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Abstract
Soil respiration (i.e. from soils and roots) provides one of the largest global fluxes of carbon
dioxide (CO2) to the atmosphere and is likely to increase with warming, yet the magnitude of soil
respiration from rapidly thawing Arctic-boreal regions is not well understood. To address this
knowledge gap, we first compiled a new CO2 flux database for permafrost-affected tundra and
boreal ecosystems in Alaska and Northwest Canada. We then used the CO2 database, multi-sensor
satellite imagery, and random forest models to assess the regional magnitude of soil respiration.
The flux database includes a new Soil Respiration Station network of chamber-based fluxes, and
fluxes from eddy covariance towers. Our site-level data, spanning September 2016 to August 2017,
revealed that the largest soil respiration emissions occurred during the summer (June–August) and
that summer fluxes were higher in boreal sites (1.87± 0.67 g CO2–C m−2 d−1) relative to tundra
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(0.94± 0.4 g CO2–C m−2 d−1). We also observed considerable emissions (boreal:
0.24± 0.2 g CO2–C m−2 d−1; tundra: 0.18± 0.16 g CO2–C m−2 d−1) from soils during the
winter (November–March) despite frozen surface conditions. Our model estimates
indicated an annual region-wide loss from soil respiration of 591± 120 Tg CO2–C during
the 2016–2017 period. Summer months contributed to 58% of the regional soil respiration,
winter months contributed to 15%, and the shoulder months contributed to 27%. In total,
soil respiration offset 54% of annual gross primary productivity (GPP) across the study
domain. We also found that in tundra environments, transitional tundra/boreal ecotones,
and in landscapes recently affected by fire, soil respiration often exceeded GPP, resulting in
a net annual source of CO2 to the atmosphere. As this region continues to warm, soil
respiration may increasingly offset GPP, further amplifying global climate change.

1. Introduction

The northern permafrost region holds over 50%
of the global soil organic carbon (SOC) pool and
approximately one trillion tonnes of carbon in the
top 3 m of soil alone (Hugelius et al 2014, Meredith
et al 2019). Historically, SOC in permafrost-affected
ground and seasonally thawed active layerswas largely
protected from microbial decomposition by low-
temperatures (Faucherre et al 2018). However, arc-
tic air temperatures have increased rapidly (Box et al
2019), rising 2.7 ◦C (annual average) and 3.1 ◦C
(October–May) between 1971 and 2017. This warm-
ing has increased the length of the non-frozen sea-
son (Kim et al 2012) and has deepened soil thaw
(Luo et al 2016) in Alaska and Canada. Soil warm-
ing can increase microbial activity (Natali et al 2014)
and may result in large amounts of soil carbon being
released into the atmosphere, predominantly as car-
bon dioxide (CO2; Schuur et al 2015, Turetsky et al
2020).

Soil root and microbial respiration (herein
referred to as soil respiration) are dominant com-
ponents of an ecosystem’s annual CO2 emission
(Mahecha et al 2010). Soil respiration in boreal forests
is estimated to account for 48%–68% of total eco-
system respiration (ER; soil + aboveground com-
ponents; Hermle et al 2010, Parker et al 2020). In
tundra, soil respiration is the primary source of CO2

efflux and summer emissions alone may account for
60%–90% of annual ER (Sommerkorn et al 1999,
Gagnon et al 2018, Strimbeck et al 2018). Generally,
the seasonality and magnitude of soil respiration are
influenced by soil temperature, soil water content,
root activity, and microbial-community access to
SOC (Bond-Lamberty et al 2004, Schuur et al 2009,
Nagano et al 2018).

As northern landscapes continue to warm, CO2

emissions resulting from soil respirationmay increas-
ingly offset carbon uptake by plants (i.e. gross
primary productivity, GPP). Moreover, the fastest

rate of warming in the Arctic-boreal region is occur-
ring in autumn, winter, and spring (Box et al 2019),
a period when microbial respiration continues but
plant productivity is limited. Recent tundra and
boreal carbonbudgets in northernAlaska andCanada
using eddy covariance (EC) flux observations show
that enhanced soil respiration during an anomalously
warm winter (2015–2016) offset any carbon gains
provided by GPP (Liu et al 2020). Similarly, annual
soil respiration offset 75% of the total forest GPP in
a boreal Finland study (Pumpanen et al 2015). In
northern Sweden, a steady increase in soil respira-
tion, and no change in forest GPP, resulted in a trans-
ition from net annual ecosystem CO2 sink to source
(Hadden and Grelle 2016). An atmospheric study of
North Slope, Alaska tundra reported late autumn and
early winter CO2 emissions had increased by 73%
since 1975 (Commane et al 2017). These observed
increases in soil respiration have been attributed to
increased ground thaw (Kim et al 2006) and resid-
ual unfrozen water in soil pore space (Faucherre et al
2018). Further, a recent synthesis of soil flux indic-
ated soil respiration from Arctic-boreal permafrost
regions may already outweigh ecosystem CO2 uptake
under contemporary climate conditions (Natali et al
2019).

