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Abstract: Rapid technological advances in airborne hyperspectral and lidar systems paved the way
for using machine learning algorithms to map urban environments. Both hyperspectral and lidar
systems can discriminate among many significant urban structures and materials properties, which
are not recognizable by applying conventional RGB cameras. In most recent years, the fusion of
hyperspectral and lidar sensors has overcome challenges related to the limits of active and passive
remote sensing systems, providing promising results in urban land cover classification. This paper
presents principles and key features for airborne hyperspectral imaging, lidar, and the fusion of those,
as well as applications of these for urban land cover classification. In addition, machine learning
and deep learning classification algorithms suitable for classifying individual urban classes such
as buildings, vegetation, and roads have been reviewed, focusing on extracted features critical for
classification of urban surfaces, transferability, dimensionality, and computational expense.

Keywords: machine learning; deep learning; lidar; hyperspectral; remote sensing; urban environ-
ment; data fusion; sensor fusion; urban mapping; land cover classification

1. Introduction

Over the last few decades, global urbanization has grown rapidly. By 2050, around 68%
of the world’s population will be living in urban areas [1]. This can cause environmental
challenges, including ecological problems, poor air quality, deterioration of public health,
microclimate changes leading to severe weather, higher temperatures, limited access to
water, persistent vulnerability to natural hazards, and the release of toxic particles from
fast industrialization into the atmosphere [2,3]. These challenges lead to difficulties in
advanced urban analyses due to urban surfaces’ spectral and structural diversity and
complexity over a small area [4,5]. Therefore, constant monitoring of urban areas is often
highly required. Systematic monitoring and updating of maps are critical in urban areas,
where many objects are mobile (vehicles and temporary buildings), and the infrastructure,
vegetation, and construction are constantly changing.

Spatiotemporal investigations of the urban regions are today provided by remote
sensing technology advances [6]. Especially, airborne remote sensing is a powerful de-
veloping tool for urban analysis that offers time-efficient mapping of a city essential for
diverse planning [7], management activities [8], and monitoring urban and suburban land
uses [9]. It has been proven as a common technique for mapping urban land cover changes
to investigate, e.g., social preferences, the regional ecosystem, urbanization change, and
biodiversity [10]. Urban remote sensing, in particular, is widely used for the investigation
of three-dimensional urban geometry that is crucial for modeling urban morphology [11],
identifying various objects, heterogeneous material, and mixtures. However, the growing
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challenges require a state-of-the-art technological solution in terms of sensors and analysis
methods. Continuous development and improvement of remote sensing sensors increase
interest in identifying urban land cover types based on spectral, spatial, and structural
properties [12,13]. In urban mapping, lidar analyses (light detection and ranging), hyper-
spectral data (HS), and synthetic aperture radar (SAR) have become significant. Different
portions of the electromagnetic spectrum are useful in analyzing urban environments from
the reflective spectral range to the microwave radar [14]. The latter provide high-resolution
images independent of the time of day and weather; however, due to the requirement of
oblique illumination of the scene, occlusion and layover appear, making the analysis of
dynamic urban areas difficult [15].

Urban land cover classification accuracy and interpretability based only on a single
sensor in complex, dense urban areas are often insufficient [16]. The heterogeneity in the
urban areas leads to high spectral variation within one land cover type, resulting in very
complex analyses. The impervious surfaces (roofs, parking lots, roads, and pavements)
notably vary in the spectral and spatial-structural manner. In addition, scale and spatial
resolution are relevant for estimating urban heterogeneity. Scale defines heterogeneity, in
which materials are taken into account analytically or absent or grouped into one class,
e.g., individual trees, type versus forest, or vegetation in general [17]. Spatial resolution,
on the other hand, determines the level of pixel mixing. However, high spatial resolution
increases the physical material heterogeneity, increasing the complexity of analyses.

HS data provide spectral information about materials, differentiating them without
elevation context. The challenge in the pure spectral analysis is the negligence of object
identification, mostly built from various materials maintaining very high intra-object
heterogeneity. By contrast, lidar data can distinguish between different land cover classes
from the same material at a different height, such as asphaltic open parking lots and
roads [18,19]. Furthermore, passive remote sensors, such as HS, are sensitive to atmospheric
conditions and illumination, whereas lidar as an active sensor is less sensitive to these
factors. This property of lidar enables, e.g., a physical correction of shadow and illumination
purposes when combined with HS data [20–25] and intensity measurement for urban land
cover mapping in shaded areas [26]. Regardless of the spatial and spectral resolution of
airborne-based HS sensors, urban environments are characterized by spectral ambiguity
and reduced spectral value under the shadow caused by topography changes, buildings,
and trees, which can be overcome by adding lidar data as presented by [27]. In order to
overcome the limitations of individual sensor capabilities, the recent technologies are based
on multisensory fusion in the classification of urban surfaces, combining active and passive
remote sensing, such as airborne-based lidar and hyperspectral data (HL-Fusion). Such
an HL-Fusion can provide complementary information regarding the three-dimensional
topography, spatial structure, and spectral information in the landcover classification
purposes [19,28–31].

Moreover, a fusion of spectral, spatial, and elevation features provides robust and
unique information relevant to the urban environment [30]. The airborne HL-Fusion has
already been investigated for urban land cover classification purposes [30,32,33]. However,
diverse combination methods are implemented on different data and product levels based
on either physical or empirical approaches [34]. Furthermore, since all fusion processes are
very complex, there is no defined framework for fusing these sensors. Therefore, a compre-
hensive summary of previous research on data fusion may enhance the understanding of
fusion possibilities, challenges, and common issues that limit the classification results in
the urban environment.

Machine learning (ML) techniques have been applied as classifiers for HS data [23–28].
Depending on the classification aim, different mapping methods are applied to achieve
the goal. ML algorithms are in constant improvement, providing algorithms that can
hierarchically extract more complex features. This ability is assigned to a subfield of ma-
chine learning as deep learning (DL). DL has been proven as an effective technique for
feature extraction of HS data on the spatio-spectral level [35–40]. Although ML and DL
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methods are considered relevant classification tools in remote sensing, different algorithms
perform best, extracting different pixel- or object-based features. Choosing a classification
algorithm for HS data requires knowledge about the features that can be extracted. Espe-
cially, DL has gained popularity, thanks to finding unique deep parameters in a pixelwise
manner [41]. However, in the urban context, a per pixel classification can lead to noisy
results considering high spatial distribution.

Moreover, classification results mainly depend on the number of training samples,
limiting the performance and accuracy when the training dataset is insufficient for learning
the network algorithm [42]. In order to improve the classification results and reduce the het-
erogeneity issue, the inclusion of contextual information around pixels and object-oriented
classification [43,44] were considered, which allowed retrieving spatial information of
HS data and extracting critical spatial patterns of urban land cover classes [45,46]. ML-
and DL-based land cover classification in the urban environment from lidar is primarily
directed to detect buildings or high vegetation [47]. This is due to the lidar’s ability to
extract geometric features from objects, deriving their shape, elevation, and other prop-
erties that are useful for a classification purpose. Especially, lidar, in combination with
HS, is a powerful tool for classifying urban materials. However, since the objects in the
urban scene are complex, analyses with conventional classifiers achieve a low accuracy [48].
Commonly, the application of ML and DL algorithms for classification purposes in the
urban environment outperforms traditional classifiers developing very quickly [49].

This review study presents the latest ML and DL urban mapping methods focusing
on airborne HS and lidar data. The datasets cover the reflective spectral range of the
electromagnetic spectrum (VNIR, SWIR). The paper focuses on ML and DL classification
algorithms applied in the urban environment for land cover classes, such as buildings,
roads, vegetation, and water analysis. We point out algorithms applicable for HS, lidar, and
HL-Fusion and the challenges of applying each algorithm to hyperspectral and lidar data.

The structure of this review paper is arranged as follows (Figure 1): in Section 2,
typical urban land cover classes are described in terms of their complexity in HS and lidar
data analysis. Section 3 synthesizes the general characteristics of HS and lidar data, high-
lighting the automated and handcrafted features extracted from both sensors. In Section 4,
classification algorithms for urban mapping purposes are described. Section 5 shows the
results and discussion of the presented algorithms in urban environment classification.
Finally, we point out conclusive remarks on the mapping methods, HL-Fusion potential,
perspectives for further research, and recommendations for new research fields.
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Figure 1. The structure of the review paper.

2. Classified Urban Land Cover Classes

The urban land cover consists of very complex physical materials and surfaces that
are constantly having anthropological impacts. The urban surface types are a mosaic
of seminatural surfaces such as grass, trees, bare soil, water bodies, and human-made
materials of diverse age and composition, such as asphalt, concrete, roof tiles for energy
conservation and fire danger [50], and generally impervious surfaces for urban flooding
studies and pollution [51]. The complexity of urban analysis also depends on the scale
chosen and its purpose. Many classifications refer to urban materials with fine spatial



Remote Sens. 2021, 13, 3393 4 of 39

resolution deepening the heterogeneity, allowing a more detailed mapping result. The
classification of urban objects, which consist of many different materials and variance
within a class, although significant (e.g., in city map updates), becomes a challenge due
to the highly nonlinear and heterogeneous composition of different objects surfaces and
materials, and thus, there is the need to use more training data for classification purposes,
which is time-consuming and computationally expensive.

2.1. Buildings

Buildings in an urban context can be recognized as shapes with planar surfaces and
straight lines [52]. Building detection based on remote sensing methods plays a crucial
role in many applications in the urban environment, such as in 3D monitoring of urban
development in time [53], urban planning, telecommunication network planning, vehicle
navigation [33], urban energy planning [53], city management, and damage assessment [54].
Many mapping techniques are based on shape identification, outlines, and preliminary
model data [54]. Besides detecting buildings as objects, building roof extraction has
recently been a hot topic within the remote sensing community. Building roofs are defined
by planarity properties and height derivatives based on elevation. A 3D visualization of
buildings is of great importance for infrastructure management and modeling, 3D city
mapping, simulations, change detection, and more [55]. Both airborne-based optical and
lidar data have been used recently to map buildings. A common way to detect buildings is
to use a digital surface model (DSM) [56,57], a normalized DSM (nDSM) [58,59], or a point
cloud extracted from lidar data [60–63]. Lidar is capable of extracting building heights and
planar roof faces [33]. It is beneficial for spatiotemporal assessment and investigation of
building density for sustainability study and residential development in cities [53].

By contrast, airborne-based HS data can better distinguish between materials at the
roof surfaces due to their spectral differences [33]. However, not including the elevation
information from the lidar scanner, the classification of buildings and their roofs can be
too complex without human expertise. One example is a building surrounded by an arid
lawn with open soil, a grass rooftop, a building with an asphaltic parking lot, or bitumen
roofing surrounded by asphaltic parking at the building’s ground-level high vegetation
(trees) overhanging buildings [64]. Therefore, an HL-Fusion can improve the building
classification results offering high accuracy on a spectral and spatial basis.

2.2. Vegetation

Vegetation is recognized by its geometrical complexity, defined by parameters such
as the roughness, point density ratio measure [65], and chlorophyll spectral feature. In
the last decade, active (Sentinel-1, LiDAR, and radar) and passive (Quickbird, Worldview,
Sentinel-2, Landsat, and MODIS) remote sensing has been widely applied to vegetation
detection. Lidar data are used to generate virtual 3D tree models [66], map low and high
vegetation [67], and, using multispectral lidar, assess vegetation variety regarding its health
and density [68], as well as extract vegetation indices, e.g., NDVI [69] for monitoring
changes caused by urbanization, anthropogenetic activities, and harvesting applying
wavelet transform [70,71]. However, vegetation detection is not a straightforward approach.
The analysis is often complex and detailed due to the increasingly finer spatial resolution
of remote sensing devices, such as distinguishing photosynthetic and nonphotosynthetic
vegetation [72]. Vegetation is often not defined as a whole but as groups, for example, as
low vegetation (grass), middle vegetation (shrubs), and high vegetation (trees). One of
the more complex challenges is the similar morphology of low/young trees and shrubs,
causing misclassification of shrubs as high trees [73]. HS data are also used to detect
vegetation on a spectral basis (chlorophyll reflectance), differentiating between vegetation
types and healthiness. More biophysical parameters can be defined due to more spectral
bands than multispectral lidar (usually 2–3 wavelengths), such as the leaf area index,
fractional cover, and foliage biochemistry [74]. Both sensors have been fused in many
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studies, e.g., for canopy characterization for biomass assessment and estimation of risk of
natural hazards [75] and urban tree species mapping [76].

2.3. Roads

Road detection from airborne-based HS and lidar data is essential in remote sensing
applications, e.g., a road navigation system, urban planning and management, and geo-
graphic information actualization [77,78]. The elevation feature derived from lidar data has
been proven as a significant parameter to extract time-efficient road methods compared
to optical methods [79]. DSM distinguishes more precise boundaries of surfaces, even in
occluded regions [80]. However, only lidar-data-based classification is limited when roads
are at the same elevation but made of different materials, such as asphalt, concrete, or
other impervious materials [18]. Therefore, HS imaging can differentiate between different
materials and their conditions to complement road classification purposes. It has already
been proven by Herold et al. [81] for the following uses: map alteration, degradation,
and structural damages of road surfaces based on spectral analysis. Usually, to detect
roads, texture information is implemented [82]. In addition, lane marks can be used as
an indicator for new roads; however, this approach is illumination sensitive [83]. HS data
classification without topographic information is challenging when differentiating between
two objects made from the same material: differentiation between a parking lot, parking at
the ground level, cycleway, and a road [30].

2.4. Miscellaneous

Apart from the above-described land cover classes, the urban environment consists
of more complex thematic classes. They commonly cannot be chemically or physically
described by a single hyperspectral absorption feature or other single features, such as
height or shape, which are, however, extracted from contextual information. Thus, spatial
context is critical and necessary for identifying industrial areas, commercial or residential
buildings, playgrounds, and harbors in coastal cities. The combination of spectral and
spatial features from HS and lidar data shows potential, allowing identifying thematic
class and assessing its condition in terms of quality and materials.

