used for transient signal 346 

detection and the lower threshold is used for accurate onset timing. The upper threshold prevents 347 

picking up minor local maxima representing coda waves or other fluctuations in the earthquake 348 

records. This threshold is determined by visually analyzing the peak value distribution on some 349 

smaller test set in the data. The local maxima, which are larger than the threshold, are then 350 

considered to represent detected earthquakes. The maximum peak of the characteristic function 351 

corresponds mostly to S-wave arrivals, while the P-wave onset can be associated with the earliest 352 

break in the characteristic function. We have therefore developed a straightforward procedure to 353 

find the first arrival onset of the transient events by considering amplitude and amplitude 354 
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derivatives of the characteristic function for the pre-peak interval time window from the largest 355 

local maximum found in the characteristic function (Figure 4). 356 

 357 

We used a 5 second pre-peak interval time window because most of the earthquakes in this study 358 

are local and tS-tP difference times are less than 5 seconds. This time window is shown in Figure 359 

4. It is recommended to use a larger pre-peak interval time window for regional earthquakes. We 360 

shorten this pre-peak interval time window preceding each peak using the following criterion. 361 

First, we adjust the lower threshold visually to the level of residual signal energy from the 362 

harmonic signal component remaining after the separation process. The lower threshold is the 363 

smallest non-zero number in the characteristic function, which does not correspond to the 364 

transient signals. This allows the removal of minimal amount of residual energy due to the 365 

separation process. Using the lower threshold improves the accuracy of onset time picking. We 366 

set all values of the characteristic function below the lower threshold to zero. Second, we check 367 

if there are some neighboring zero samples in the time window and change the starting point of 368 

the window to one sample after the last zero sample in order to prevent mixing with a very close 369 

preceding event. Indeed, neighboring zero samples means that there is no transient signal and 370 

shortening the window avoids confusion with a close preceding event. We skip the samples 371 

following a local maximum within the window if there are any. Then, we calculate the slope 372 

between each two neighboring samples and we skip the samples following a slope reduction if 373 

there are any. Finally, the starting point of the transient signal (P-wave arrival) is the point 374 

showing the maximum slope increase (see Figure 4). 375 

 376 

2.4 Parameters selection 377 
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 Although the separation process creates a harmonic and percussive spectrogram, the 378 

process must be repeated twice with different FFT window lengths if both tremor signals and the 379 

timing of the transient events are to be determined. Due to the uncertainty principle in Fourier 380 

analysis, it is impossible to increase both the temporal resolution and the frequency resolution. A 381 

better frequency resolution requires a longer time window for the spectral analysis (longer FFT 382 

length), which implies a reduced temporal resolution. Similarly, using a shorter FFT window 383 

increases the temporal resolution, while the frequency resolution will be reduced. For extracting 384 

the tremor signal, we need a high resolution in the frequency domain and therefore a large 385 

number of FFT points is chosen. We use a FFT window length of 81.92 seconds with an overlap 386 

of 75%, corresponding to an FFT size of 8192 at a sampling frequency of 100 Hz. To detect 387 

transient events, a high resolution in the time domain is needed and a small number of FFT 388 

points and short hop size (number of samples between each successive FFT window) are chosen. 389 

We use a FFT size and FFT window length of 1.28 seconds, with an overlap of 75%. 390 

Considering the data’s 100 Hz sampling frequency, neighboring FFT windows are spaced in time 391 

by an interval of 0.32 seconds (3.125 samples per second). Fourier transforms with a narrower 392 

FFT size are not recommended for our algorithm due to the resulting limited frequency 393 

resolution. 394 

 395 

There are two sets of median filter procedures used in our method. The first one, which is 396 

described in section 2.1, is part of the REPET-SIM algorithm and is depicted in the flow-chart of 397 

Figure 2(a). After identifying the similar frames and storing them in the array J, the median of J 398 

is taken for each frequency in order to construct W. 399 

 400 
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The second median filter procedure is described in the section 2.2 where a second harmonic-401 

percussive separation approach is applied by using the median filtering method of FitzGerald 402 