Little is known about the spatiotemporal patterns
of soil CO2 emissions from tundra and boreal biomes
at the regional level, in part due to the lack of spatial
representation by in situ observations. Existing in situ
(e.g. EC) and satellite-based CO2 monitoring net-
works are unlikely to detect changes in soil respiration
across the permafrost domain (Parazoo et al 2016),
especially in winter months, or identify local changes
in net ecosystem exchange (NEE) or component
(i.e. GPP and respiration) CO2 fluxes (Schimel et al
2015).

Process-based terrestrial models can be useful
tools to diagnose how components of the carbon cycle
might change in response to shifts in ecosystem prop-
erties and climate but are hampered in representing
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seasonal and spatial patterns by the lack of integrated
observations (Fisher et al 2018, Natali et al 2019).
In many regions, including Northern Eurasia and
Alaska, process-models have failed to agree on flux
magnitudes and even the sink vs source status of eco-
system carbon budgets (Fisher et al 2014, Rawlins
et al 2015). Improving process-level understanding of
soil respiration requires integrating in situ flux data,
observations of ecosystem properties (e.g. vegeta-
tion characteristics, thermal andmoisture state) from
satellite remote sensing, and data-informedmodeling
(Jeong et al 2018, Schimel et al 2019).

This study addresses knowledge gaps in our
understanding of soil respiration from permafrost
ecosystems. We seek to improve understanding of
the spatiotemporal patterns of soil respiration in
boreal and tundra landscapes, the magnitudes of sea-
sonal and annual soil CO2 loss, and how soil res-
piration impacts ecosystem carbon budgets. Here we
apply information gained from a new network of Soil
Respiration Stations (SRSs) within the NASA Arctic
Boreal Vulnerability Experiment (ABoVE) domain.
We also incorporate a complementary suite of flux
records from EC towers within the region. We used
random forest (RF) models and remote sensing to
extrapolate soil fluxes to the ABoVE domain for the
2016–2017 period, obtaining spatially and season-
ally disaggregated regional estimates of soil emissions.
Last, we determine the seasonal and annual offset of
GPP by respiration (soil, and ecosystem) to identify
landscape net annual carbon source, or sink, status
under contemporary climate conditions.

2. Methods

2.1. Study region
The spatial domain of this study, which includes
permafrost-affected landscapes of Alaska and North-
west Canada, represents the core region of the NASA
ABoVEFieldCampaign (Kasischke et al 2014, Loboda
et al 2019) and spans gradients of climate, permafrost
distribution (or prevalence), vegetation, and ecosys-
tem disturbance from fires (figure 1). Approximately
24% of the region has been recently burned (between
2000 and 2017; Loboda et al 2017a, 2017b, Pastick et al
2018). Because our flux sampling locations only rep-
resent permafrost-affected ecosystems, our analyses
excluded landscapes where permafrost was absent
(Gruber 2012); we also excluded barren lands (<10%
vegetation) and open water.

2.2. SRS chamber data
We used CO2 flux data from ten SRS (Minions
et al 2019) installed along a north–south gradi-
ent in Alaska, spanning the North Slope to Eight
Mile Lake near Denali National Park (figure 1; sup-
porting information, SI table 1 (available online at
stacks.iop.org/ERL/16/084051/mmedia)). Each SRS

is a fully automated system that measures soil sur-
face CO2 flux using three forced diffusion (FD) cham-
bers. The SRS techniquewas designed to provide year-
round measurements of soil emissions (live above-
ground vegetation was removed during chamber
installations to ensure that flux measurements do
not reflect net CO2 exchange), even during peri-
ods of snow cover. Detailed information about the
SRS system and FD processing is provided in the
supplement (SI section 1). In addition to the SRS
records, chamber-based fluxes collected using an Eos-
ense eosFD portable sensor near Council, Alaska were
obtained from project partners. Six of the 11 FD sta-
tions (SRS and the eosFD site) are in tundra and five
in the boreal region. Six of the SRS sites represent
paired burned and unburned ecosystems (SI table 1).