3. Key Characteristics of Hyperspectral and Lidar Data

In urban land cover classification, handcrafted feature engineering plays an important
role in standard shallow ML algorithms, such as support vector machines (SVM) and
random forest (RF). Features are manually derived from remotely sensed data and defined
to describe an object of interest, starting from spectral bands through, for example, spectral
indices and contextual information, which are generally very useful in defining important
biophysical parameters, e.g., for vegetation [84]. However, manually derived features
may not sufficiently represent the highly complex and unique urban environment [85].
Depending on the classification objective and classified objects, different features are
required. However, in DL, the feature engineering process is simplified as features are
extracted during the training step [86]. These automatic high-level features can represent
complex spatial correlations and nonlinear relationships. Examples of handcrafted features
for both HS and lidar data are described below in this section.

3.1. Hyperspectral (HS) Images

HS data retrieved from an imaging spectrometer are a three-dimensional cube that
includes two-dimensional spatial information (x, y) with spectral information at each pixel
position xiyj [87]. Each pixel in the obtained digital data contains a nearly continuous spectrum
covering the reflective spectral range of the visible, near-infrared (VNIR: 400–1000 nm) and
short-wave infrared (SWIR: 1000–2500 nm) [88,89]. HS as a passive system is dependent on
the given lighting conditions resulting in high intraclass (within a class) spectral variability.
In these wavelength ranges of the electromagnetic spectrum, particular absorption features
and shapes make it possible to identify the material’s chemical and physical properties [90].
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For example, in urban land cover classification, the reflective spectral range is often used to
map diverse soils [91], vegetation [92], rooftop materials [93,94], and other complex physical
materials [12,95–97].

A high spectral resolution characterizes airborne-based HS applications at the expense
of spatial resolution since the HS sensor’s spatial resolution linearly depends on the flight
altitude and the instantaneous field of view (IFOW) [98]. However, due to technology
development, the spatial resolution of HS is enhanced. Spectrometers with high spectral
and spatial resolution have been used to identify detailed urban materials [12,13,94,99].
With a higher spatial resolution of the hyperspectral camera, it is more likely that the
spectral signals are less mixed, producing pure pixels and thus detecting materials in
the urban environment with high geometric detail and material accuracy. However, a
high resolution can lead to difficulties, detecting more diverse materials within a single
object, thus increasing heterogeneity and making object-based classification on a coarser
scale more challenging. Especially in urban remote sensing, the spatial complexity of the
objects and their heterogeneity have been an issue for limited spatial resolution in many
studies [94,100]. When within a single pixel, the spectral mixture is very complex, the
different spectral properties of individual urban materials are lost, making classification at
the level of relevant urban materials challenging [101]. Therefore, a high spatial resolution
of hyperspectral sensors has become a crucial parameter in urban mapping.

Land cover classification based on HS data is affected by spatial and spectral resolution,
classification purposes (scale and defined land cover classes), mapping methods, and data
acquisition and preprocessing. The latter can be the optical geometry, integration time, and
other parameters during the acquisition [102]. Especially in airborne-based HS imaging,
the sensor experiences altitude variation, which results in geometric distortions in the HS
scene [103]. It is always a compromise between off-nadir distortion, spatial resolution,
mixed pixels, and SNR (signal-to-noise ratio). Therefore, the strategy and flight scheme
must be adapted to the level of the classification target in an advanced way. The flight line’s
swath width is reduced at a lower altitude, which requires more flight lines to be flown
to cover the target area with changing light conditions due to long integration time [104]
and leads to higher off-nadir distortions [105]. However, there are challenges for flying at
higher altitudes, such as a high degree of mixed pixels due to a low spatial resolution [106].
In addition, the short integration time at lower altitudes results in lower SNR and decreased
sensor sensitivity, producing a more elevated noise floor.

3.1.1. Spectral Features

Within one material, spectral features can vary due to color, coating, degradation, alter-
ation, roughness, the illumination of material, data acquisition, location of the material, and
preprocessing data (Figure 2) [97,107,108]. These variations within a material are more and
more investigated, generating spectral libraries of complex urban materials [12,109,110] and
normalization based on advanced preprocessing. HS images result in high-dimensional
data leading to computationally expensive analyses. For this reason, the first common
step of the classification process of the HS data is very often a spectral dimensionality
reduction to the relevant components applying linear spectral transformations without
losing important spectral information [111]. Standard techniques for dimensionality re-
duction are often statistically based, such as principal component analysis (PCA) [112],
linear discriminant analysis (LDA) [113], multivariate curve resolution (MCR) [114], and
other unsupervised classification methods. Such data compression saves computing time,
reduces noise, and retains needed information [115]. They are often based on the individual
image statistic, and thus they are not directly transferable to other flight lines or flight
campaigns. In addition, quantification procedures based on the spectral signature are no
longer possible. Statistical calculations have been applied to the spectral features of the
urban materials, such as continuum removal [116,117]. The continuum-removal algorithm
is applied to identify spectral absorption features by their wavelength positions and shapes,
removing the overall albedo of the reflectance curve and reducing the searched material’s
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superimposition [118]. However, the general shape of an absorption feature is relevant
for material identification and quantification. Continuum removal may prove effective
only for limited studies, excluding the original shape of the spectra. Some handcrafted
target-specific features can be calculated from optical remote sensing data, such as nor-
malized difference vegetation index (NDVI) for vegetation detection [8,18,119,120], new
impervious index, road detection index, new roof extraction index for the detection of
built-up, roads, and roofs [121], normalized difference built-up index [122], visible red and
green near-infrared built-up indices [123], road extraction index [124], and hyperspectral
difference water index for the detection of urban water bodies [125].
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3.1.2. Spatial Information

Spatial-context information is widely used to achieve robust and accurate classifi-
cation maps considering the neighborhood in the target pixel. While spectral features
are the most relevant features in material-based classification, adding spatial features to
object classification makes it easier to group pixels with some spectral variance into one
class representing an object or land cover type [126] (see Section 3.3). In addition, the
spatial noise of the classification results can be reduced [127,128]. In [129], the authors
proposed a context-sensitive semisupervised SVM classification technique using contextual
information without assumptions about the labeling of contextual pixels. In [130,131],
the authors also added the contextual features into hyperspectral image classification,
including the information in the classification map generation step. Spatial information is
often incorporated in hyperspectral classification problems applying Markov random field
where a predefined neighborhood of a pixel assumes that the central pixel belongs to the
same class [36,132,133]. Contextual features can also be extracted considering texture (see
Section 3.3.1), morphological features (see Section 3.3.2), and image segmentation.

3.2. Lidar Data

Lidar data is a three-dimensional point cloud (x, y, z) which delivers by default
information about elevation, multiple-return, the reflected intensity, texture, and waveform-
derived feature spaces from the object hit by laser pulse [31,134]. As an active sensor, a lidar
system emits radiation from one bandwidth (more in the case of multiwavelength lidar
scanners) to the object surface at high repetition rates. Lidar scanners are whiskbroom-type
instruments and typically use the monochromatic laser in visible—532 (bathymetric/coastal
mapping)—and near-infrared—1064 and 1550 nm—for example, for vegetation detection
and differentiation between asphaltic and nonasphaltic roads [135] which can be used as an
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additional intensity feature in land cover mapping in the reflective spectral range [31]. The
advantage of using airborne lidar is insensitivity to relief displacement and illumination
conditions [31], retaining full 3D geometry of data.

3.2.1. Height Features and Their Derivatives (HD)

The height feature is used to calculate the three-dimensional coordinates (x,y,z) that
generate a gridded 2.5-dimensional topographical profile of the area of interest [31]. Espe-
cially in the urban environment, the z value height is crucial for precise contour generation
of elevated objects [31]. In addition, the height difference between the lidar return and
the lowest point in cylindrical volume has been investigated and proven as an important
feature in discriminating ground and nonground points [136,137]. Moreover, a digital
surface model (DSM) (Figure 3A) is extracted from the height information applying in-
terpolation of 3D points onto a 2D grid. From a DSM, a surface roughness layer [138]
and a normalized DSM (nDSM) (Figure 3C) are calculated, subtracting the digital terrain
model (DTM) (Figure 3B) from the DSM [31]. The overlapping of the building height
information and the terrain height information is thus excluded. The object representation
heterogeneity is therefore reduced, which helps the classification procedure.
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acquired by the Terratec AS Company in August 2019 over Baerum municipality, Oslo, Norway.

The nDSM represents the above-ground points that correspond to the actual heights
of the object, omitting information about the objects which could complicate the classifica-
tion, for example, the differentiation of buildings in lowland or hilly regions. The height
information from lidar data helps differentiate between high and low vegetation [139],
tree-level characterization applying the canopy height model (CHM) [140], and roads and
buildings in the urban environment [8]. In addition, slope calculation (first derivative of
any elevation product) and surface curvature (second derivative of the elevation surface)
have been applied for detecting surface roughness [141,142] and changes in the normal
vectors of the surface [143]. Moreover, calculated skewness and kurtosis models from
the lidar elevation data were applied by Antonarakis et al. [144] to determine planted
and natural riparian forests and their ages [32]. In the classification approaches, Cha-
raniya et al. [145] included height variation, Bartels and Wei [146] calculated mean variance
and standard derivation of the height in the first echo from lidar to measure the roughness,
and Im et al. [147] added homogeneity, contrast, and entropy of height as feature spaces
after image segmentation (Figure 4).

3.2.2. Intensity Data

Intensity values extracted from lidar data correspond to the peak amplitudes from the
illuminated object [31]. Applying intensity as a feature space, Song et al. [148] presented an
approach to determine asphalt roads, grass, house roofs, and trees. However, trees’ diverse
intensity values undermine the classification due to the canopies’ complex geometry [149].
Moreover, lidar-based intensity can differentiate between low vegetation and impervious
surfaces, such as built-up areas. MacFacen et al. [150] applied the estimated mean intensity
values from a lidar dataset in an object-based image classification approach. Intensity data
are unstable and contain artifacts in the overlapping regions of single strips and eccentricity



Remote Sens. 2021, 13, 3393 9 of 39

caused by the gain response, sensor scanning, and environmental factors [151–153]. To
remove the noise from the intensity data, interpolation, filtering methods, and radiometric
calibration are commonly used [148,154]. Additionally, the influence of flying altitude
variations, topography, and atmospheric conditions can be corrected, adjusting intensity
values, which is called range compensation [155].

Remote Sens. 2021, 13, 3393 9 of 41 
 

 

and Im et al. [147] added homogeneity, contrast, and entropy of height as feature spaces 
after image segmentation (Figure 4). 

3.2.2. Intensity Data 
Intensity values extracted from lidar data correspond to the peak amplitudes from 

the illuminated object [31]. Applying intensity as a feature space, Song et al. [148] pre-
sented an approach to determine asphalt roads, grass, house roofs, and trees. However, 
trees’ diverse intensity values undermine the classification due to the canopies` complex 
geometry [149]. Moreover, lidar-based intensity can differentiate between low vegetation 
and impervious surfaces, such as built-up areas. MacFacen et al. [150] applied the esti-
mated mean intensity values from a lidar dataset in an object-based image classification 
approach. Intensity data are unstable and contain artifacts in the overlapping regions of 
single strips and eccentricity caused by the gain response, sensor scanning, and environ-
mental factors [151–153]. To remove the noise from the intensity data, interpolation, fil-
tering methods, and radiometric calibration are commonly used [148,154]. Additionally, 
the influence of flying altitude variations, topography, and atmospheric conditions can be 
corrected, adjusting intensity values, which is called range compensation [155]. 

 
Figure 4. Features derived from the height information from lidar data. 

3.2.3. Multiple-Return 
A lidar-based laser pulse can split into multiple laser returns if it hits a permeable 

object such as a tree canopy and obtains a response from, e.g., branches, leaves, stems, and 
the ground [31]. Multiple-return data has been recently used as an additional feature 
space in the urban mapping in the commercial building, small house, and tree determina-
tion [146]. Charaniya et al. [145] and Samadzadegan et al. [48] extracted the first, the last, 
and the normalized difference (NDI) between these returns to investigate roads and build-
ings. However, multiple returns occur as well if the laser pulse reaches building edges 
[156]. 

Figure 4. Features derived from the height information from lidar data.

3.2.3. Multiple-Return

A lidar-based laser pulse can split into multiple laser returns if it hits a permeable
object such as a tree canopy and obtains a response from, e.g., branches, leaves, stems, and
the ground [31]. Multiple-return data has been recently used as an additional feature space
in the urban mapping in the commercial building, small house, and tree determination [146].
Charaniya et al. [145] and Samadzadegan et al. [48] extracted the first, the last, and the
normalized difference (NDI) between these returns to investigate roads and buildings.
However, multiple returns occur as well if the laser pulse reaches building edges [156].

3.2.4. Waveform-Derived Features

Full-waveform lidar scanners can retrieve the entire signal of the backscattered laser
pulse as a 1D signal profile in the chronological sequence [134,156,157]. A full-waveform
lidar system can better correct the intensity values than the discrete systems, such as
accurate estimation of the surface slope [158], eliminating the assumption of Lambertian
reflectors [159]. However, before using any classification approach, proper radiometric
calibration is needed to adjust waveform data from different flight campaigns. Such a
radiometric calibration should include preflight, onboard, and vicarious calibration, as
presented by Wagner [155]. The waveform-derived features extracted from the gaussian
decomposition function have been tested for urban mapping purposes [47,136,160,161].
They include the waveform amplitude, (normalized) number of echoes, their width (Gaus-
sian standard deviation), the difference between the first and the last return, echo shape,
and echo cross-section. The latter provides high values for buildings, medium values for
vegetation, and low values for roads [137]. For building facades and vegetation that meet
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multiple echoes, the normalized number of echoes feature is, therefore, relevant [137]. Jutzi
and Stilla [162] extracted linear features on roofs based on full-waveform data. Chehata
et al. [136] provided that by adding echo width as a feature, the classification results
improved for low vegetation. Echo shape was investigated by [137,163], providing low
values to roofs and high values to vegetation. It has been proven that the waveform geom-
etry helps to differentiate between trees and built-up areas [136,156,164], determine tree
species [165,166], and segment lidar point clouds in an urban area [167]. The waveform
amplitude depends on the target. High amplitudes were observed by Chehata et al. [136]
for rooftops, gravel, cars, bare soil, and grass, and low amplitudes for asphalt, tar street,
and water. Mallet and Bretar [156] observed high amplitudes for grass and bare earth and
found that the spread in the pulse and low amplitudes can be assigned to flat surfaces by
increasing the incident angle. The echo waveform classification has been applied by Lin
and Mills [168] and Doneus et al. [169]. The terrain echoes were separated from echoes from
bushes and low vegetation. The echo pulse is wider on the canopy surface and plowed
field than on the meadow and street [156]. High point density in full-waveform lidar data
helps to detect vegetation types and states [170].