(2010). Both a  horizontal and a vertical median filter are applied separately to the spectrograms 403 

of R and NR (see the flowchart in Figure 2(a)). We use a standard kernel size of 31 for both the 404 

horizontal and vertical median filters, as it has been shown by Driedger et al. (2014) that the 405 

choice of this parameter is not critical if not choosing extreme values. Both R and NR are 406 

decomposed into two spectrograms, i.e., containing harmonic and percussive signal components . 407 

The harmonic component of the R spectrogram is the final harmonic spectrogram (HARM, see 408 

figure 2b). The percussive component of the spectrogram is the final spectrogram of the transient 409 

components (TRAN, see Figure 2b). 410 

 411 

3 Data sets and testing 412 

3.1 Generation of semi-synthetic data 413 

We created a synthetic harmonic signal, convolving equally-spaced spikes with a real-valued 414 

Morlet wavelet (Figure S1 a). In this way, we can model the basic features of a harmonic spectra 415 

(Schlindwein et al. 1995). Instead of using exact constant repetition intervals and a fixed 416 

amplitude, which produces a perfect harmonic tremor signal, we varied the interval times as well 417 

as the amplitude of the spikes according to a normally distributed random variable around some 418 

mean value with about 10% variance. This results in slightly broadened peaks of the harmonic 419 

spectrum and reproduces the variation that we observe in seismic records of volcanic tremors 420 

(Eibl et al. 2017a) (Figure S1 b). After creating the harmonic signal, colored noise resembling 421 

Peterson’s low noise model (LNM, Peterson 1993) is added to the signal. The colored noise is 422 
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synthesized by computing coefficients of a zero phase FIR (Finite-Impulse-Response) filter via 423 

inverse FFT from the spectral representation of the LNM.  Then, we apply the FIR filter to a 424 

random time series of arbitrary length and multiply it with an amplitude factor to adjust the SNR 425 

of the tremor versus colored noise (Figure S2). Finally, we add real earthquake recordings 426 

randomly in time to the resulting time series of synthetic tremor and noise (Figure S3). Each 427 

earthquake signal, which is used for semi-synthetic data creation, is cut from the beginning of the 428 

P wave until the signal amplitudes returns to the pre-event noise level after the S- or Surface 429 

wave coda part. We used different types of the earthquakes’ signals, i.e., both long period and 430 

volcano-tectonic events within the time period from 15 September to 20 September 2014 show 431 

significantly different signal durations. In total, we created 24 hours of semi-synthetic data by 432 

combining 500 real earthquake recordings with synthetic harmonic waveform and a seismic 433 

noise series. More details about the semi-synthetic data generation can be found in the 434 

supplementary Figures (S1 to S3). Figure 5 (a, b, & c) show the components of the semi-435 

synthetic signal and Figure 5 (d) shows the created semi-synthetic signal. 436 

 437 

We applied our method to this semi-synthetic dataset. The synthetic harmonic signals were 438 

extracted and the earthquakes were detected via the characteristic function. Figure 5 (e) shows 439 

the semi-synthetic signal after subtracting the extracted tremor signal from it and we name it the 440 

de-tremored signal. As shown in Figure 5 (e), this signal has a larger earthquake Signal to Noise 441 

Ratio (SNR) and an improvement in the first-motion piking is seen. This is useful when we need 442 

to remove a harmonic noise from the seismic waveform. Figure 5 (f & g) show the extracted 443 

harmonic signal and the earthquake characteristic function as outputs of the method. 444 

 445 
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3.2 Testing the tremor extraction algorithm using semi-synthetic data  446 