2.3. EC tower data
We used AmeriFlux (ameriflux.lbl.gov) and EC-
investigator provided quality-controlled CO2 flux
records primarily from September 2016 through
August 2017 (matching the period of highest data
availability from the SRS sites) from 15 EC towers
(figure 1, see SI table 1, SI section 2.1); eight tower
sites were in tundra and seven in boreal. The half
hourly EC records included NEE, GPP, and ER. NEE
was obtained directly from the EC records and indic-
ates the net of ecosystem CO2 respiration and CO2

uptake; GPP and ER were obtained using standard
EC flux partitioning algorithms (Reichstein et al 2005,
Lasslop et al 2010). Quality data were available year-
round for at least ten sites (SI table 1; SI figure 2).

2.4. Flux modeling
We used published values from field and laboratory
studies to separate aboveground respiration compon-
ents from the EC-based ER records (SI section 2.2).
We acknowledge that the literature-based ratio
approach does not account for seasonal variability
in aboveground respiration, and variability from
other factors including temperature, species type,
total biomass, and ecosystem stress. However, this
approach was used because more detailed informa-
tion was not available. We then applied the combined
SRS FD and EC ER dataset, information from remote
sensing, and ancillary geospatial layers (SI section
3) to obtain data-driven RF models (SI section 4)
developed separately for summer (June–August),
autumn (September, October), winter (November–
March) and spring (April and May). These seasons
were based on observed seasonality in the tundra and
boreal SRS and EC flux records (SI figure 3). Can-
didate variables used in the models are described in
the supplement (SI section 3) and included informa-
tion about vegetation greenness and productivity, leaf
area, topography, soil characteristics (e.g. permafrost
status, soil texture, SOC content), and other environ-
mental conditions (e.g. albedo, radiation, temperat-
ure, snow cover, soil moisture (SM) status).
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Figure 1. Locations of SRSs and EC towers considered in this study. The study domain is part of the NASA ABoVE core region.
The sites span climate and vegetation gradients (tundra to boreal) within Alaska and Northwest Canada. Landscapes evaluated in
this study (2.68× 1012 km2) do not include barren land, open water, or where permafrost was absent (indicated in gray).
Landcover classes are fromWang et al (2019).

2.4.1. RF models and spatial prediction
RF is a machine learning method that uses an
ensemble approach to regression by means of mul-
tiple decision trees and bootstrap sampling (Liaw
and Wiener 2002, Cutler et al 2012). RFs have
been widely used in ecological studies (Pearson
et al 2013, Clewley et al 2017) and carbon budget
assessments (Tramontana et al 2015, Jung et al
2020). Strengths of RF include the ability to handle
high-dimensional problems, noise, and non-linearity,
and its ability to provide robust internal estim-
ates of error and variable importance (Cutler et al
2012).

We developed RF models in the R computing
environment (R Core Team 2019) using the random-
Forest package (Liaw 2018). Each tree was construc-
ted using a random selection (i.e. bagging) of approx-
imately 2/3 of the samples (42 site-flux observations
in the autumn model, 110 in the winter model, 48 in
the spring model and 65 in the summer model; see
SI section 4.1). The remaining 1/3 of the observations
was used to validate each forest (1000 trees per trained
RF model). Predictor variable (SI table 4) selection
was achieved using the variable selection (Genuer et al
2010, 2019) R package which was designed to reduce
high (>70%) cross-correlations between the selec-
ted inputs. The tuneRF algorithm (Liaw 2018) was
applied to optimize the Mtry parameter (the num-
ber of variables available for splitting at each tree
node). Variable importance was assessed using ran-
domForest varImpPlot (Liaw 2018) and the rfPer-
mute (Archer 2020) R package was used to provide
corresponding estimates of parameter significance.

This process was applied to obtain optimal RFmodels
for each season (SI section 4.2). The finalmodels were
applied to the raster predictor datasets (raster package
in R; Hijmans et al 2020) to obtain 300 m resolution
maps of monthly average soil respiration.