3.2.5. Eigenvalue-Based Features

The eigenvalues are calculated based on the covariance matrix of x, y, and z dimensions
of the 3D point cloud as λ1, λ2, and λ3. Eigenvalues as features help detect geometrical
parameters, such as plane, edge, and corner [171]. The following structure features have
been applied to lidar data: omnivariance, anisotropy, planarity, sphericity, linearity, and
eigenentropy for features for context-driven target detection [172] building detection [171].
Some of them are shown in Figure 5. The planarity feature is proven relevant for road
classification or other flat surfaces and sphericity for building and natural ground (low
vegetation) detection [136].
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3.3. Common Features—HS and Lidar
3.3.1. Textural Features

Besides spectral information of hyperspectral sensors, pixel-wise spatial features are
relevant for image content, such as textural features. The textural attributes in a hyperspec-
tral scene can be extracted by the local binary patterns (LBP) operator proposed by [173],
providing information about the surface granularity [174]. To include spatial information
in the classification purposes, the textural operators are window based. Peng et al. [175]
extracted them as rotation-invariant features for urban classification purposes except for
spectral features and Gabor features [176]. The latter are frequential filters interpreting
the texture of the hyperspectral bands used by [177,178]. The texture can be analyzed by
applying the gray-level co-occurrence matrix (GLCM) measures [53,179]. GLCM measures,
first proposed by Haralick et al. [180], consist of energy, contrast, correlation, entropy, and
homogeneity. GLCM dissimilarity, entropy, homogeneity, and second-moment help to
detect building edges and height differences. However, contrast, correlation, and vari-
ance do not improve building classification and temporal change [53]. Texture features
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have been used to classify urban materials for pattern recognition in lidar, satellite, and
airborne data [48,181–184]. Samadzadegan et al. [48] calculated four measures: mean,
entropy, standard deviation, and homogeneity to classify trees, buildings, and grounds.
Huang et al. [181] applied, except for homogeneity and entropy, the angular second mo-
ment and dissimilarity from the DSM in the classification approach.

3.3.2. Morphological Features

Mathematical morphology contains operators such as erosion, dilation, opening,
closing, rank filters, top hat, and other derived transforms. Mainly, these operators are
applied on panchromatic images from hyperspectral sensors, binary or greyscale images
with isotropic and geodesic metrics with a structural element [185]. For example, the
opening operator focuses on the bright spots, removing objects smaller than the structural
element, whereas the closing operator acts on the dark objects (Figure 6). Morphological
features with a structural element contain information about the minimum size of the
target being investigated [18]. They help reduce shape noise, enhance edges, interpret
the texture and extract structures on images regarding their shapes, orientation, and
sizes [185–188]. In image processing, morphological features are based on both spectral
and spatial information involving pixels in the neighborhood. They are widely used in
hyperspectral image classification [178,187–191], noise reduction in lidar [192], building
detection [193], and HL-Fusion-based classification [18]. It has been proven that the
inclusion of morphological features improves the accuracy in differentiation between roads
and buildings [8].
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3.4. Hyperspectral-Lidar Data Fusion

HL-Fusion combines spectral-contextual information obtained by an HS sensor and
a lidar scanner’s spectral-spatial-geometrical information. Even if the active and passive
sensors characterize different physics, their features can be combined from both sensors.
Both sensors cover the reflective spectral range intersecting either in the VIS (532 nm) or
the SWIR (1064, 1550 nm) wavelength regions. More rarely, multi-spectral lidar systems
are used, which overlap in several of the three common wavelengths, allowing the identifi-
cation of materials or objects using spectral properties [194]. Under laboratory conditions,
prototypical hyperspectral lidar systems are being developed [69,195,196]. The combina-
tion of HS and lidar sensors significantly impacts remote sensing, opening up possibilities
for fully three-dimensional target analysis [196]. Examples include civil engineering, his-
torical preservation, geomorphological studies, and material processing. However, it is not
only the classification concerning 3D geometry determined by sensor fusion. Most rely on
geometric simplification of high-dimensional data, reducing both lidar data and HS data to
2.5 grids, where geometrically aligned lidar and HS data are classified based on raster data.

HL-Fusion is usually conducted by adjusting the spatial resolution of one sensor to
another (HL to lidar), empirically correcting for geometric errors. Such fusion does not
consider the different sensor characteristics (e.g., scan, view, or incidence angles). This
kind of fusion also fails when the scene has low-contrast areas, as it is very sensitive to
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illumination, losing information about details important in complex and heterogeneous
urban environments. Despite the dimensional degradation, HL-Fusion has great potential
for achieving enhanced results in land cover classification rather than using single sensors,
especially when combining spectral and spatial features. In the last decade, fusion has been
attempted in this way, for example, by adding to the spectral features extracted from HS
data, elevation information, intensity, and other lidar-derived features, which allowed one
to upgrade the level of the classification from pixel- to object-based analyses.

Spectral-spatial-based classification on fused data often improves the certainty of a
pixel’s belonging to a class. On the other hand, an increasing number of features extracted
for classification purposes from different sensors can lead to a curse of dimensionality,
especially when the training data are limited [197]. HL-Fusion can also be performed physi-
cally, taking into account sensor parameters, measuring principles, quantities, illumination
sources, the position of the sensors, and attitude in the preprocessing phase [198,199].
Intensity values can describe the physical link between the spectral and spatial responses
of both sensors’ overlapping wavelengths [199]. However, single studies provided HL-
Fusion based on fitting spectral data to the first return from lidar data, thus preserving
full 3D geometry and structure, improving the scale of analysis and its performance and
robustness [200].

4. Classification of Urban Land Cover Classes

Urban land cover classification based on remote sensing data has been carried out
on a pixel or object-based classification. Pixel-by-pixel analysis assigns only one of the
defined classes to each pixel without considering neighboring pixel decisions [201]. In
remote sensing, pixel-based classification relies on the spectral properties of each pixel from
the scene. However, pixel-based approaches for high-dimensional remotely sensed HS
and lidar data were assumed to be inaccurate for reliable classification purposes [202,203].
Therefore, object-based classification has become relevant, reconstructing reality more truth-
fully, managing fine spatial resolution data, and suppressing noise. Object-based methods
include spatial, textural, contextual, topological, and spectral information [204,205], where
objects are defined as classification units [43]. Moreover, the object-based analysis consists
of image segmentation, grouping spectrally homogeneous regions, and classification, as-
signing the segments to the corresponding classes with various properties [206]. Both pixel
and object-based classification can be driven in the unsupervised, for example, deep belief
networks (DBN) [207–209], and stacked autoencoder (SA) [41,210–212]) or supervised (RF,
SVM) matter.

Analyses on the unsupervised basis separate classification units relying on their
common features without providing reference data. This kind of classification is helpful
if the knowledge about the study area is limited. In addition, unique classes can be
recognized that may have been overlooked applying supervised classification. However,
the control over the generated classes is limited, or the final results do not present the
analytics intentions, for example, if the desired class is not directly correlated. Supervised
classification identifies unknown pixels/objects, validating the accuracy by reference
classes assigned to known pixels/objects [213]. One of the advantages of using supervised
classification is controlling the number and name of the class labels, which are then assigned
to the classification units in the final step [214]. However, supervised classification requires
human expertise and the preparation of such reference or ground-truth data adequate
for selected area and classification purposes. Such ground-truth sampling includes the
removal of outliers and remains representative samples for overall input [215]. This can
be accomplished by applying active learning [208,216], random sampling, or stratified
random sampling [217].

The ground-truth labeling often requires an equal number of instances assigned to a
class. Therefore, a class imbalance issue leads in (multiclass) HS classification to decreased
accuracy of many standard algorithms such as decision trees, k-nears neighbor, neural
networks, and SVM [218]. Especially for high-dimensional data (HS) and ML/DL-based
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multiclass problems, the minority classes are neglected or misclassified [219]. Various
strategies can be applied to overcome imbalance class issues partially: simplification of the
network architecture [38], data augmentation for minority classes, and random sampling
for equal class distribution [220].

Complex urban land cover mapping is mainly based on spectral and spatial features of
remote sensing data, implemented in classification algorithms. Such an analysis is mainly
limited to comparing classification approaches, a general classification scheme, or a small
data set, which provides high-accuracy results on local space, excluding generalization
and transferability aspects [221]. Often, the evaluation of the classification approach is
complicated since the training data may not be representative enough for independent
testing data set. In addition, urban land cover analysis usually depends on human expertise
at a local scale [84].

Various ML and DL algorithms have been recently explored in feature extraction,
pattern recognition, and image classification to deal with high-dimensional space [49,88].
Feature extraction in remote sensing analysis contains mainly shallow supervised and
unsupervised and deep feature extraction [222]. In HS data, spectral feature extraction
is applied to reduce the high dimensionality and to avoid redundant bands preserving
only relevant spectral information. This strategy can also help in increasing separability
between different classes. However, spatial feature extraction (texture and morphology)
finds the contextual relationship of adjacent pixels improving the only spectral-based
classification [132,133,179,209]. In DL, automated extraction of features is common and
outperforms shallow ML if the training data fed to the algorithm are not limited.

Aiming to analyze the complexity and improve the DL algorithm learning process
quality, a thorough understanding is required of the filter function in the DL architec-
ture [223]. One way to do this is to visualize the parameters of the entire algorithm
architecture. However, studies on urban land cover classification based on HS and lidar
rarely focus on explaining how the DL algorithms work. As the limited amount of high-
dimensional remotely sensed data is fed as input to DL classifiers, there is a probability that
the hyperparameter tuning causes overfitting. To avoid this issue, e.g., data augmentation,
adding noise, model regularization methods (max-pooling and dropout [224]), and simpli-
fying the model are used. Data augmentation helps diversify training data without new
labeling costs, thus leading to more robust classification and adequate classification. In
remotely sensed-based classification, training data have been flipped and rotated [225,226],
mirrored across horizontal, vertical, and diagonal axes on HS [226,227] and lidar data [228],
mixup strategy [229], and generation of virtual training samples through Generative Ad-
versarial Networks (GANs) [230] on HS data. In addition, noise is proven to be suited as
a data augmentation type. Haut et al. [231] added random occlusion data augmentation
(rectangular figures of different sizes) in various HS image patches. Many studies applied
Gaussian white noise during simulation to improve the robustness of the classification and
reduce the model’s dependence on local attributes in HL-Fusion [80] and HS data [232].

Apart from overfitting issues, the time-expensive DL algorithms deal with vanishing
gradient problems where the learning is unstable and saturates the activations [233]. This
problem can be solved by implementing data normalization between each network layer
(e.g., local response normalization [234], batch normalization [235], and layer normaliza-
tion [236]), choosing proper optimizers and nonlinear activation functions [45].

The following section describes the most common ML and DL algorithms for the
classification in the urban environment, such as SVM, RF, CNN (convolutional neural
network), and RNN (recurrent neural network) (Table 1). Nevertheless, there are many
more ML and DL classification algorithms that are not included in this review. Starting
with ML algorithms, over time and with technology development, they have become
more advanced. Urban analysis with conventional learning-based classifiers was based
on interpreting handcrafted low-level features, linear classifiers and nonlinear classifiers,
and binary and multiclass classification [88]. Examples are statistical learning on HS
data [237], logistic regression on HS data [133], and maximum likelihood classification
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on lidar data [146]. However, the DL algorithms evolve in classifying urban objects on a
larger scale, automatically extracting high-level features. In addition, DL can handle the
issue of the complex spatial distribution of spectral information. Automatically derived
features in DL rely on a mathematical basis, tuning the model by changing the parameters
and neglecting its standard implementations the physical aspect of remote sensing data.
In addition to CNNs and RNNs, which have been included in this article, many different
DL network frameworks show promising potential for further analysis and a deeper
understanding of DL, primarily for HS data. Some of these algorithms are DBN [207–209]
with SA [41,210–212] and GAN [35]. However, these algorithms are in the initial phase of
implementation and were not applied until 2019 to HL-Fusion data.

Table 1. Overview of classification methods on different urban land cover classes.

Classifier Input Domain Class Features Advantages Limitations Study

SVM HS

spectral

building,
vegetation,

road

spectral

High accuracy
among classes

with low
material

variations

Low accuracy
among classes

with high
material

variations
(synthetic grass,
tennis court) or
similar material

classes (road,
highway)

[40]

Insensitive to
noisy data, high

accuracy
(vegetation,

water)

Spectral
similarities of

materials
(misclassification

of roofs and
other impervious

surfaces,
impervious and
non-vegetated

pervious
surfaces)

[238]

vegetation,
road

High accuracy
among classes

with low
material

variations (metal
sheets,

vegetation)

Misclassified
bricks as gravel
and asphalt as

bricks

[239]

Accurate
classifi-cation
with limited

training data set

[240]

spectral-
spatial

vegetation,
road

spectral,
spatial

Adding spatial
information
im-proves

overall accu-racy
and

genera-lization

Misclassification
of bricks requires
knowledge about
spatial features

(maybe not
available in the
spectral library)

[241]

Integration of
spatial and

spectral features
(contextual SVM)

[242]
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Table 1. Cont.

Classifier Input Domain Class Features Advantages Limitations Study

SVM Lidar

building,
vegetation,

road
HD, intensity

Robust and
accurate

classification

Misclassified
small isolated

buildings,
rounded

building edges

[64]

building,
vegetation

full-
waveform

Can handle
geometric

features of 3D
point cloud

Not balanced
classes lead to

misclassification
(grass and sand)

[243]

multiple-
return,

intensity,
morphology,

texture

Fusion of single
SVM classifiers

and textu-ral
features improve
the final results

Misclassification
(building

classified as tree
class) due to

limited training
data

[48]

building,
vegetation,

road

HD, intensity,
spectral

Spectral features
performed better
than geometrical

features in
classifi-cation

based on
multispectral

lidar

Geometrical
features cannot

discriminate
among low

height classes:
grass, road

[120]

building
HD, intensity,

texture,
spatial

GLCM features
(mean and

entropy)
improve
building

classification

The magnitude
of temporal
change of

buildings cannot
be achieved
using SVM,

misclassification
between trees
and buildings

[53]

building,
vegetation,

road

HD, intensity,
morphology,

spectral

Morphological
features with

nDSM improve
road and
building

classifi-cation
based on

multispectral
lidar

nDSM provided
misclassification
between grass

and trees

[53]

building,
vegetation,

road

HD, full-
waveform

Dual-
wavelength lidar

improves land
cover

classification,
especially low

and high
vegetation, and

soil and low
vegetation

Very low
accuracy of low

and high
vegetation

applying SVM
on single

wavelength lidar

[67]
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Table 1. Cont.