To evaluate the ability of the method for tremor signal extraction, we use the created semi-447 

synthetic data with different SNR of the harmonic signal. In order to set different SNRs, we 448 

normalize each component of the semi-synthetic data by dividing it by its standard deviation and 449 

then we weight them based on the desired SNR. Our harmonic signal extraction process is 450 

performed on the semi-synthetic data and the harmonic signal is then  reconstructed. The cross-451 

correlation of the synthetic harmonic signal and the reconstructed harmonic signal using our 452 

method is measured (Figure 6). Cross-correlations measure the similarity of two time series, so 453 

we calculate them to evaluate how similar the reconstructed harmonic signal is to the synthetic 454 

harmonic signal. If the two-time series are identical, the cross-correlation coefficient will be 1 455 

and if they are completely different, the cross-correlation coefficient will be 0. We can 456 

reconstruct the tremor signal for a SNR of at least 0.4 with a cross-correlation of more than 0.8. 457 

The synthetic harmonic signal and the reconstructed signal match well in both phase and shape 458 

(see Figure 5b and f). The differences between these two signals is usually related to small 459 

fluctuations in the input harmonic signal, which shows a random pattern instead of a repetitive 460 

pattern. The similarity matrix is not able to identify random patterns, therefore, they are not 461 

reconstructed in the output signal. Figure 6 shows the SNR and related cross-correlation of input 462 

and output harmonic signal. 463 

 464 

3.3 Testing the earthquake detection algorithm using semi-synthetic data 465 

To evaluate the capacity of our method for earthquake detection, we use the created semi-466 

synthetic data with different earthquake SNR. We report the local SNR here, which refers to the 467 
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ratio between the variance of the earthquake signal and the variance of the local related segment 468 

of the semi-synthetic data. The local related segment is the time window, which contains the 469 

earthquake signal as well as synthetic tremor signals and seismic noise in the background. The 470 

segment has a variable length that corresponds to the earthquake signal duration. The advantage 471 

of the semi-synthetic signals is that we can measure and control the individual components. The 472 

results show that for SNR = 0.1, we can detect more than 78% of the events, however, below 473 

SNR = 0.3, there is a significant number of false picks (up to 30% of all events), while the 474 

average percentage of false picks is 6% for SNR between 0.3 to 1. For SNR higher than 0.1, 42% 475 

of the missed events are LP events. The SNR and related detection rates are reported in Figure 7 476 

(a). Some examples of semi-synthetic data with different earthquake SNR and different SNR of 477 

harmonic signal component are presented in the supplementary figures (Figures S4 to S7). 478 

 479 

Most missed events are similar to that shown in Figure 7 (b), which are classified as long period 480 

(LP) events (Woods et al., 2018). Figure 7 (c) shows a typical volcano-tectonic event for 481 

comparison. That LP events are often not detected can be explained by the properties of the 482 

detection characteristic function. This function is derived from summing all frequencies in the 483 

transient spectrogram for each time frame. Thus, the characteristic function is sensitive to 484 

broadband signals. However, LP events are narrow band, which results in a poor performance, 485 

although the signals are contained in the transient spectrogram. Also, if LPs persist longer, it 486 

becomes more difficult to detect them because of the basic structure of the method. Indeed, to 487 

create the repeating spectrogram, for all time frames, we derive the corresponding frame (in the 488 

repeating spectrogram) by taking the median of the similar frames (which are identified using the 489 

similarity matrix) for each frequency bin. For a transient (short duration in time) event, there are 490 
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a few numbers of similar frames in the spectrogram, so it is identified as a non-repeating pattern. 491 

Therefore, it will show a short-lasting sharp peak in the transient characteristic function. In 492 

contrast, for a long-lasting event, there are some adjacent similar frames, which will be replaced 493 

in the repeating spectrogram by the median of them. Therefore, it shows some long lasting, less 494 

sharp, adjacent peaks in the transient characteristic function, which is less likely to be detected 495 

by the local maximum finder compared to sharper peaks. 496 

 497 

3.4 Real data tests   498 

In a final step, we applied the method to a dataset of the Holuhraun 2014-2015 eruption 499 

and extracted volcanic tremor signals from the seismological records. As discussed in section 2.2 500 

and showed in Figure 3 (a & b), the reconstructed tremor signal matches well with the original 501 

seismological records and has no trace of transient, earthquakes-related signals. This dataset 502 

consisted of one month (September 2014) of recordings by the FLUR station and we use a single 503 

vertical component to detect earthquakes. We compared our detected earthquakes with the 504 

bulletin presented in Ágústsdóttir et al. (2019). For the station location with respect to the 505 

eruption fissures, please see Figure 1 and Woods et al. (2018). 84% of the total of 5071 events 506 

listed by Ágústsdóttir et al. (2019) were detected by our proposed approach.  507 