2.4.2. ABoVE region carbon budgets
Weused themonthly average soil CO2 emissionmaps
(g CO2–C m−2 d−1) from the RF models to obtain
regional flux budgets. The emission estimates were
scaled to the terrestrial spatial domain within each
300 × 300 m grid cell by removing fractions of iden-
tified open water within each grid cell. Fractional
water was derived using the 30 m Wang et al (2019)
land cover map for 2014. We then obtained monthly
and annual soil respiration totals for the ABoVE
domain (Tg CO2–C period−1). To determine the
extent that soil respiration offset the annual ecosys-
tem uptake of CO2 (i.e. GPP), we obtained estimates
from an ensemble of satellite observation based GPP
records for the 2016 and 2017 period (SI section 3),
including NASAModerate Resolution Imaging Spec-
troradiometer (MODIS) MOD17 (MOD17A2H.006,
Running et al 2015), NASA Soil Moisture Active Pass-
ive (SMAP) Level 4 Carbon (L4_C) (Kimball et al
2014, Jones et al 2017) and Global OCO-2 sun-
induced chlorophyll fluorescence (SIF) (GOSIF) GPP
data products (Li and Xiao 2019). Lastly, to gauge
the potential impact of regional NEE on annual GPP,
we used literature-based flux ratios (SI section 2) to
provide estimates of emissions from aboveground
respiration, in addition to our RF-estimates of soil
respiration.
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Figure 2. Seasonal soil respiration patterns observed in the SRS and EC fluxes for the ABoVE domain, for boreal (green) and
tundra (blue) biomes. Soil respiration emissions are average monthly fluxes from individual sites, totaling 45 site-fluxes in
autumn, 110 in winter, 48 in spring, and 65 in summer. The boxplot range indicates the first and third quartiles; the middle line
denotes the median. Box whiskers indicate minimum and maximum values, excluding outliers indicated by black circles; ‘a’
denotes t-test results with no significant difference between seasons at α= 0.05.

3. Results

3.1. Soil emission characteristics
Site-level fluxes showed strong seasonal emission pat-
terns (figure 2) closely tied to changes in air and
soil temperature (figure 3). Soil respiration (regional
mean ± standard deviation) was largest in summer
(boreal: 1.87 ± 0.67 g CO2–C m−2 d−1; tundra:
0.94± 4 g CO2–Cm−2 d−1) and peak daily-averaged
respirationwas often observed in July (SI figure 3), the
warmest month (air temperatures >10 ◦C, at EC and
SRS flux sites). This was followed by a steady decline
in autumn (boreal: 0.8± 0.4 g CO2–C m−2 d−1;
tundra: 0.42± 0.2 g CO2–C m−2 d−1). Winter res-
piration persisted even under snow cover, and
cold air and soil (10–15 cm depth) temperatures
averaging −18 ◦C± 6 ◦C and −3.5 ◦C± 2.7 ◦C,
respectively. In winter, boreal soil respiration
averaged 0.24± 0.2 g CO2–C m−2 d−1 and tun-
dra averaged 0.18± 0.16 g CO2–C m−2 d−1. Soil
respiration began to increase again in spring
(boreal: 0.82± 0.6 g CO2–C m−2 d−1; tundra:
0.28± 0.2 g CO2–C m−2 d−1) as ecosystems
warmed (average boreal/tundra soil temperatures of
−1.98 ◦C in April, −0.07 ◦C in May, and 1.82 ◦C in
June). Soil respiration from boreal sites was system-
atically higher than those from tundra in all seasons,
excluding winter (t-test; p= 0.03 in autumn, p= 0.22
in winter, p= 0.002 in spring, p < 0.001 in summer).
T-test significance formonthly flux averages is shown
in SI figure 3 and seasonal flux patterns according to
biome (i.e. tundra or boreal) and flux location are
shown in SI figure 4.

Air temperature (p= 0.009) and soil temperature
at 10–15 cm depth (p = 0.01) explained 65% of the

observed variability in monthly soil respiration at the
site level, in a linear regression analysis that included
fluxes from all seasons. During the 2016–2017 period,
soil respiration was observed even at air temperat-
ures approaching −30 ◦C and at soil temperatures
(∼15 cm depth) below −10 ◦C (figures 3(a) and
(b); SI figure 5). Soil respiration increased steadily
after ground thaw. Soil respiration for the 14 tun-
dra and boreal sites where in situ SM was available
indicated that higher fluxes in summer most often
occurred where soils (⩽15 cm depth) were relatively
wet but not saturated (SI figure 6). Observed relation-
ships between the seasonal site-level soil respiration
fluxes and important remote-sensing based indicat-
ors of permafrost status, temperature, SM, and GPP
is provided in SI figure 7.