Classifier Input Domain Class Features Advantages Limitations Study

SVM HL-
Fusion

spectral-
spatial vs.

object-based

roof,
vegetation,

road

HS: spectral
Lidar: HD,
intensity

The
hyperspectral
point cloud is

robust and
provides better

results for
vegetation and

tin roof than
grid-based

fusion

Accuracy of
hyperspectral
point cloud

classification
depends on the

proportion
between point
density of lidar

and spatial
resolution of HS,
very complex in
processing (in
comparison to

grid data)

[200]

spectral-
spatial vegetation HS: spectral

Lidar: HD

Overall accuracy
increased,

adding spatial to
spectral features

Spatial features
introduced

misclassification
errors in

individual tree
species

[76]

RF HS spectral vegetation,
road spectral

High
classification
accuracy of

vegetation, good
robustness,

insensitive to
noise

Cascaded RF
provides more
generalization
per-formance

than standard RF

[244]

RF Lidar

building,
vegetation

full-
waveform,

HD,
eigenvalue-

based,
multi-return

The ability of RF
to select

important
features

Misclassification
of grass (natural

ground) and
roads (artificial

ground)

[136]

building,
vegetation,

road

HD, intensity,
texture

Overall high
accuracy,

multispectral
lidar especially
promising for
ground-level
classes (roads,

low vegetation)

Misclassification
of gravel and

asphalt
[245]

RF HL-
Fusion

building,
vegetation,

road

HS: spectral
Lidar: HD

The ability of RF
to select essential

features
[18]
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Table 1. Cont.

Classifier Input Domain Class Features Advantages Limitations Study

CNN HS spectral-
spatial

building,
road

raw

High overall
accuracy with

original raw data

Single-class low
accuracy
(highway,

railway), limited
training data

[40]

vegetation,
road

Very high overall
accuracy,

insensitive to
noise [42,239],

CNN in
combination
with Markov

Random Fields
im-proves

overall accu-racy
taking into

account
complete

spectral and
spatial

information [36],
spectral and

spatial features
extracted

simultaneously
(full advantage
of structu-ral

properties) [246]

The model
achieved worse
overall accuracy
on other datasets

(Indian pines),
computationally

expensive,
misclassification

of bricks and
gravel, requires
larger data set
than standard
ML [42,239],

time-consuming,
limited training

data [36]

[36,39,42,219,
225,229,230,
239,246–258]

CNN Lidar object-based
building HD

Applicable to
large-scale point
cloud data sets

due to a low
number of input

features [54]
overall high

accuracy with
applying

multiview
rasters of roofs

[55]

Misclassified
buildings as
vegetation
(especially

buildings with
complex roof
configuration)
due to limited

and too
homo-geneous
training data,
sparse point
density [54],

height derived
features are not

sufficient to
extract various

roof types,
require a large

training data set
[55]

[54,55]

building,
vegetation,

road

multi-
wavelength

intensity, HD

Time-effective
due to the

simplicity of the
model

Trajectory data,
strip registration
and radiometric
correction not

included

[259]
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Table 1. Cont.

Classifier Input Domain Class Features Advantages Limitations Study

pixel-based HD

Automatic
design of CNN

for robust
features

extraction and
high accuracy

Time-expensive
search and

training
[260]

CNN HL-
Fusion

spectral-
spatial

building,
vegetation,

road

HS: spectral
Lidar: HD,

spatial
Generalization

capability,
improved

accuracy when
fusing HS and

LiDAR

Not efficient in
handling high-

dimensional data
compared to
standard ML

classifiers

[16]

HS: spectral,
spatial

Lidar: HD

Oversmoothing
problems in
classification

results

[29,261,262]

HS: spectral,
spatial

Lidar: HD,
spatial

Effective
extraction of

essential features,
reduced noise

[30,263]

spectral-
spatial

vegetation,
road

Improved
accuracy of fused
data, deep neural
network used for

feature fusion
improved the
classi-fication
results [264]

[80,265]

pixel-based
building,

vegetation,
road

HS: spectral
Lidar: HD

Remarkable
misclassification
of objects made

from similar
materials

(parking lots,
roads, highway)

[264]

CRNN HS
spectral-
spatial

building,
vegetation,

road spectral,
spatial

Does not require
fixed input

length,
effectively
extracted

contextual
information

Big training data
set required

[266]

vegetation,
road [39]

RNN HS

spectral

building,
vegetation,

road
spectral

Performs better
than standard

ML algo-rithms
and CNNs

Issues with
differentiation of
asphalt/concrete

made objects
(roads, parking

lot, highway)
requires a longer
calculation time

[37]

vegetation,
road [267,268]

spectral-
spatial

vegetation,
road

texture,
morphology,

spatial

Adding spatial
features to the
classification
improves the

overall and class
accuracy, high

level features can
represent
complex
geometry

Computational
time and
memory-

expensive

[256,269,270]
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4.1. Support Vector Machines (SVM)

SVM is a supervised ML algorithm that performs the classification of locating a
hyperplane between two classes [241]. Such a hyperplane separates two groups in the
training dataset, finding the largest margin between the support vectors from different
groups [271]. The SVM approach is widely used in pattern recognition, regression, and
solving linear equations [271]. It has been proven to be a classifier that can handle the
high-dimensional HS data being insensitive to noisy samples [272–276]. Moreover, SVM
can deal with smaller training datasets more efficiently than artificial neural networks and
maximum likelihood classification algorithms [53]. The decision function of the SVM can
be specified by different kernels such as radial basis function (RBF), spectral-based [277],
and Gaussian function [19], which classify only in the spectral domain, and composite
kernels that include contextual information to the classification [241,278]. The kernel-based
methods define the segments by applying the nonlinear geometrical separators [272]. The
spectral-based kernel uses the spectral angle of the support vectors to define the hyperplane
between them, while for each pixel, spatial information is derived and combined with
spectral features in kernel composition. Deep SVM has been implemented with exponential
radial basis function, gaussian radial basis function, and neural and polynomial kernel
functions, achieving better robustness than conventional classifiers [279].

4.1.1. Buildings

In recent years, a multiwavelength lidar scanner has become an interesting mapping
device that can differentiate objects with the same height, such as buildings and trees, based
on pseudonormalized difference vegetation index (pseudoNDVI) [68] and geometrical
features, e.g., roughness (curvature) [120]. Teo and Wu [15] provided a case study where
curvature, intensity, and nDSM were used on multispectral lidar. They applied these lidar
features as input for image clustering and found that especially geometric features are
suitable for building detection. Huo et al. [8] applied the SVM algorithm with RBF kernel on
multispectral lidar data. In the paper, the authors focused, among other things, on building
extraction using the combination of nDSM, morphological profiles, novel hierarchical
morphological profiles (HMP) [186], pseudoNDVI, and intensity values. Intensity values
only extracted from lidar can lead to misclassification of building asphalt roof (parking lot)
and a road with similar spectral properties. Shirowzhan and Trinder [53] provided the SVM
classification method for building extraction, including DSM, nDSM, and intensity map.
However, the results provided a misclassification between roads and buildings in the hilly
or vegetation-rich area. A pixel-based classification method is often not able to separate
buildings and vegetation boundaries. Samadzadegan et al. [48] proposed a multiclass SVM
on building extraction. The authors used first- and last-pulse intensities, first- and last-
pulse ranges, entropy, standard deviation, homogeneity, and other geometrical features and
showed that texture features improve the final results for building detection. In building
analysis based on HS data, the spectral classifie’s domain has limitations in the classification
of building roofs (roofing tiles, bitumen, concrete, fiber cement, metals, and slates) [97,238].
To overcome the limitations of single sensor applications, HL-Fusion can complete robust
building analysis using spatio-spectral-elevation information. Spectral features from HS
data can exclude vegetation growing around and on buildings and differentiate between
roof materials. By contrast, lidar data provide shape information that can help determine
roof types and building types.

4.1.2. Vegetation

SVM classifier is a standard algorithm in vegetation detection in the urban environ-
ment. The authors of [48] suggested a multiclass framework for lidar data, analyzing the
normalized difference between the first and the last laser pulse. High vegetation class
(trees) was falsely classified as buildings due to limited training data. Teo et al. [120] stated
that lidar penetration improves the overall accuracy of vegetation analysis. However,
by splitting vegetation into high and low vegetation, lidar data cannot distinguish low
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height classes such as roads and grass. Huo et al. [8] applied SVM on multispectral lidar
data calculating the NDVI and pseudoNDVI [178] and improving the overall classification
accuracy, however, having challenges in distinguishing between low and high vegetation.
Wang et al. [67] addressed a similar problem in the study and compared single- and dual-
wavelength lidar by applying, among others, full-waveform data that were not included
in previous studies. The authors showed that dual-wavelength improves the accuracy of
low and high vegetation and bare soil and low vegetation compared to single-wavelength
lidar. In HS analysis, spectral features are still more accurate in chlorophyll detection than
lidar, mainly when a class is characterized by low material variations [40,239]. In addition,
HS has been proven to characterize fraction coverage of photosynthetic vegetation, non-
photosynthetic vegetation, and soil [72]. Furthermore, by adding spatial features to the
hyperspectral analysis, vegetation detection becomes facilitated [241,242]. Spatial informa-
tion is also used in HL-Fusion in object-based classification, being able to classify different
types of vegetation (tree species) [32,76] and also, in the case of generating hyperspectral
point clouds, maintain higher reality factors such as full 3D geometry, generic and robust
characteristics [200].

4.1.3. Roads

Huo et al. [8] and Teo et al. [120] applied SVM on multispectral lidar data to detect
roads. Achieving high accuracy classification, Huo et al. [8] referred to the misclassification
of roads as lawn and bare soil, which can be easily solved by adding HS to the lidar data
due to access to more detailed spectral information than lidar only. One of the causes
can be similar spectral signatures and insufficient distinctive spectral-spatial features to
differentiate between objects. Teo et al. [120] mentioned classification issues applying
geometrical features among grass, road, and soil due to similar height. However, spectral
features from multiwavelength lidar can overcome the challenge.

In contrast, spectral features in HS analysis applying SVM are often insufficient
for achieving robust and accurate results of road classification [40,239]. This is due to
considering only spectral information without contextual information and remarkable
spectral similarity between physical material belonging to different classes. SVM has
also been widely used in road classification on fused HS and lidar data. Brell et al. [200]
generated an HS point cloud, where they classified different road materials such as concrete
and asphalt. The challenge in distinguishing concrete and asphalt is the influence of shadow
deteriorating discrimination between different road materials. The spectral properties of
those materials can vary locally based on aging, deterioration, contamination, roughness
properties, and other conditions [200].

4.2. Random Forest (RF)

RF is a nonparametric ensemble learning algorithm based on a combination of binary
decision tree classifiers [280]. A decision tree in the ensemble is independent of other
trees and is trained with random variables by bootstrap sampling [77]. For classification
purposes, each tree gives a class prediction as an output. The class that most trees have
chosen is considered to be the final result [281]. RF has become a widely used classification
algorithm in HS imaging due to its high accuracy and high processing speed [282]. More-
over, RF can handle high-dimensional data selecting redundant spectral bands without
overfitting [18,77]. RF has also been applied to airborne-based lidar data as a classifier
solving multiclass problems and selecting the essential features for urban mapping [136].

4.2.1. Buildings

Niemeyer et al. [283] proposed a new building classification method based on the 3D
point cloud from lidar data. The classification technique transforms the RF classifier into a
conditional random field (CRF) framework [218] and provides high-accuracy results for
large buildings over 50 m2. However, misclassification occurs at building facades and dorm-
ers. In addition, various features derived by lidar have been tested by Chehata et al. [136].
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In the paper, multiecho, full-waveform, different height-based, local plane-based, and
eigenvalue-based features have been applied to classify buildings. However, confusion
errors occurred for transition points between buildings and the ground class.

Further, echo-based features did not have any influence on classification results.
Debes et al. [18] presented a fusion framework consisting of unsupervised classification
that supports the supervised classification on ensemble learning. They showed that lidar
elevation information is required to differentiate between buildings and vegetation or
different building types in addition to HS spectral data.

4.2.2. Vegetation

Niemeyer et al. [283] applied an RF classification framework with conditional random
fields on lidar data to discriminate vegetation and buildings from each other. Chehata et al. [136]
applied RF on lidar data experiencing issues in the classification between vegetation and
artificial (roads) and natural ground (grass), respectively. However, applying intensity,
height, and texture features of multispectral lidar is very promising for ground-level
classes, for example, low vegetation [245]. In HS analysis, spectral features fed to RF
classifier provide high vegetation accuracy, good robustness, and insensitivity to noise [244].
Debes et al. [18] chose an RF algorithm on HL-Fusion with elevation features from lidar
and NDVI from HS data that outperformed urban area classification [18].

4.2.3. Roads

Niemeyer et al. [283] proposed an RF classification framework for lidar data described
in Section 3.1, where one of the classes was asphalt considered a road. However, other
objects apart from roads are also made of asphalt, such as roof parking lots, making
the analysis difficult, e.g., using only HS data. Jackson et al. [284] mentioned this issue
clarifying that the road class pixels are contaminated by other materials and objects such as
gravel, puddles, and cars. In addition, vehicles appearing in the image usually have highly
reflective properties, making road classification difficult for RF classifiers [8]. Recently,
lidar point cloud intensity data have been proposed for road landmark inventory with
active learning [285].