 508 

We detected a total of 12619 events, which is more than twice the number of listed events in the 509 

bulletin. The bulletin is made based on an automatic detection method using Coalescence Micro-510 

seismic Mapping (Drew et al., 2013) with the velocity model used in Ágústsdóttir et al. (2016) 511 

(their Figure S2 (c)). The bulletin earthquakes were relocated (Ágústsdóttir et al., 2019) using 512 

cross-correlated, sub-sample relative travel times following the method of Woods et al. (2019). A 513 
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dense local seismic network comprising 72 three-component broadband instruments was used to 514 

create the one-year bulletin. Our detection process currently uses only one component of seismic 515 

recording from a single station. In the future, the result could be improved using three-516 

component signals and additional stations because some of the smaller events may have larger 517 

amplitudes on the other components or stations. An event with a larger amplitude shows a larger 518 

peak in the characteristic function, hence the probability of its detection using our algorithm will 519 

increase. 520 

 521 

Our method can detect two adjacent earthquakes with a minimum interval of around 10 seconds. 522 

This interval is defined by the number of samples, which must be waited after picking a peak in 523 

the local maximum finder. The interval value depends on the number of FFT (Fast Fourier 524 

Transform) points, the hop size, and the type of earthquake. In our dataset, earthquakes are 525 

mostly local, where shorter waiting time values will result in the detection of more than one peak 526 

for one event. 527 

 528 

Using the algorithm described in section 2.3, we are able to find P-wave arrival times using the 529 

detected peaks via the local maximum finder. The uncertainty in the example shown in Figure 4 530 

is 0.1 second through visual inspection. The pattern of the characteristic function for different 531 

types of events is, however, not always similar to the simple shape we have assumed, which 532 

mostly corresponds to the energy shape of a local event and could have more fluctuations, thus 533 

the uncertainty in detecting the P arrivals could be higher. We compared the P-arrival time 534 

residuals of our method and those given by the bulletin of Ágústsdóttir et al. (2019) for one 535 

month. For 52% of the events, the time difference is less than one second, while 48% of the 536 
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events show a time difference of between one to six seconds. A significant part of large time 537 

differences is related to LP events, where the duration of the event is long compared to volcano-538 

tectonic events in the characteristic function, where the first arrival is outside of the pre-peak 539 

interval time window. In this case, the algorithm is able to send the first selected peak back in 540 

time to the starting point of the window and shorten the time difference, however the emergent 541 

onset of the LP event is still earlier in the time axis. This algorithm (finding P-wave arrival times 542 

using the detected peaks) could be improved upon by assigning different parameters for different 543 

event types. 544 

 545 

The algorithm which is proposed here is a simple way to attribute the peaks to the starting point 546 

of changes in the characteristic function. This could be applied in different fields when a function 547 

has rather stable values, but also experiences sudden changes, and finding the first point of the 548 

starting changes is important. One could develop the algorithm by adding more criteria based on 549 

the information about the phenomena that are attributed to the changes to decrease the 550 

uncertainty in finding the starting point of change. 551 

 552 

3.5 Feasibility of the method with respect to processing speed  553 

The average computation time for the tremor extraction of a one-day long record with a FFT 554 

window length of 81.9 seconds, overlap of 75%, and a sampling frequency of 100 Hz, is about 555 