3.2. RFmodel performance and variable
importance
The RFmodels explainedmuch of the variance in soil
respiration, withmoderate-to-low rootmean squared
error (RMSE) andmean absolute error (MAE; SI table
5, SI figure 8). The R2 values were 0.68 for the sum-
mermodel, 0.57 for autumn, 0.65 for winter, and 0.76
for spring. The respective RMSE (g CO2–Cm−2 d−1)
values were 0.35 (summer), 0.24 (autumn), 0.10
(winter), and 0.25 (spring). The positive MAE (aver-
aging 0.2 ± 0.09 g C m−2 d−1) indicated a slight
underestimation of soil respiration by the models. In
the summer RF model, MODIS (MOD) GPP was the
most important variable, followed by soil sand con-
tent (an indicator of water and nutrient retention),
MODIS leaf area index (LAI), tree cover, and nor-
malized difference vegetation index (NDVI; an indic-
ator of greenness). In the autumn model, SMAP root
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Figure 3. Observed relationships between (a) air temperature or (b) in situ soil temperature (∼10–15 cm depth) and average
monthly soil respiration (g CO2–C m−2 d−1) from EC (triangles) and SRSs (circles) in Alaska and Northwest Canada for boreal
(green) and tundra (blue) sites. Fitted curves (black lines) were obtained using locally weighted loess smoothing; gray shading
represents confidence intervals (±/−standard error).

Table 1. Variable importance for the seasonal RF models, according to the percentage increase in model mean squared error (%IncMSE)
when a specific variable was excluded in the development of regression trees. Larger values for %IncMSE indicate greater importance of
the predictor variable relative to the other predictors. MON indicates that variable information was input for each month and summer
indicates variable information from June to August.

Summer Autumn

Variable %IncMSE p-value Variable %IncMSE p-value

MOD GPP (summer) 22.02 0.0033 SMAP RZSM (MON) 19.83 0.0016
SoilGrids % sand 21.52 0.0033 PZI 16.32 0.0033
MOD LAI (summer) 20.24 0.0003 SMAP Tsoil L4 (MON) 15.69 0.0017
MOD% tree cover 20.23 0.0050 SMAP RAD (MON) 15.43 0.0049
MOD NDVI (MON) 17.60 0.0067 SoilGrids SOC 9.44 0.0549

Winter Spring

Variable %IncMSE p-value Variable %IncMSE p-value

Landsat NDWI (summer) 22.53 0.0017 PZI 17.47 0.0019
MOD LAI (summer) 21.14 0.0016 MOD% tree cover 16.94 0.0009
Landsat EVI (summer) 21.13 0.0017 MOD LST (MON) 12.79 0.1798
SMAP RZSM (MON) 20.79 0.0016 SoilGrids % clay 12.67 0.0099
MOD GPP (summer) 19.78 0.0017 MOD GPP (summer) 12.05 0.0079
PZI 18.85 0.0017 Landsat EVI (summer) 10.40 0.0159
MOD NDSI (MON) 18.11 0.0016 SMAP SM (summer) 10.12 0.0229
SMAP TSOIL L3 (MON) 10.70 0.0233 — — —

zone soil moisture (RZSM) was the most import-
ant predictor (table 1), followed by permafrost zon-
ation index (PZI), SMAP soil temperature (TSOIL)
from layer 4 (70–140 cm depth), downwelling short-
wave radiation (RAD), and SoilGrids SOC (0–30 cm
depth). In winter, the Landsat-based normalized dif-
ference water index (NDWI; an indicator of land-
scapewetness gradients)wasmost important, provid-
ing finer resolution (30 m) legacy information about
moisture status from the previous summer. Other
significant predictors were MODIS LAI, Landsat
enhanced vegetation index (EVI; another indicator of
greenness), SMAP RZSM, PZI, a MODIS snow index
(NDSI), and SMAP layer 3 (∼30–70 cm) TSOIL. The
30–70 cm soil temperature selected by the winter
model may better represent the delay in active-layer

freeze as deeper soils remain closer to 0 ◦C even after
upper-layers have frozen (e.g. Zona et al 2016). The
PZI was the most important variable for the spring
model, followed by tree cover, land surface temper-
ature (LST), soil clay content, MODIS GPP, Landsat
EVI, and SMAP surface (0–10 cm) SM.