4.3. Convolutional Neural Network (CNN) and Recurrent Neural Network (RNN)

CNN is a DL algorithm that has become an important HS, lidar, and HL-Fusion classi-
fication method. The network’s deep convolutional architecture can effectively deal with
complex remote sensing data solving nonlinear issues [286] with an example architecture
in Figure 7.
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CNN has two characteristics different from other DL algorithms, such as local connections
and share weights. Local connections help find the data’s spatial relationship, and share weights
reduce the number of parameters needed for training purposes and generate a filter [16,286].
CNN architectures can be trained in an unsupervised or supervised way. The unsupervised
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method is the greedy layer-wise pretraining of hyperspectral data [287–290]. The supervised
method is the standard backpropagation [234,286,291,292]. However, CNNs require a high
number of model parameters. The high dimensionality and limited training samples of
the remotely sensed data can lead to overfitting and longer processing time than other
classification techniques [37,39,293]. An advantage of applying CNN is that the input data
must not be preprocessed. CNN is capable of automatically learning abstract features
and detecting high-level objects [54]. CNN is used for land cover mapping based on HS
data [35,37–39] and HL-Fusion [16,30,264,293]. Moreover, CNN has been recently used
in combination with other algorithms such as MRF [37] to extract HS pixel vectors on a
spatial and spectral basis and extinction profiles [30], capable of effectively reducing noise
and improving classification accuracy.

RNN is a DL algorithm widely used to work on sequential data [37]. RNN is a
compound of successive recurrent layers capable of extracting contextual parameters at
consecutive time steps (Figure 8) [266]. An advantage of RNN is that the input sequences
may have different lengths [266]. However, RNN requires a longer processing time than
standard ML algorithms, such as SVM or RF [37]. RNN has already been used to extract
contextual information of HS data [37,266] and recognize temporal changes of objects
measured by the lidar scanner [294].
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4.3.1. Buildings

Zhou and Gong [54] focused on building detection in different conditions in damage
assessment. Their approach relies on roof object extraction, challenging for lidar data due
to sparse points in the boundaries between rooftops and the vertical facades of buildings
damaged. In addition, very complex roof configurations cannot be distinguished using
lidar data when the training data are too homogeneous. However, DL algorithms such as
CNN provided accurate classification results of pre- and post-disaster data with minimal
required preprocessing of lidar data and time consumption. Shahajan et al. [55] provided a
DL approach that extracts the lidar points from different views assigned to roofs applying
height-derived features. However, like the previous study, height-derived features are in-
sufficient in roof type differentiation, and the CNN algorithm requires a large training data
set. CNN classifier has also been used in HS data analysis due to its relevant spectral-spatial
domain [40]. However, CNN on HS data is time-consuming even if the preprocessing of
the fed input is minimized, requires a more extensive data set than shallow ML classifiers,
and is not transferable with the same model parameters to other independent test data.
Li et al. [30] proposed a DL framework based on spatial and elevation features extracted
from extinction profiles, spectral, spatial, and elevation features extracted from the CNN
model to classify buildings, among others, on HL-Fusion. Extinction profiles were also used
to derive spectral, spatial, and elevation features from HS and lidar data. These features
were applied as input for CNN classification on buildings [16]. Morchhale et al. [264] have
proven that CNN-based classification on HL-Fusion can distinguish between commercial
buildings and highways and between residential buildings and parking lots, improving
generalization capability.
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Wu et al. [266] introduced deep RNN for HS data classification combining with CNN
and creating a convolutional recurrent neural network (CRNN). This framework enabled
the extraction of hidden feature representations and provided highly accurate results
for building detection. For HS image classification, Mou et al. [37] provided an RNN
framework with a GRU activation function that maintains a constant error, helping the
network learn more effectively in a high-dimensional space. As a result, his classifier
achieved very high accuracy in recognizing commercial and residential areas in the urban
environment. Even though only spectral features without contextual information were
considered, RNN outperformed standard ML algorithms and CNNs.

4.3.2. Vegetation

CNN is used in HS analysis for vegetation detection [36,39,42,225,239,246–248].
Li et al. [246] simultaneously extracted spectro-spatial features of HS data benefitting
structural properties needed for detailed vegetation interpretation. However, more and
more algorithms for vegetation classification are based on HL-Fusion data. Ghamisi et al.,
Morchhale et al., and Li et al. [16,30,264] proposed different frameworks based on CNNs.
Chen et al. [265] created a CNN framework used to extract the spectral-spatial features
of HS data and the elevation features of lidar data. He applied a fully connected DNN to
fuse the derived features from both sensors, ending the classification approach with the
logistic regression to generate the final classification map [265]. Deep RNN introduced by
Mou et al. [37] has been used for vegetation classification. Although RNN resulted in high
overall accuracy, the most significant challenges occurred in classifying different grass class
types, such as healthy grass, stressed grass, and synthetic grass [37].

4.3.3. Roads

CNN algorithms have already been widely applied as an initial framework for road
classification as objects or materials, e.g., gravel, concrete, and asphalt. Santara et al. [38]
compared different ML and DL algorithms, including the CNN framework. CNN classified
roads as asphalt and gravel with high accuracy only on HS data. Recently, much more
often, CNN is used as a classifier for HL-Fusion. Morchhale et al. [264] compared CNN
on HS data and HL-Fusion. The classification and differentiation accuracy between road,
parking lot, and highway increased in the HL-Fusion. Li et al. [28] proposed that he focuses
on classification challenges between similar spectral characteristics of road materials, e.g.,
asphalt and concrete, and the similar height of different objects, such as grass and asphalt
road. Ghamisi et al. [25] applied the CNN classifier with logistic regression and mentioned
the challenge of similar spectral signatures of roofs and roads for HS data classification. Wu
et al. [266] and Yang et al. [39] proposed CRNNs for HS image classification. Mou et al. [37]
presented a different framework—the deep RNN. In both network frameworks, the road
was grouped into road and highway. The deep RNN outperformed other conventional
classifiers in differentiating similar objects, such as road, highway, and railway [37].

5. Discussion

Airborne HS and lidar data-based classification in the urban environment over the last
20 years has increased significantly since 2016, as shown in the annual number of articles
reviewed in this paper found up to 2021 (Figure 9). Therefore, it can be assumed that the
interest in HS and lidar remote sensing, advances in sensor technology, computing power,
and easy access to remote sensing-based datasets are relevant factors paving the way for
large-scale urban environment analysis. However, it has to be noted that the HS-based
land cover classification far exceeds lidar and HL-Fusion analyses. Since 2016, the scientific
production of urban classification methods based on ML and DL has significantly increased
for HS, lidar, and HL-Fusion. This is due to the availability of more advanced computer
infrastructures, less expensive sensors with higher resolution, and more accessible data for
HS and lidar.
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Nevertheless, the HS continued to be widely used. Firstly, this may have been due
to the lack of data of the same study area from the two sensors acquired simultaneously.
Secondly, most land cover classification approaches are based on physical material clas-
sification, which relies significantly on spectral analysis. Sometimes, therefore, it is not
necessary to fuse two sensors for some purposes to improve classification by a small frac-
tion with much more effort and time spent fusing the sensors. However, assuming that
urban analysis is a highly complex task, one of the fusion application arguments may be
that HS and lidar complement each other in spectral and spatial analysis with the addition
of elevation information and active and passive sensor characteristics.
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5.1. HS-Based Classification

SVM and RF have been proven to be insensitive to noise in HS-based analysis, pro-
viding very high accuracy for material classification with limited training data. The only
spectral-based SVM classifier can quickly identify object-based classification classes with
low material variations. However, for complex urban land cover classification, the spectral
domain of the SVM is not sufficient to capture the heterogeneity of the objects or land cover
classes built from various materials, for example, identification of impervious and nonveg-
etated pervious surfaces [238]. For such an analysis, contextual information is necessary.
The spatial features can be added to the SVM classifier by applying the composite kernel,
improving the accuracy and generalization capabilities.

RF also applies spectral-domain only for HS data. As for SVM, the land cover classes
having high material variations within a class are often misclassified, such as road materials
(concrete, asphalt, and gravel). The difference and advantage over the SVM classifier is the
capability to select important features. This aspect is also advantageous for the DL-based
classifiers since shallow ML-based algorithms use handcrafted features controlled and
transferred to other independent and unknown test areas.

On the other hand, when the classification objective is focused on a smaller study
area, automated features of the DL algorithm may prove to be a better solution for high-
dimensional HS data. One factor is that the relationships between objects or land cover
classes are not linear in a complex urban environment. By extracting the handcrafted fea-
tures, we have control and knowledge about them. In contrast, the automated features can
obtain high-level features that may allow a much better classification result by recognizing
complex relationships that cannot be analyzed by applying shallow ML at the expense
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of generalizability and transferability. The advantage of the CNN is in its spectral-spatial
domain, which searches for high-level features, e.g., by simultaneously extracting spec-
tral and spatial features. As features in CNN are retrieved during the algorithm and the
the original, however, normalized, HS data are fed into the model. This saves time for
preprocessing, which is necessary for SVM or RF classifiers.

On the other hand, normalization of the extraction of high-level features is notably
more time-consuming than classification with shallow ML algorithms. In totally, the
increase in dimensions is an enormous challenge in DL classification. The hidden complex
relationships are not universally and globally representative. The easiest way to influence
this in DL is to ensure the global representativeness of the training and test data which may
be hardly possible in remote sensing. Another way is the support of handcrafted features
that underrepresent the local properties. In addition, assuming that the algorithm extracts
the most important features for correct classification, these features may vary depending
on the complexity and diversity of the training data. Therefore, the transferability and
generalizability of a model, which is critical, e.g., automatic map updating, is limited. In
addition, DL algorithms require a larger training data set, which may not be feasible due
to a lack of data and computationally expensive DL algorithms, such as CNN and RNN.
The RNN has been proven to outperform even in the spectral domain only compared to
standard ML algorithms and CNNs [37]. However, for single classes such as asphalt or
concrete-made objects (roads, parking lots, highway), RNN may not solve misclassification
only in the spectral domain. The RNN requires more computative time than the CNN, and
an extensive training data set is needed. Since RNN considers the temporal domain, this
classifier shows greater robustness, transferability, and generalization.

5.2. Lidar-Based Classification

Lidar-based urban land cover classification is not a straightforward approach due
to the complexity of the urban environment, where different classifiers with different
derived features can identify different land cover classes. Nevertheless, the SVM is a
common approach for lidar-based classification. In particular, those land cover classes are
distinguished by their unique geometry and where the material composition is not essential.
For example, building detection requires the capture of complex geometry, including roofs
(planar surfaces) and facades (vertical surfaces). For this purpose, full-waveform data and
geometric features are commonly used [243]. However, depending on the specific purpose
of the building classification, different features may play an important role. For example,
in the analysis of various roof types, the focus was on height-derived features that were
insufficient when the roof had a very complex geometry [55]. However, the problem may
lie in too low resolution, too sparse point density of the lidar system, or the CNN classifier,
which needs a much larger training data set considering heterogeneity and complexity of
the objects of interest. In addition, the transition from 3D point cloud to 2.5D representation
is challenging to preserve inherent point cloud information.

Raster (2.5D) processing is more efficient in data handling as soon as it comes to
spectral-spatial neighborhood analyses and is therefore preferred by most classifiers. The
SVM is mainly used for building detection, differentiate between low and high vegetation,
and distinguish trees and buildings. The differentiation between low and high vegetation is
still a problem. It appears that using height-derived features and full-waveform data from
single-wavelength lidar is not sufficient. However, using the same features with a dual-
wavelength lidar scanner significantly improved low and high vegetation classification
results. Therefore, it can be concluded that spectral features play a significant role in the
detailed classification of land cover classes [67]. This assumption of the importance of
spectral features in lidar-based classification applying the SVM was also mentioned in a
study where spectral features were more critical than geometrical features in classification
on a multispectral lidar scanner [120]. In this study, it was found that geometrical features
are not able to detect ground-level classes such as roads and grass, which on the other
hand, is possible using the spectral features of the multispectral lidar.
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Ground-level classes cause many problems also when using full-waveform data. For
example, in one study, incorrect classification of grass and sand was caused because the
training data contained no balanced classes in the SVM classification [243]. On the other
hand, a similar problem of incorrect RF-based classification (this time of low vegetation
and roads) also appeared when applying full-waveform data [136]. Therefore, it can
be concluded that the last return from lidar is not sufficient for differentiating between
ground-level classes. However, this problem has been solved by applying the RF classifier
using multispectral lidar data but adding texture features to the elevation and spectral
information [245]. However, neither SVM nor RF on single or multispectral lidar can
differentiate very heterogeneous classes, such as asphaltic, concrete, or gravel road. This
issue can only be solved by adding hyperspectral information on the material using the
little available hyperspectral lidar, including reflected intensity information, or integrating
lidar with hyperspectral imaging.

5.3. HL-Fusion Classification

HL-Fusion aims to combine the two different sensors with improving the classification
result. In urban land cover classification based on HL-Fusion, DL turns out to be the
most commonly used method (Table 1). One reason for the DL selection could be the
intentional neglect of the more complex preprocessing. Thereby, however, there is a risk
of losing transferability and generalizability. This is especially critical for optical data,
e.g., if the atmosphere is not corrected according to physical models or the shadow has
not been corrected, training data must cover all atmospheric conditions and represent the
existing urban heterogeneities. However, both the enormous, rapid development of DL,
combined with the progress of sensor technology and multisensory fusion, are becoming an
interesting field for further scientific research in the near future. Especially in the analysis
of complex urban environments, only a single sensor is usually insufficient for classifying
urban land cover classes correctly. Besides material characteristics, spatial correlation is
essential and full 3D geometry and topography information. Using context in a more
spacious neighborhood for classification purposes, training time increases significantly,
especially for DL algorithms (CNN). For shallow ML and DL algorithms, spectral-spatial
classification with handcrafted features has been proven to always be more accurate, with
the capability of transferability and generalization [16,18,29,264]. HL-Fusion with SVM
classifier improved the classification result, but the limited studies did not include the
variation between different features derived from HS and lidar. In this case, the application
of spectral features from HS and height and derivatives and intensity data proved accurate.
Unfortunately, fusing two different sensors also come with some challenges. Adding
to the already high-dimensional HS data more dimensions, one can meet the curse of
dimensionality problems. By limited training data, high-dimensional feature spaces are
often insufficient to recognize desired patterns due to the low ratio of training data to the
high dimensional features [295]. More dimensions in source data mean more necessary
training and test data due to increased heterogeneity and the number of features, and the
need for more computational power and storage.