70 seconds, when implemented in Python using Librosa on a PC with an Intel core i7 (six-core) 556 

processor of 2.2 GHz and 16 GB of RAM. For transient signal detection with an accuracy of 0.32 557 

seconds, the computation time is about 34 minutes with a FFT window length of 1.28 seconds 558 

and an overlap of 75%. The significant difference in the computation time between the tremor 559 
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extraction and transient signal detection is due to the different FFT window lengths of the two 560 

processes. Reducing the FFT length and using the same overlap of 75% increases the number of 561 

FFT windows for the overall data time range and the associated computation time. 562 

 563 

4 Conclusions and outlook 564 

In this work we have developed a method to extract and reconstruct volcanic tremor signals, as 565 

well as to detect transient signals from seismic waveforms. We used a combination of two 566 

harmonic-percussive separation algorithms from the field of music information retrieval to 567 

separate harmonic and percussive elements of the seismic waveform in the time frequency 568 

domain. This combination leads to a better separation of the components and results in clean 569 

tremor and transient spectrograms. The tremor signals are reconstructed in the time domain using 570 

weighted phase information of the initial seismic complex spectrogram at each time frame 571 

through the energy contribution of the tremor spectrogram. We showed that it is important to use 572 

phase information to reconstruct a signal in the time domain for seismological purposes to 573 

provide an accurate phase reconstruction. We also discussed how to use a weighted phase matrix 574 

based on the dominant frequency band of the tremor spectrogram that can almost eliminate the 575 

noise contributions in the phase matrix of the seismic waveform. The reliability of the 576 

reconstructed signal was shown using semi-synthetic tests. The cross-correlation between the 577 

synthetic harmonic signal and the reconstructed harmonic signal using our method was higher 578 

than 0.8 for SNRs of the synthetic harmonic signal above 0.4. In addition, more than 78% of 579 

earthquake signals in the semi-synthetic data with SNR = 0.1 can be detected using oue method.  580 

 581 
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The capability of the method for earthquake detection was also evaluated in comparison to a real 582 

earthquake catalog. The detection of more than twice the number of the Ágústsdóttir et al. (2019) 583 

bulletin events demonstrates the ability of the proposed method for detecting smaller seismic 584 

events, even when only a single station and component is available. 585 

 586 

The developed method is able to extract harmonic tremor signals and is applicable to other 587 

volcanoes that exhibit such phenomena. A possible application of the proposed method is to 588 

extract volcanic tremor signals using a network or an array during a period of heightened 589 

volcanic activity. In particular, the clean tremor signal can be used for tremor source location 590 

using array analysis given that the tremor signal reconstruction provides the true phase of the 591 

signal. This may provide an improved analysis of the spatial and temporal evolution of volcanic 592 

tremors during active volcanic periods. 593 

 594 

Another application of this method is in the field of earthquake analysis research. Here, we 595 

suggest using the seismic waveform after subtracting the tremor signals (if tremors are present). 596 

We named this signal as the “de-tremored” signal in section 3.1 (see Figure 5e). The advantage 597 

of using the de-tremored signal is the resulting increase in the earthquake SNR and 598 

improvements in the first-motion picking.  599 

 600 

In our opinion, the transient signal detection algorithm introduced in this study is a useful tool 601 

for detecting seismic events and is especially applicable for detecting small events during an 602 

earthquake swarm. While we used one component of one station for earthquake detection in this 603 

study, the results could be improved using three components and additional station because some 604 
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events with low amplitude on the current component and station may show larger amplitude on 605 

the other components or stations. 606 

 607 

In conclusion, the presented method could provide a basis for tremor source investigations as 608 

well as research into eruptive activity since it provides simultaneous information about tremors 609 

and earthquakes and allows the extraction of a clean signal of the tremor for detailed 610 

investigations. 611 

 612 

Data and Resources 613 

All data used in this paper is openly available at IRIS (network code 7Z, White 2010). A Jupyter 614 

notebook with all the Python codes and parameters related to the proposed method is available as 615 

an electronic supplement. The supplementary material related to this article also contains 616 

illustrations of the semi-synthetic data generation. The application of the method using some 617 

examples of semi-synthetic data with different earthquake SNRs and different SNRs of the 618 

harmonic signal component are also presented in the supplementary material. 619 
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Figure 1. Aspects of the Holuhraun 2014-2015 eruption data and the application of the proposed 781 

method. (a) The eruption site and the station location. (b) An example of real data from 3 782 