3.3. Annual carbon flux estimates for ABoVE
domain
Annual soil respiration emission for the study domain
was 591.2 Tg C–CO2 ± 120 Tg C–CO2 during the
2016–2017 period (figure 4; SI table 6). Monthly
soil respiration maps are provided in SI figure 9
and seasonal respiration budgets are shown in SI
figure 10 (SI figure 11 shows associated emission
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Figure 4. (a) Annual soil respiration emissions (g CO2–C m−2) per 300 m grid cell for the ABoVE domain (2016–2017).
Estimates exclude non-permafrost, barren, and open water (in gray) areas. Triangles indicate EC and SRS flux monitoring sites
used for model development. (b) Monthly RF-derived respiration (Tg CO2–C) for the ABoVE region.

uncertainty maps). Summer (June–August) contrib-
uted to 58% of annual soil respiration, the longer
winter (November–March) period generated 15%,
with comparable proportions occurring in autumn
(15%, September, October) and spring (12%, April,
May). Across the ABoVE region, the largest soil
respiration budgets occurred in the boreal zones and
the warmer, more southern, forest-tundra ecotone.
Over half of regional soil respiration emissions (54%
of annual total) were from colder landscapes having
a widespread occurrence of near-surface permafrost
(i.e. where the PZI was >75%; spanning 70% of the
domain) and the remaining 46% of emissions were
from warmer permafrost (0% < PZI > 75%; 30% of
the domain; table 2; SI figure 12). The area covered
by Shrubland/Herbaceous vegetation produced the
majority (46%) of soil respiration, followed by Sparse
Vegetation and Evergreen Forest.

Annual GPP for the whole domain,
obtained from MOD17, GOSIF, and SMAP
L4_C products (section 2.4.2, SI figure 13),
was 1046–1256 Tg CO2–C in 2016 and
1025–1134 Tg CO2–C in 2017 (SI table 7) with an
estimated uncertainty of 310 Tg CO2–C yr−1 (SI
section 3). Annual GPP was considerably higher
(>600 g CO2–C m−2 yr−1) in the boreal regions rel-
ative to tundra (<300 g CO2–C m−2 yr−1; SI figure
13). Our extrapolations indicate soil respiration off-
set approximately 54% of GPP across the domain
(averaging 1101 Tg CO2–C). The offset of GPP by
soil respiration varied considerably across the region
(figure 5; SI figure 14). Offsets of⩾100% (i.e. annual
net carbon source areas) were identified in far north-
ern tundra andmountainous landscapes, along trans-
itional tundra-boreal ecotones, and in landscapes
recently disturbed by fire (e.g. west of Hudson Bay
and south of the Selwym Mountains in Canada). We
estimate that approximately 8% of the ABoVE region
was a net carbon source (100% offset of GPP) in
2016–2017, based on soil respiration alone and not
accounting for aboveground respiration and non-
terrestrial carbon emissions (i.e. aquatic bodies).

Table 2. Percent of annual soil respiration and annual GPP totals
for the study domain, according to tundra (including shrub
tundra) and boreal biomes (from Natali et al 2019), vegetation
cover (fromWang et al 2019) and permafrost class (Gruber et al
2012).

Land cover
% of
domain

% of
GPP

% of soil
respiration

Boreal Biome 86 85 83
Tundra Biome 14 15 17
Shrubland/
Herbaceous

43.7 49 46

Sparse
Vegetation

22.9 17 19

Evergreen
Forest

14.3 15 16

Wetland 10.4 10 10
Mixed Forest 3.3 4 3.5
Tussock
Tundra

3.7 3 2.9

Deciduous
Forest

1.7 2 2.6

Permafrost
Class

% of
domain

% of
GPP

% of soil
respiration

PZI > 75 70 38 54
50 < PZI⩽ 75 14 21 12
25 < PZI⩽ 50 9 21 8
0 < PZI⩽ 25 7 20 26

4. Discussion

This study provides new estimates of soil respira-
tion for the ABoVE domain and insights into how
soil respiration is offsetting net annual GPP across
permafrost-affected tundra and boreal landscapes.
Our analysis of in situobservations andRF-model res-
ults indicate that soil respirationwas generally highest
under warmer (above freezing) soil temperatures and
deeper seasonal soil thaw, in moderate-to-moist soils
(0.5–0.8 m3 m−3), and in areas with higher vegeta-
tion productivity. Accordingly, the largest annual soil
respiration rates occurred in boreal ecosystems where

7
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Figure 5. (a) Reduction (offset) of GPP by soil respiration. A 100% offset indicates that soil respiration equaled or exceeded GPP.
Triangles indicate CO2 flux monitoring stations (EC and SRS) used for model development. (b) Annual soil respiration and GPP
totals (Tg CO2–C) for the ABoVE domain. GPP is from MODIS (MOD17), GOSIF, and SMAP L4_C products.

trees and shrubs were present, especially along the
more southern portions of the domain having sub-
stantial permafrost thaw.