Although object-based classification is much more comprehensive than pixel-based
classification, objects or land cover have become important in classification because they
reflect reality much more closely. Spectral features from HS data are reliable for material
classification, even in complex urban environments. However, the lack of topographic
and geometric information makes accurate results based on only one sensor impossible.
Lidar for providing these needed features is very promising in complex urban land cover
classification. Lidar complements HS data to add height information to vegetation detection
enabling identification of individual trees (full 3D geometry), bushes, low vegetation. In
addition, in the detection of the road (edges), lidar provides refined features providing
precise boundaries [296]. Thanks to HL-Fusion, there is no need to limit oneself to classify
land cover classes, monitor the urbanization processes, and study the urban environment.
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The potential capabilities of the two sensors enable urban analysis in a holistic, multi-aspect
and multidisciplinary way.

6. Conclusions and Future Perspectives

ML and DL revolutionize digital processing of remotely sensed data such as HS, lidar,
and HL-Fusion. A significant factor influencing such a great advance in technology is the
variety of information obtained time-efficiently by remote sensing systems. Both HS and
lidar-based data are used for urban analysis by applying ML and DL algorithms. This
review provides the latest information on advances in mapping techniques based on HS
and lidar data in urban environments based on the reflective spectral range (400–2500
nm). This multidisciplinary research described in this article was intended to summarize
urban land cover classification for ML and DL experts and remote sensing specialists.
Particular attention should be paid to DL implementations in HL-Fusion, which may
be the key to classifying land cover classes in a complex urban environment. DL is a
promising tool for extracting spectral-spatial features and more complex features than
classical ML algorithms, which usually improves the accuracy of the classification results.
One of the main challenges related to DL’s use is the need for a globally representative
dataset for the model training purposes and the availability of annotated lidar data to make
it generalizable and transferable: this might require extensive manual work that can be
costly but may be overcome applying data augmentation strategy. The HL-Fusion-based
classification opens up a new dimension of urban analysis, approximating ML and DL
classification results to the reality and going beyond human expertise to discover and care
for the urban environment.

The growing trend of using DL in classification will probably remain unchanged over
the next few years, discovering new network algorithms, which are already implemented in
single case studies. However, as the technology continues to improve, HL-Fusion, despite
its high dimensionality, should be considered in analyzing complex urban environments.
Crucial is the transferability and generalization aspect, one of the biggest concerns since
DLs are usually valid only locally. Inferring from this, it does not allow, for example, the
significant updates of city maps.
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Abbreviations

Abbreviation Explanation
CHM Canopy Height Model
CRF Conditional Random Field
CNN Convolutional Neural Network
CRNN Convolutional Recurrent Neural Network
DBN Deep Belief Networks
DL Deep Learning
DSM Digital Surface Model
DTM Digital Terrain Model
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GAN Generative Adversarial Network
GLCM Gray-Level Co-Occurrence Matrix
HD Height features and their Derivatives
HS Hyperspectral
HL-Fusion Hyperspectral-Lidar fusion
IFOW Instantaneous Field of View
Lidar Light Detection and Ranging
LDA Linear Discriminant Analysis
LBP Local Binary Patterns
ML Machine Learning
MCR Multivariate Curve Resolution
NDI Normalized Difference Index
NDVI Normalized Difference Vegetation Index
nDSM normalized Digital Surface Model
PCA Principal Component Analysis
psuedoNDVI Pseudo Normalized Difference Vegetation Index
RBF Radial Basis Function
RF Random Forest
RNN Recurrent Neural Network
SAR Synthetic Aperture Radar
SWIR Shortwave-Infrared
SNR Signal to Noise Ratio
SA Stacked Autoencoder
SVM Support Vector Machines
VNIR Visible and Near-Infrared
VIS Visible light

References
1. United Nations. 2018 Year in Review; United Nations: New York, NY, USA, 2018.
2. Chen, F.; Kusaka, H.; Bornstein, R.; Ching, J.; Grimmond, C.S.B.; Grossman-Clarke, S.; Loridan, T.; Manning, K.W.; Martilli, A.;

Miao, S. The integrated WRF/urban modelling system: Development, evaluation, and applications to urban environmental
problems. Int. J. Climatol. 2011, 31, 273–288. [CrossRef]

3. Lee, J.H.; Woong, K.B. Characterization of urban stormwater runoff. Water Res. 2000, 34, 1773–1780. [CrossRef]
4. Forster, B.C. Coefficient of variation as a measure of urban spatial attributes, using SPOT HRV and Landsat TM data. Int. J.

Remote Sens. 1993, 14, 2403–2409. [CrossRef]
5. Sadler, G.J.; Barnsley, M.J.; Barr, S.L. Information extraction from remotely-sensed images for urban land analysis. In Proceedings

of the 2nd European GIS Conference (EGIS’91), Brussels, Belgium, 2–5 April 1991; pp. 955–964.
6. Carlson, T. Applications of remote sensing to urban problems. Remote Sens. Environ. 2003, 86, 273–274. [CrossRef]
7. Coutts, A.M.; Harris, R.J.; Phan, T.; Livesley, S.J.; Williams, N.S.G.; Tapper, N.J. Thermal infrared remote sensing of urban heat:

Hotspots, vegetation, and an assessment of techniques for use in urban planning. Remote Sens. Environ. 2016, 186, 637–651.
[CrossRef]

8. Huo, L.Z.; Silva, C.A.; Klauberg, C.; Mohan, M.; Zhao, L.J.; Tang, P.; Hudak, A.T. Supervised spatial classification of multispectral
LiDAR data in urban areas. PLoS ONE 2018, 13. [CrossRef] [PubMed]

9. Jürgens, C. Urban and suburban growth assessment with remote sensing. In Proceedings of the OICC 7th International Seminar
on GIS Applications in Planning and Sustainable Development, Cairo, Egypt, 13–15 February 2001; pp. 13–15.

10. Hepinstall, J.A.; Alberti, M.; Marzluff, J.M. Predicting land cover change and avian community responses in rapidly urbanizing
environments. Landsc. Ecol. 2008, 23, 1257–1276. [CrossRef]

11. Batty, M.; Longley, P. Fractal Cities: A Geometry of Form and Function; Academic Press: London, UK; San Diego, CA, USA, 1994.
12. Ben-Dor, E.; Levin, N.; Saaroni, H. A spectral based recognition of the urban environment using the visible and near-infrared

spectral region (0.4-1.1 µm). A case study over Tel-Aviv, Israel. Int. J. Remote Sens. 2001, 22, 2193–2218. [CrossRef]
13. Herold, M.; Gardner, M.E.; Roberts, D.A. Spectral resolution requirements for mapping urban areas. IEEE Trans. Geosci. Remote

Sens. 2003, 41, 1907–1919. [CrossRef]
14. Brenner, A.R.; Roessing, L. Radar Imaging of Urban Areas by Means of Very High-Resolution SAR and Interferometric SAR. IEEE

Trans. Geosci. Remote Sens. 2008, 46, 2971–2982. [CrossRef]
15. Soergel, U. Review of Radar Remote Sensing on Urban Areas. In Radar Remote Sensing of Urban Areas; Soergel, U., Ed.; Springer:

Berlin, Germany, 2010; pp. 1–47.
16. Ghamisi, P.; Höfle, B.; Zhu, X.X. Hyperspectral and LiDAR data fusion using extinction profiles and deep convolutional neural

network. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2016, 10.

http://doi.org/10.1002/joc.2158
http://doi.org/10.1016/S0043-1354(99)00325-5
http://doi.org/10.1080/01431169308954044
http://doi.org/10.1016/S0034-4257(03)00073-7
http://doi.org/10.1016/j.rse.2016.09.007
http://doi.org/10.1371/journal.pone.0206185
http://www.ncbi.nlm.nih.gov/pubmed/30356306
http://doi.org/10.1007/s10980-008-9296-6
http://doi.org/10.1080/01431160117759
http://doi.org/10.1109/TGRS.2003.815238
http://doi.org/10.1109/TGRS.2008.920911


Remote Sens. 2021, 13, 3393 29 of 39

17. Benz, U.C.; Hofmann, P.; Willhauck, G.; Lingenfelder, I.; Heynen, M. Multi-resolution, object-oriented fuzzy analysis of remote
sensing data for GIS-ready information. ISPRS J. Photogramm. Remote Sens. 2004, 58, 239–258. [CrossRef]

18. Debes, C.; Merentitis, A.; Heremans, R.; Hahn, J.; Frangiadakis, N.; Kasteren, T.v.; Liao, W.; Bellens, R.; Pizurica, A.; Gautama, S.;
et al. Hyperspectral and LiDAR data fusion: Outcome of the 2013 GRSS data fusion contest. IEEE J. Sel. Top. Appl. Earth Obs.
Remote Sens. 2014, 7, 550. [CrossRef]

19. Dalponte, M.; Bruzzone, L.; Gianelle, D. Fusion of hyperspectral and LiDAR remote sensing data for classification of complex
forest areas. IEEE Trans. Geosci. Remote Sens. 2008. Available online: https://rslab.disi.unitn.it/papers/R59-TGARS-Dalponte.pdf
(accessed on 2 May 2021).

20. Sohn, H.-G.; Yun, K.-H.; Kim, G.-H.; Park, H.S. Correction of building height effect using LIDAR and GPS. In Proceedings of
the International Conference on High Performance Computing and Communications, Sorrento, Italy, 21–23 September 2005;
pp. 1087–1095.

21. Guislain, M.; Digne, J.; Chaine, R.; Kudelski, D.; Lefebvre-Albaret, P. Detecting and correcting shadows in urban point clouds and
image collections. In Proceedings of the Fourth International Conference on 3D Vision (3DV), Stanford, CA, USA, 25–28 October
2016; pp. 537–545.

22. George, G.E. Cloud Shadow Detection and Removal from Aerial Photo Mosaics Using Light Detection and Ranging (LIDAR) Reflectance
Images; The University of Southern Mississippi: Hattiesburg, MS, USA, 2011.

23. Brell, M.; Segl, K.; Guanter, L.; Bookhagen, B. Hyperspectral and Lidar Intensity Data Fusion: A Framework for the Rigorous
Correction of Illumination, Anisotropic Effects, and Cross Calibration. IEEE Trans. Geosci. Remote Sens. 2017. Available on-
line: https://www.researchgate.net/publication/313687025_Hyperspectral_and_Lidar_Intensity_Data_Fusion_A_Framework_
for_the_Rigorous_Correction_of_Illumination_Anisotropic_Effects_and_Cross_Calibration (accessed on 2 May 2021).

24. Hui, L.; Di, L.; Xianfeng, H.; Deren, L. Laser intensity used in classification of LiDAR point cloud data. In Proceedings of the
International Symposium on Geoscience and Remote Sensing, Boston, MA, USA, 8–11 July 2008.

25. Liu, W.; Yamazaki, F. Object-based shadow extraction and correction of high-resolution optical satellite images. IEEE J. Sel. Top.
Appl. Earth Obs. Remote Sens. 2012, 5, 1296–1302. [CrossRef]

26. Zhou, W.; Huang, G.; Troy, A.; Cadenasso, M.L. Object-based land cover classification of shaded areas in high spatial resolution
imagery of urban areas: A comparison study. Remote Sens. Environ. 2009, 113, 1769–1777. [CrossRef]

27. Priem, F.; Canters, F. Synergistic use of LiDAR and APEX hyperspectral data for high-resolution urban land cover mapping.
Remote Sens. 2016, 8, 787. [CrossRef]

28. Luo, R.; Liao, W.; Zhang, H.; Zgang, L.; Scheunders, P.; Pi, Y.; Philips, W. Fusion of Hyperspectral and LiDAR Data for
Classification of Cloud-Shadow Mixed Remote Sensed Scene. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2017. Available
online: https://telin.ugent.be/~{}wliao/Luo_JSTARS2017.pdf (accessed on 2 May 2021).

29. Chen, Y.; Li, C.; Ghamisi, P.; Shi, C.; Gu, Y. Deep fusion of hyperspectral and LiDAR data for thematic classification. In Proceedings
of the International Geoscience and Remote Sensing Symposium, Beijing, China, 10–14 July 2016.

30. Li, H.; Ghamisi, P.; Soergel, U.; Zhu, X.X. Hyperspectral and LiDAR fusion using deep three-stream convolutional neural
networks. Remote Sens. 2018, 10, 1649. [CrossRef]

31. Yan, W.Y.; El-Ashmawy, N.; Shaker, A. Urban land cover classification using airborne LiDAR data: A review. Remote Sens. Environ.
2015. [CrossRef]

32. Alonzo, M.; Bookhagen, B.; Roberts, D.A. Urban tree species mapping using hyperspectral and lidar data fusion. Remote Sens.
Environ. 2014, 148, 70–83. [CrossRef]

33. Kokkas, N.; Dowman, I. Fusion of airborne optical and LiDAR data for automated building reconstruction. In Proceedings of the
ASPRS Annual Conference, Reno, Nevada, 1–5 May 2006.

34. Torabzadeh, H.; Morsdorf, F.; Schaepman, M.E. Fusion of imaging spectroscopy and airborne laser scanning data for characteriza-
tion of forest ecosystems. ISPRS J. Photogramm. Remote Sens. 2014, 97, 25–35. [CrossRef]

35. Zhu, L.; Chen, Y.; Ghamisi, P.; Benediktsson, J.A. Generative adversarial networks for hyperspectral image classification. IEEE
Trans. Geosci. Remote Sens. 2018, 56, 5046–5063. [CrossRef]

36. Cao, X.; Zhou, F.; Xu, L.; Meng, D.; Xu, Z.; Paisley, J. Hyperspectral image classification with markov random fields and a
convolutional neural network. IEEE Trans. Image Process. 2017, 27, 2354–2367. [CrossRef] [PubMed]

37. Mou, L.; Ghamisi, P.; Zhu, X.X. Deep recurrent neural networks for hyperspectral image classification. IEEE Trans. Geosci. Remote
Sens. 2017. Available online: https://www.semanticscholar.org/paper/Deep-Recurrent-Neural-Networks-for-Hyperspectral-
Mou-Ghamisi/5a391667242b4a631acdd5917681b16a86523987 (accessed on 4 May 2021).

38. Santara, A.; Mani, K.; Hatwar, P.; Singh, A.; Garg, A.; Padia, K.; Mitra, P. BASS Net: Band-adaptive spectral-spatial feature
learning neural network for hyperspectral image classification. IEEE Trans. Geosci. Remote Sens. 2016. Available online:
https://arxiv.org/pdf/1612.00144.pdf (accessed on 8 May 2021).