September 2014 (HHZ component of FLUR station from network 7Z (White, R. 2010)). (c) The 783 

PSD and the (d) spectrogram of this day for the raw seismic data. (e) The PSD and the (f) 784 

spectrogram for the extracted tremor signal using the proposed method. 785 

 786 

Figure 2. Method flowchart. (a) Processing steps of the method and (b) illustration of the 787 

processing steps with a real data example. 788 

 789 

Figure 3. Comparison of the extracted tremor signal using the proposed method and two other 790 

methods visualized for a short time window of data from 3 September 2014 (HHZ component of 791 
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FLUR station from network 7Z (White, R. 2010)). (a) The raw seismic signal (blue) and the 792 

reconstructed tremor signal using our method (green). (b) Same as the green trace in (a). (c) The 793 

reconstructed tremor signal using horizontal median filtering. The traces of transient events still 794 

exist in this signal. (d) The estimated tremor signal using the Griffin-Lim algorithm for phase 795 

reconstruction. The vertical red line is drawn to illustrate the phase alignment of the signals.  796 

 797 

Figure 4. Flowchart for backtracking the peaks to the arrival time. The example shows an 798 

earthquake time history and its characteristic function. The vertical green line in the top left 799 

figure shows the first selected peak, which is sent back in time to the P arrival time step by step. 800 

In the top left the pre-peak interval time window is demonstrated as [start, end). The bracket 801 

means including the start point in the time window and the parentheses means excluding the end 802 

point from the time window. The uncertainty of the P arrival time in this example is 0.1 second 803 

through visual inspection. 804 

 805 

Figure 5. Testing the method with semi-synthetic data. (a) Earthquake signals, (b) synthetic 806 

tremor signal, and (c) seismic noise signal are the elements for creating semi-synthetic data. Each 807 

of these three signals is normalized by dividing by their standard deviation. (d) Weighted sum of 808 

the data in subfigures a-c, which is used as an input for our method. The SNR of the earthquakes 809 

is 0.2 and the harmonic SNR is equal to 2. (e) The de-tremored signal derived by subtracting the 810 

extracted tremor signal from the semi-synthetic signal. (f) Extracted tremor signal and (g) 811 

transient characteristic function as outputs of our method. 812 

 813 
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Figure 6. Cross-correlation of the semi-synthetic harmonic signal and the reconstructed harmonic 814 

signal versus the SNR of harmonic signal. 815 

 816 

Figure 7. Detection rate of earthquakes in the semi-synthetic data as well as two earthquakes as 817 

samples of detected and not-detected events by our method. (a) Detection rates for semi-818 

synthetic data as a function of the SNR. (b) Seismic waveform and spectrogram of a not-detected 819 

long period (LP) event on 16 September 2014. (c) Seismic waveform and spectrogram of a 820 

detected volcano-tectonic event on 16 September 2014. 821 

 822 
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Figure 3. Comparison of the extracted tremor signal using the proposed method and two other 836 

methods visualized for a short time window of data from 3 September 2014 (HHZ component of 837 