4.1. The temperature-soil respiration relationship
Consistent with earlier studies (e.g. Wickland et al
2006, Natali et al 2014, Loranty et al 2018), we
found temperature to be an important driver of
soil respiration at the site level. Our regional flux
assessments showed highest soil respiration rates in
summer (contributing to 58% of annual soil res-
piration) when soil temperatures were warmer and
soil thaw was deepest. Higher emissions in warmer
soils are not only from increased microbial decom-
position of SOC, but likely also from increased root
activity (i.e. belowground autotrophic respiration),
a strong source of CO2 in thawing permafrost sys-
tems (Hicks Pries et al 2015, 2016). Although grid-
ded estimates of belowground root density are not
available for this region, LAI, % tree cover, and veget-
ation indices (important predictors in the RF mod-
els) provided proxies of vegetation productivity (e.g.
Street et al 2006), and indirect information about root
respiration.

Within the site-level soil respiration database,
larger, and sometimes episodic, CO2 emissions
(>0.5 g CO2–C m−2 d−1) were observed as soil tem-
peratures approached 0 ◦C, especially as soil layers
began to freeze in the autumn. Like our site-level find-
ings, an atmospheric study of Alaska’s North Slope
also identified high CO2 emissions in autumn and
early winter (October–December; Commane et al
2017) during the landscape freeze. Although our RF
model approach represented regional flux character-
istics relatively well, the autumn RF model had the
lowest performance of the four seasonal models, res-
ulting from its inability to capture spatiotemporally

episodic releases of CO2 observed in situ. As a result,
the model underestimated regional CO2 emissions
(by⩾0.2 g C m−2 d−1, based on MAE estimates)
during the autumn period.

4.2. Regional predictors of soil respiration
Our regional assessments show that carbon source/
sink status is highly heterogeneous. Annual carbon
status of an ecosystem is influenced by many factors,
including GPP and plant community type (e.g. Rouse
et al 2002, Parmentier et al 2011, Oechel et al 2014,
Forkel et al 2016, Ge et al 2017, Christiansen et al
2018), winter snow cover which insulates soils (e.g.
Welker et al 2000, Christiansen et al 2018), and shifts
in vegetation growth and microbial activity (Arndt
et al 2019, Kim et al 2021). SM is also an extremely
influential factor that is very heterogeneous across the
landscape and affects both vegetation productivity
and soil respiration (Grogan 1999), yet this environ-
mental variable can be radically altered by permafrost
thaw (Jorgenson et al 2013) and is especially difficult
to monitor regionally at finer landscape-level scales
(Du et al 2019).

Burn status (i.e. burned or unburned) was not
a significant predictor of the regional monthly-
averaged soil respiration emissions examined in this
analysis, which could be in part due to our data-
base containing information from only three burn
sites (representing tundra and forest landscapes
11–15 years after fire), or because of rapid post-
fire recovery. Following a fire event, the combin-
ation of warmer and drier soils can substantially
increase CO2 flux from soils (O’Neill et al 2002,
2003, Ueyama et al 2019). However, a review of fire
disturbance at high latitudes reported that soil and
root respiration in forests may stabilize after a dec-
ade (Ribeiro-Kumara et al 2020). As a result, our
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estimates likely underestimate soil respiration from
recently burned areas (∼5% of the domain from 2012
to 2016; SI figure 15; Alaska and Canada Large Fire
Databases; Amiro et al 2001, Kasischke et al 2002,
Stocks et al 2002).