39. Yang, X.; Li, X.; Lau, R.Y.K.; Zhang, X. Hyperspectral image classification with deep learning models. IEEE Trans. Geosci. Remote
Sens. 2018, 99, 1–16. [CrossRef]

40. Li, S.; Song, W.; Fang, L.; Chen, Y.; Ghamisi, P.; Benediktsson, J.A. Deep learning for hyperspectral image classification: An
overview. IEEE Trans. Geosci. Remote Sens. 2019, 57, 6690–6709. [CrossRef]

41. Chen, Y.; Lin, Z.; Zhao, X.; Wang, G.; Gu, Y. Deep learning-based classification of hyperspectral data. IEEE J. Sel. Top. Appl. Earth
Obs. Remote Sens. 2014, 7, 2094–2107. [CrossRef]

http://doi.org/10.1016/j.isprsjprs.2003.10.002
http://doi.org/10.1109/JSTARS.2014.2305441
https://rslab.disi.unitn.it/papers/R59-TGARS-Dalponte.pdf
https://www.researchgate.net/publication/313687025_Hyperspectral_and_Lidar_Intensity_Data_Fusion_A_Framework_for_the_Rigorous_Correction_of_Illumination_Anisotropic_Effects_and_Cross_Calibration
https://www.researchgate.net/publication/313687025_Hyperspectral_and_Lidar_Intensity_Data_Fusion_A_Framework_for_the_Rigorous_Correction_of_Illumination_Anisotropic_Effects_and_Cross_Calibration
http://doi.org/10.1109/JSTARS.2012.2189558
http://doi.org/10.1016/j.rse.2009.04.007
http://doi.org/10.3390/rs8100787
https://telin.ugent.be/~{}wliao/Luo_JSTARS2017.pdf
http://doi.org/10.3390/rs10101649
http://doi.org/10.1016/j.rse.2014.11.001
http://doi.org/10.1016/j.rse.2014.03.018
http://doi.org/10.1016/j.isprsjprs.2014.08.001
http://doi.org/10.1109/TGRS.2018.2805286
http://doi.org/10.1109/TIP.2018.2799324
http://www.ncbi.nlm.nih.gov/pubmed/29470171
https://www.semanticscholar.org/paper/Deep-Recurrent-Neural-Networks-for-Hyperspectral-Mou-Ghamisi/5a391667242b4a631acdd5917681b16a86523987
https://www.semanticscholar.org/paper/Deep-Recurrent-Neural-Networks-for-Hyperspectral-Mou-Ghamisi/5a391667242b4a631acdd5917681b16a86523987
https://arxiv.org/pdf/1612.00144.pdf
http://doi.org/10.1109/TGRS.2018.2815613
http://doi.org/10.1109/TGRS.2019.2907932
http://doi.org/10.1109/JSTARS.2014.2329330


Remote Sens. 2021, 13, 3393 30 of 39

42. Hu, W.; Huang, Y.; Wei, L.; Zhang, F.; Li, H. Deep convolutional neural networks for hyperspectral image classification. J. Sens.
2015. [CrossRef]

43. Yu, Q.; Gong, P.; Clinton, N.; Biging, G.; Kelly, M.; Schirokauer, D. Object-based detailed vegetation classification with airborne
high spatial resolution remote sensing imagery. Photogramm. Eng. Remote Sens. 2006, 72, 799–811. [CrossRef]

44. Zhou, W.; Troy, A.; Grove, J.M. Object-based land cover classification and change analysis in the Baltimore metropolian area
using multi-temporal high resolution remote sensing data. Sensors 2008, 8, 1613–1636. [CrossRef]

45. Paoletti, M.E.; Haut, J.M.; Plaza, J.; Plaza, A. Deep learning classifiers for hyperspectral imaging: A review. ISPRS J. Photogramm.
Remote Sens. 2019, 158, 279–317. [CrossRef]

46. Jiménez, L.O.; Rivera-Medina, J.L.; Rodríguez-Díaz, E.; Arzuaga-Cruz, E.; Ramírez-Vélez, M. Integration of spatial and spectral
information by means of unsupervised extraction and classification for homogenous objects applied to multispectral and
hyperspectral data. IEEE Trans. Geosci. Remote Sens. 2005, 43, 844–851. [CrossRef]

47. Niemeyer, J.; Wegner, J.; Mallet, C.; Rottensteiner, F.; Soergel, U. Conditional random fields for urban scene classification with full
waveform LiDAR data. In Photogrammetric Image Analysis; Stilla, U., Rottensteiner, F., Mayer, H., Jutzi, B., Butenuth, M., Eds.;
Springer: Berlin/Heidelberg, Germany, 2011; Volume 6952, pp. 233–244.

48. Samadzadegan, F.; Bigdeli, B.; Ramzi, P. A multiple classifier system for classification of LiDAR remote sensing data using
multi-class SVM. In Multiple Classifier Systems; Springer: Berlin/Heidelberg, Germany, 2010; pp. 254–263.

49. Giampouras, P.; Charou, E. Artificial neural network approach for land cover classification of fused hyperspectral and LiDAR
data. In Proceedings of the Artificial Intelligence Applications and Innovations, Paphos, Cyprus, 30 September–2 October 2013;
pp. 255–261.

50. Medina, M.A. Effects of shingle absorptivity, radiant barrier emissivity, attic ventilation flowrate, and roof slope on the perfor-
mance of radiant barriers. Int. J. Energy Res. 2000, 24, 665–678. [CrossRef]

51. Ridd, M.K. Exploring a V-I-S-(vegetation—impervious surface-soil) model for urban ecosystem analysis through remote sensing:
Comparative anatomy for cities. Int. J. Remote Sens. 1995, 16, 2165–2185. [CrossRef]

52. Haala, N.; Brenner, C. Extraction of buildings and trees in urban environments. ISPRS J. Photogramm. Remote Sens. 1999,
54, 130–137. [CrossRef]

53. Shirowzhan, S.; Trinder, J. Building classification from LiDAR data for spatial-temporal assessment of 3D urban developments.
Procedia Eng. 2017, 180, 1453–1461. [CrossRef]

54. Zhou, Z.; Gong, J. Automated residential building detection from airborne LiDAR data with deep neural networks. Adv. Eng.
Inform. 2018, 36, 229–241. [CrossRef]

55. Shajahan, D.A.; Nayel, V.; Muthuganapathy, R. Roof classification from 3-D LiDAR point clouds using multiview CNN with
self-attention. IEEE Geosci. Remote Sens. Lett. 2019, 99, 1–5. [CrossRef]

56. Matikainen, L.; Hyyppa, J.; Hyyppa, H. Automatic detection of buildings from laser scanner data for map updating. In
Proceedings of the International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Dresden,
Germany, 8–10 October 2003.

57. Hug, C.; Wehr, A. Detecting and identifying topographic objects in imaging laser altimetry data. In Proceedings of the International
Archives of the Photogrammetry and Remote Sensing, Stuttgart, Germany, 17–19 September 1997; pp. 16–29.

58. Maas, H.G. The potential of height texture measures for the segmentation of airborne laserscanner data. In Proceedings of the 4th
International Airborne Remote Sensing Conference and Exhibition and 21st Canadian Symposium on Remote Sensing, Ottawa,
ON, Canada, 21–24 June 1999; pp. 154–161.

59. Tóvári, D.; Vögtle, T. Object classifiaction in laserscanning data. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci.—ISPRS Arch.
2012, 36. Available online: https://www.researchgate.net/publication/228962142_Object_Classification_in_LaserScanning_Data
(accessed on 8 May 2021).

60. Galvanin, E.A.; Poz, A.P.D. Extraction of building roof contours from LiDAR data using a markov-random-field-based approach.
IEEE Trans. Geosci. Remote Sens. 2012, 50, 981–987. [CrossRef]

61. Vosselmann, G. Slope based filtering of laser altimetry data. In Proceedings of the International Archives of the Photogrammetry,
Remote Sensing and Spatial Information Sciences, Amsterdam, The Netherlands, 16–22 July 2000; pp. 935–942.

62. Lohmann, P.; Koch, A.; Schaeffer, M. Approaches to the filtering of laser scanner data. In Proceedings of the International Archives
of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Amsterdam, The Netherlands, 16–22 July 2000.

63. Tarsha-Kurdi, F.; Landes, T.; Grussenmeyer, P.; Smigiel, E. New approach for automatic detection of buildings in airborne laser
scanner data using first echo only. In Proceedings of the ISPRS Commission III Symposium, Photogrammetric Computer Vision,
Bonn, Germany, 20–22 September 2006; pp. 25–30.

64. Lodha, S.; Kreps, E.; Helmbold, D.; Fitzpatrick, D. Aerial LiDAR data classification using support vector machines (SVM). In
Proceedings of the Third International Symposium on 3D Data Processing, Visualization, and Transmission, Chapel Hill, NC,
USA, 14–16 June 2006; pp. 567–574.

65. Rutzinger, M.; Höfle, B.; Pfeifer, N. Detection of high urban vegetation with airborne laser scanning data. In Proceedings of the
Forestsat, Montpellier, France, 5–7 November 2007; pp. 1–5.

66. Morsdorf, F.; Nichol, C.; Matthus, T.; Woodhouse, I.H. Assessing forest structural and physiological information content of
multi-spectral LiDAR waveforms by radiative transfer modelling. Remote Sens. Environ. 2009, 113, 2152–2163. [CrossRef]

http://doi.org/10.1155/2015/258619
http://doi.org/10.14358/PERS.72.7.799
http://doi.org/10.3390/s8031613
http://doi.org/10.1016/j.isprsjprs.2019.09.006
http://doi.org/10.1109/TGRS.2004.843193
http://doi.org/10.1002/1099-114X(20000625)24:8&lt;665::AID-ER615&gt;3.0.CO;2-1
http://doi.org/10.1080/01431169508954549
http://doi.org/10.1016/S0924-2716(99)00010-6
http://doi.org/10.1016/j.proeng.2017.04.308
http://doi.org/10.1016/j.aei.2018.04.002
http://doi.org/10.1109/LGRS.2019.2945886
https://www.researchgate.net/publication/228962142_Object_Classification_in_LaserScanning_Data
http://doi.org/10.1109/TGRS.2011.2163823
http://doi.org/10.1016/j.rse.2009.05.019


Remote Sens. 2021, 13, 3393 31 of 39

67. Wang, C.K.; Tseng, Y.H.; Chu, H.J. Airborne dual-wavelength LiDAR data for classifying land cover. Remote Sens. 2014, 6, 700–715.
[CrossRef]

68. Wichmann, V.; Bremer, M.; Lindenberger, J.; Rutzinger, M.; Georges, C.; Petrini-Monteferri, F. Evaluating the potential of
multispectral airborne LiDAR for topographic mapping and land cover classification. In Proceedings of the ISPRS Annals of the
Photogrammetry, Remote Sensing and Spatial Information Sciences, La Grande Motte, France, 28 September–3 October 2015.

69. Puttonen, E.; Hakala, T.; Nevalainen, O.; Kaasalainen, S.; Krooks, A.; Karjalainen, M.; Anttila, K. Artificial target detection with a
hyperspectral LiDAR over 26-h measurement. Opt. Eng. 2015. Available online: https://www.spiedigitallibrary.org/journals/
optical-engineering/volume-54/issue-01/013105/Artificial-target-detection-with-a-hyperspectral-LiDAR-over-26-h/10.111
7/1.OE.54.1.013105.full?SSO=1 (accessed on 8 May 2021).

70. Ghaderpour, E.; Abbes, A.B.; Rhif, M.; Pagiatakis, S.D.; Farah, I.R. Non-stationary and unequally spaced NDVI time series
analyses by the LSWAVE software. Int. J. Remote Sens. 2020, 41, 2374–2390. [CrossRef]

71. Martinez, B.; Gilabert, M.A. Vegetation dynamics from NDVI time series analysis using the wavelet transform. Remote Sens.
Environ. 2009, 113, 1823–1842. [CrossRef]

72. Okin, G.S. Relative spectral mixture analysis—A multitemporal index of total vegetation cover. Remote Sens. Environ. 2007,
106, 467–479. [CrossRef]

73. Yang, H.; Chen, W.; Qian, T.; Shen, D.; Wang, J. The Extraction of Vegetation Points from LiDAR Using 3D Fractal Dimension
Analyses. Remote Sens. 2015, 7, 10815–10831. [CrossRef]

74. Widlowski, J.L.; Pinty, B.; Gobron, N.; Verstraete, M.M. Detection and characterization of boreal coniferous forests from remote
sensing data. J. Geophys. Res. 2001, 106, 33405–33419. [CrossRef]

75. Koetz, B.; Sun, G.; Morsdorf, F.; Ranson, K.J.; Kneubühler, M.; Itten, K.; Allgöwer, B. Fusion of imaging spectrometer and LIDAR
data over combined radiative transfer models for forest canopy characterization. Remote Sens. Environ. 2007, 106, 449–459.
[CrossRef]

76. Dian, Y.; Pang, Y.; Dong, Y.; Li, Z. Urban tree species mapping using airborne LiDAR and hyperspectral data. J. Indian Soc. Remote
Sens. 2016, 44, 595–603. [CrossRef]

77. Zhang, Z.; Liu, Q.; Wang, Y. Road extraction by deep residual u-net. IEEE Geosci. Remote Sens. Lett. 2018. Available online:
https://arxiv.org/abs/1711.10684 (accessed on 8 May 2021).

78. Yang, X.; Li, X.; Ye, Y.; Zhang, X.; Zhang, H.; Huang, X.; Zhang, B. Road detection via deep residual dense u-net. In Proceedings
of the International Joint Conference on Neural Networks, Budapest, Hungary, 14–19 July 2019.

79. Miliaresis, G.; Kokkas, N. Segmentation and object-based classification for the extraction of the building class from LiDAR DEMs.
Comput. Geosci. 2007, 33, 1076–1087. [CrossRef]

80. Zhao, X.; Tao, R.; Li, W.; Li, H.C.; Du, Q.; Liao, W.; Philips, W. Joint Classification of Hyperspectral and LiDAR Data Using
Hierarchical Random Walk and Deep CNN Architecture. IEEE Trans. Geosci. Remote Sens. 2020, 58, 7355–7370. [CrossRef]

81. Herold, M.; Roberts, D.; Smadi, O.; Noronha, V. Road condition mapping with hyperspectral remote sensing. In Proceedings of
the Airborne Earth Science Workshop, Pasadena, CA, USA, 31 March–2 April 2004.