FLUR station from network 7Z (White, R. 2010)). (a) The raw seismic signal (blue) and the 838 

reconstructed tremor signal using our method (green). (b) Same as the green trace in (a). (c) The 839 

reconstructed tremor signal using horizontal median filtering. The traces of transient events still 840 

exist in this signal. (d) The estimated tremor signal using the Griffin-Lim algorithm for phase 841 

reconstruction. The vertical red line is drawn to illustrate the phase alignment of the signals.  842 
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the data in subfigures a-c, which is used as an input for our method. The SNR of the earthquakes 855 

is 0.2 and the harmonic SNR is equal to 2. (e) The de-tremored signal derived by subtracting the 856 
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Figure 6. Cross-correlation of the semi-synthetic harmonic signal and the reconstructed harmonic 860 

signal versus the SNR of harmonic signal. 861 
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Figure 7. Detection rate of earthquakes in the semi-synthetic data as well as two earthquakes as 863 

samples of detected and not-detected events by our method. (a) Detection rates for semi-864 

synthetic data as a function of the SNR. (b) Seismic waveform and spectrogram of a not-detected 865 

long period (LP) event on 16 September 2014. (c) Seismic waveform and spectrogram of a 866 

detected volcano-tectonic event on 16 September 2014. 867 
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Figure S1. The process of synthetic harmonic signal generation. (a) shows the 
convolution of equally spaced spikes with a real-valued Morlet wavelet which results 
in the synthetic harmonic signal. The spikes are separated with inter-event times that 
are fluctuating around a mean value of 1.45 seconds with about 10 % variance. The 
spectrogram of the synthetic harmonic signal is shown in (b). 
 
 
 

Figure S2. The process of the colored noise (Peterson 1993) generation. (a) Peterson’s 
original Low Noise Model (LNM) amplitude spectrum is used to create FIR (Finite-
Impulse-Response) filter coefficients by inverse FFT operation. The zero phase filter 
is applied to a random time series resulting in a synthesized colored noise resembling 
LNM’s amplitude spectrum. The spectrogram of the colored noise signal is shown in 
(b). 
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Figure S3. One hour of semi-synthetic signal and corresponding spectrogram. 
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 Figure S4. An example of a semi-synthetic signal with an earthquake signal 
(SNR=0.7) and harmonic signal (SNR=1). (a) shows one hour of the semi-synthetic 
signal, the spectrogram of semi-synthetic signal, the tremor spectrogram and the 
transient spectrogram which are derived after applying the method. (b) shows 20 
seconds of the semi-synthetic signal, the synthetic harmonic signal which is used and 
the extracted harmonic signal through the method. We can see how the extracted 
harmonic signal and the synthetic harmonic signal are similar. The transient 
characteristic function is shown at the bottom. We see a clear peak in the 
characteristic function at the time of earthquake. 
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Figure S5. An example of a semi-synthetic signal with earthquake signal (SNR=1) 
and harmonic signal (SNR=0.7). (a) same as subfigure S4a. (b) shows 20 seconds of 
the semi-synthetic signal, the synthetic harmonic signal which is used and the 
extracted harmonic signal through the method. We can see that for this harmonic 
signal (SNR=0.7) the extracted harmonic signal is almost similar to the synthetic 
harmonic signal. The transient characteristic function is shown at the bottom. We see 
a clear peak in the characteristic function at the time of earthquake. 
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Figure S6. An example of a semi-synthetic signal with earthquake signal (SNR=0.5) 
and harmonic signal (SNR=0.5). (a) same as subfigure S4a. (b) shows 20 seconds of 
the semi-synthetic signal, the synthetic harmonic signal which is used and the 
extracted harmonic signal through the method. We can see the extracted harmonic 
signal is following the general shape of the synthetic harmonic signal for this 
harmonic signal (SNR=0.5), but some differences are visible. The transient 
characteristic function is shown at the bottom. We see a clear peak in the 
characteristic function at the time of earthquake. 
 



 

 7 

 
Figure S7. An example of a semi-synthetic signal with earthquake signal (SNR=0.3) 
and harmonic signal (SNR=0.3). (a) same as subfigure S4a. (b) shows 20 seconds of 
the semi-synthetic signal, the synthetic harmonic signal which is used and the 
extracted harmonic signal through the method. We can see that the harmonic signal is 
not well reconstructed here because of low SNR of harmonic signal. The transient 
characteristic function is shown at the bottom. Although the earthquake SNR is low, 
we see a clear peak in the characteristic function at the time of earthquake. 