4.3. Regional carbon budgets
Our 2016–2017 assessment shows an annual soil res-
piration loss of 591 Tg CO2–C for the permafrost-
affected ABoVE domain. A comparison of our RF-
based results with the Natali et al (2019) pan-Arctic
estimates (referred to as NCC 2019 and subset to the
ABoVE permafrost-affected study area) showed that
soil respiration estimates in the NCC 2019 record was
substantially higher (∼1.6×) than our RF budgets
during the winter and early spring (SI table 6 and SI
figure 16). A correspondingmodel analysis by Schiferl
et al (2021) used a stochastic time-inverted Lag-
rangian transport (Lin 2003) model and atmospheric
CO2 observations influenced by Alaska North Slope
tundra (obtained from the Utqiaġvik tall tower) to
verify the NCC 2019 and RF-model results. The study
determined that our RF-model approach under-
estimated atmospheric enhancements in October–
December by 2–3× but the RF-estimates were much
better aligned with atmospheric observations, relat-
ive to NCC 2019, during the January–April period
(SI section 5, SI figure 17). While episodic bursts of
CO2 from freezing soils may contribute to the larger
atmospheric CO2 levels observedOctober–December
across the North Slope, our assessments also indicate
that very large emissions of CO2 to the atmosphere
could result from the turnover and freeze of lakes and
ponds which are widespread throughout the region
(SI section 5; Preskienis et al 2021). If this assessment
is correct, then theNatali et al (2019) results also over-
estimate soil CO2 emissions for the North Slope dur-
ing the autumn season.

For the ABoVE study domain in 2016–2017, soil
respiration only partially offset GPP, by approxim-
ately 54%–60%. However, for many grid cells in
northern tundra, mountainous regions, or where
boreal forest GPP was reduced by recent fire
(SI figures 14 and 15) soil respiration alone (not
accounting for aboveground autotrophic respira-
tion) equaled or exceeded annual GPP, indicating
that some sites are net CO2 sources. The Belshe et al
(2013) meta-analysis of EC fluxes from high-latitude
tundra sites concluded that tundra systems are cur-
rently CO2 sources. Similarly, Natali et al (2019)
determined the permafrost-affected Arctic-boreal
zone to likely be a net CO2 source when consid-
ering winter contributions from soils. Using pub-
lished ratio estimates of aboveground vs belowground
(soil) contributions to ER for boreal and tundra
biomes we estimate an annual ER between 820 and
1171 Tg CO2–C, respectively offsetting 74%–106%of
annual GPP (SI figure 18). This estimate suggests that

tundra is currently a CO2 source, while the boreal is a
CO2 sink.

5. Conclusion

Soil respiration can strongly impact the carbon sink
or source status of high latitude permafrost regions.
When considering the permafrost-affected tundra
and boreal biomes of Alaska and Northwest Canada
as a whole, soil respiration offset annual GPP in
2016–2017 by 54%–60%. However, in sparsely veget-
ated tundra regions and recently burned landscapes,
soil respiration exceeded GPP. Although a majority
(58%) of annual soil respiration emissions occurred
in the summer months, we found considerable con-
tributions of soil CO2 in the shoulder and winter sea-
sons. Our soil emission estimate of ∼591 ± 120 Tg
CO2–C for the domain is likely conservative due to
the inability of our statistical model approach to cap-
ture episodic bursts of CO2 during soil freeze and
thaw, and a lack of soil respiration data from very
recent fire scars. We also acknowledge uncertain-
ties introduced by using a simple literature-based
flux correction ratio method to remove above-
ground components from tower-based ER observa-
tions, which does not account for variability in above-
ground respiration by species, temperature, stand age
and other factors. We also note that the 2016–2017
period was characterized by record breaking high air
temperatures across much of the region relative to
previous years and the longer-term 1981–2019 nor-
mal (ACRS 2016, 2017). Warming records have been
repeatedly broken in more recent years and we estim-
ate that post-2017 soil respiration budgets will exceed
those reported here.

Our data-driven gridded soil respiration budgets
provide new, valuable records that will be useful for
the future benchmarking of process-based models.
Although our assessment is limited to a one-year
period, efforts to ensure the continued operation of
SRS and EC sites will allow future regional studies to
better understand interannual variability and spati-
otemporal trends in soil respiration across the rap-
idly changing Arctic-boreal environment. As current
spaceborne observations of CO2 are not yet able to
track changing emission contributions in winter, nor
able to identify finer landscape-level patterns of soil
emissions (Parazoo et al 2016), the continuation if not
expansion of existing in situ monitoring networks is
urgently needed to document changes in soil respir-
ation and ecosystem carbon sink/source status across
the thawing permafrost region in North America and
elsewhere, including Siberia and the Tibetan Plateau.

Data availability statement

Data from this study are included within the art-
icle and supplementary information and are available
through the ORNL DAAC.
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The data that support the findings of this study
are openly available at the following URL/DOI:
https://doi.org/10.3334/ORNLDAAC/1935.
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