82. Kong, H.; Audibert, J.Y.; Ponce, J. General Road Detection from a Single Image. IEEE Trans. Image Process. 2010. Available online:
https://www.di.ens.fr/willow/pdfs/tip10b.pdf (accessed on 7 May 2021).

83. Wu, P.C.; Chang, C.Y.; Lin, C. Lane-mark extraction for automobiles under complex conditions. Pattern Recognit. 2014, 47, 2756–
2767. [CrossRef]

84. Lin, Y.-C.; Lin, C.; Tsai, M.-D.; Lin, C.-L. Object-based analysis of LiDAR geometric features for vegetation detection in shaded
areas. In Proceedings of the XXIII ISPRS Congress, Prague, Czech Republic, 12–19 July 2016.

85. Poux, F.; Hallot, R.P.; Neuville, R.B. Smart point cloud: Definition and remaining challenges. Int. Arch. Photogramm. Remote Sens.
Spat. Inf. Sci.—ISPRS Arch. 2016, 42, 119–127. [CrossRef]

86. Arief, H.A.; Strand, G.H.; Tveite, H.; Indahl, U.G. Land cover segmentation of airborne LiDAR data using Stochastic Atrous
Network. Remote Sens. 2018, 10, 973. [CrossRef]

87. Clark, R.N. Spectroscopy of rocks and minerals, and principles of spectroscopy. In Manual of Remote Sensing, Remote Sensing for the
Earth Sciences; Rencz, A.N., Ed.; John Wiley and Sons: New York, NY, USA, 1999; Volume 3.

88. Signoroni, A.; Savardi, M.; Baronio, A.; Benini, S. Deep learning meets hyperspectral image analysis: A multidisciplinary review.
J. Imaging 2019, 5, 52. [CrossRef]

89. Ben-Dor, E. Imaging spectrometry for urban applications. In Imaging Spectrometry; van der Meer, F.D., de Jong, S.M., Eds.; Kluwer
Academic Publishers: Amsterdam, The Netherlands, 2001; pp. 243–281.

90. Ortenberg, F. Hyperspectral Sensor Characteristics. In Fundamentals, Sensor Systems, Spectral Libraries, and Data Mining for
Vegetation, 2nd ed.; Huete, A., Lyon, J.G., Thenkabail, P.S., Eds.; Hyperspectral remote sensing of vegetation Volume I; CRC Press:
Boca Raton, FL, USA, 2011; p. 449.

91. Rossel, R.A.V.; McGlynn, R.N.; McBratney, A.B. Determining the composition of mineral-organic mixes using UV—vis—NIR
diffuse reflectance spectroscopy. Geoderma 2006, 137, 70–82. [CrossRef]

92. Adam, E.; Mutanga, O.; Rugege, D. Multispectral and hyperspectral remote sensing for identification and mapping of wetland
vegetation:a review. Wetl. Ecol. Manag. 2010, 18, 281–296. [CrossRef]

93. Heiden, U.H.W.; Roessner, S.; Segl, K.; Esch, T.; Mueller, A. Urban structure type characterization using hyperspectral remote
sensing and height information. Landsc. Urban. Plan. 2012, 105, 361–375. [CrossRef]

http://doi.org/10.3390/rs6010700
https://www.spiedigitallibrary.org/journals/optical-engineering/volume-54/issue-01/013105/Artificial-target-detection-with-a-hyperspectral-LiDAR-over-26-h/10.1117/1.OE.54.1.013105.full?SSO=1
https://www.spiedigitallibrary.org/journals/optical-engineering/volume-54/issue-01/013105/Artificial-target-detection-with-a-hyperspectral-LiDAR-over-26-h/10.1117/1.OE.54.1.013105.full?SSO=1
https://www.spiedigitallibrary.org/journals/optical-engineering/volume-54/issue-01/013105/Artificial-target-detection-with-a-hyperspectral-LiDAR-over-26-h/10.1117/1.OE.54.1.013105.full?SSO=1
http://doi.org/10.1080/01431161.2019.1688419
http://doi.org/10.1016/j.rse.2009.04.016
http://doi.org/10.1016/j.rse.2006.09.018
http://doi.org/10.3390/rs70810815
http://doi.org/10.1029/2000JD000276
http://doi.org/10.1016/j.rse.2006.09.013
http://doi.org/10.1007/s12524-015-0543-4
https://arxiv.org/abs/1711.10684
http://doi.org/10.1016/j.cageo.2006.11.012
http://doi.org/10.1109/TGRS.2020.2982064
https://www.di.ens.fr/willow/pdfs/tip10b.pdf
http://doi.org/10.1016/j.patcog.2014.02.004
http://doi.org/10.5194/isprs-annals-IV-2-W1-119-2016
http://doi.org/10.3390/rs10060973
http://doi.org/10.3390/jimaging5050052
http://doi.org/10.1016/j.geoderma.2006.07.004
http://doi.org/10.1007/s11273-009-9169-z
http://doi.org/10.1016/j.landurbplan.2012.01.001


Remote Sens. 2021, 13, 3393 32 of 39

94. Roessner, S.; Segl, K.; Heiden, U.; Kaufmann, H. Automated differentiation of urban surfaces based on airborne hyperspectral
imagery. IEEE Trans. Geosci. Remote Sens. 2001, 39, 1525–1532. [CrossRef]

95. Townshend, J.; Justice, C.; Li, W.; Gumey, C.; McManus, J. Global land cover classification by remote sensing: Present capabilities
and future possibilities. Remote Sens. Environ. 1991, 35, 243–255. [CrossRef]

96. Heiden, U.; Roessner, S.; Segl, K.; Kaufmann, H. Analysis of Spectral Signatures of Urban Surfaces for their Identification Using
Hyperspectral HyMap Data. In Proceedings of the IEEE/ISPRS Joint Workshop on Remote Sensing nd Data Fusion over Urban
Areas, Rome, Italy, 8–9 November 2001; pp. 173–177.

97. Heiden, U.; Segl, K.; Roessner, S.; Kaufmann, H. Determination of robust spectral features for identification of urban surface
materials in hyperspectral remote sensing data. Remote Sens. Environ. 2007, 111, 537–552. [CrossRef]

98. Meer, F.v.d.; Jong, S.d.; Bakker, W. Imaging Spectrometry: Basic Analytical Techniques. In Imaging Spectrometry; van der Meer,
F.D., de Jong, S.M., Eds.; Kluwer Academic Publishers: Dordrecht, The Netherlands, 2001; pp. 17–61.

99. Franke, J.; Roberts, D.A.; Halligan, K.; Menz, G. Hierarchical Multiple Endmember Spectral Mixture Analysis (MESMA) of
hyperspectral imagery for urban environments. Remote Sens. Environ. 2009, 113, 1712–1723. [CrossRef]

100. Hepner, G.F.; Housmand, B.; Kulikov, I.; Bryant, N. Investigation of the integration of AVIRIS and IFSAR for urban analysis.
Photogramm. Eng. Remote Sens. 1998, 64, 813–820.

101. Linden, S.v.d.; Okujeni, A.; Canters, F.; Degerickx, J.; Heiden, U.; Hostert, P.; Priem, F.; Somers, B.; Thiel, F. Imaging Spectroscopy
of Urban Environments. Surv. Geohpys. 2019, 40, 471–488. [CrossRef]

102. Pillay, R.; Picollo, M.; Hardeberg, J.Y.; George, S. Evaluation of the Data Quality from a Round-Robin Test of Hyperspectral
Imaging Systems. Sensors 2020, 20, 3812. [CrossRef]

103. Yao, H.; Tian, L.F. Practical methods for geometric distortion correction of aerial hyperspectral imagery. Appl. Eng. Agric. 2004,
20, 367–375. [CrossRef]

104. Lulla, V.; Jensen, R.R. Best Practices for Urban Hyperspectral Remote Sensing Data Acquisition and Processing. In Urban
Sustainability: Policy and Praxis; Springer: Berlin/Heidelberg, Germany, 2016; pp. 43–54.

105. Galbraith, A.E.; Theiler, J.; Thome, K.; Ziolkowski, R. Resolution Enhancement of Multilook Imagery for the Multispectral
Thermal Imager. IEEE Trans. Geosci. Remote Sens. 2005, 43, 1964–1977. [CrossRef]

106. Pepe, M.; Fregonese, L.; Scaioni, M. Planning airborne photogrammetry and remote-sensing missions with modern platforms
and sensors. Eur. J. Remote Sens. 2018, 51, 412–436. [CrossRef]

107. Heiden, U.; Segl, K.; Roessner, S.; Kaufmann, H. Determination and verification of robust spectral features for an automated
classification of sealed urban surfaces. In Proceedings of the EARSeL Workshop on Imaging Spectroscopy, Warsaw, Poland, 27–29
April 2005.

108. Lacherade, S.; Miesch, C.; Briottet, X.; Men, H.L. Spectral variability and bidirectional reflectance behavior of urban materials at a
20 cm spatial resolution in the visible and near-infrared wavelength. A case study over Toulouse (France). Int. J. Remote Sens.
2005, 26, 3859–3866. [CrossRef]

109. Herold, M.; Roberts, D.A.; Gardner, M.E.; Dennison, P.E. Spectrometry for urban area remote sensing—Development and analysis
of a spectral library from 350 to 2400 nm. Remote Sens. Environ. 2004, 91, 304–319. [CrossRef]

110. Ilehag, R.; Schenk, A.; Huang, Y.; Hinz, S. KLUM: An Urban VNIR and SWIR Spectral Library Consisting of Building Materials.
Remote Sens. 2019, 11, 2149. [CrossRef]

111. Manolakis, D.; Lockwood, R.; Cooley, T. Hyperspectral Imaging Remote Sensing: Physics, Sensors, and Algorithms; Cambridge
University Press: Cambridge, UK, 2016.

112. Pearson, K. On lines and planes of closest fit to systems of points in space. Philos. Mag. Lett. 1901, 2, 559–572. [CrossRef]
113. Pritchard, J.K.; Stephens, M.; Donnelly, P. Inference of Population Structure Using Multilocus Genotype Data. Genetics 2000,

155, 945–959. [CrossRef] [PubMed]
114. Lawton, W.H.; Sylvestre, E.A. Self modeling curve resolution. Technometrics 1971, 13, 617–633. [CrossRef]
115. Vidal, M.; Amigo, J.M. Pre-processing of hyperspectral images. Essential steps before image analysis. Chemom. Intell. Lab. Syst.

2012, 117, 138–148. [CrossRef]
116. Pandey, D.; Tiwari, K.C. Spectral library creation and analysis of urban built-up surfaces and materials using field spectrometry.

Arab. J. Geosci. 2021, 14. [CrossRef]
117. Miller, D.L.; Alonzo, M.; Roberts, D.A.; Tague, C.L.; McFadden, J.P. Drought response of urban trees and turfgrass using airborne

imaging spectroscopy. Remote Sens. Environ. 2020, 40. [CrossRef]
118. Clark, R.N.; Swayze, G.A.; Livo, K.E.; Kokaly, R.F.; Sutley, S.H.; Dalton, J.B.; McDougal, R.R.; Gent, C.A. Imaging spectroscopy:

Earth and planetary remote sensing with the USGS Tetracorder and expert systems. J. Geophys. Res. 2003, 108. [CrossRef]
119. Yongyang, X.; Liang, W.; Zhong, X.; Zhanlong, C. Building extraction in very high resolution remote sensing imagery using deep

learning and guided filters. Remote Sens. 2018, 10.
120. Teo, T.A.; Wu, H.M. Analysis of land cover classification using multi-wavelength LiDAR system. Appl. Sci. 2017, 7, 663. [CrossRef]
121. Pandey, D.; Tiwari, K.C. New spectral indices for detection of urban built-up surfaces and its sub-classes in AVIRIS-NG

hyperspectral imagery. Geocarto Int. 2020. [CrossRef]
122. Zha, Y.; Gao, J.; Ni, S. Use of normalized difference built-up index in automatically mapping urban areas from TM imagery. Int. J.

Remote Sens. 2003, 24, 583–594. [CrossRef]

http://doi.org/10.1109/36.934082
http://doi.org/10.1016/0034-4257(91)90016-Y
http://doi.org/10.1016/j.rse.2007.04.008
http://doi.org/10.1016/j.rse.2009.03.018
http://doi.org/10.1007/s10712-018-9486-y
http://doi.org/10.3390/s20143812
http://doi.org/10.13031/2013.16055
http://doi.org/10.1109/TGRS.2005.853569
http://doi.org/10.1080/22797254.2018.1444945
http://doi.org/10.1080/01431160500177414
http://doi.org/10.1016/j.rse.2004.02.013
http://doi.org/10.3390/rs11182149
http://doi.org/10.1080/14786440109462720
http://doi.org/10.1093/genetics/155.2.945
http://www.ncbi.nlm.nih.gov/pubmed/10835412
http://doi.org/10.1080/00401706.1971.10488823
http://doi.org/10.1016/j.chemolab.2012.05.009
http://doi.org/10.1007/s12517-021-06723-1
http://doi.org/10.1016/j.rse.2020.111646
http://doi.org/10.1029/2002JE001847
http://doi.org/10.3390/app7070663
http://doi.org/10.1080/10106049.2020.1805031
http://doi.org/10.1080/01431160304987


Remote Sens. 2021, 13, 3393 33 of 39

123. Estoque, R.C.; Zhang, W.; Tan, K.; Liu, Y.; Liu, S. Multiple classifier system for remote sensing image classification: A review.
Sensors 2012, 12, 4764–4792.

124. Shahi, K.; Shafri, H.Z.M.; Taherzadeh, E.; Mansor, S.; Muniandy, R. A novel spectral index to automatically extract road networks
from WorldView-2 satellite imagery. Egypt. J. Remote Sens. Space Sci. 2015, 18, 27–33. [CrossRef]

125. Xie, H.; Luo, X.; Xu, X.; Tong, X.; Jin, Y.; Haiyan, P.; Zhou, B. New hyperspectral difference water index for the extraction of urban
water bodies by the use of airborne hyperspectral images. J. Appl. Remote Sens. 2014, 8. [CrossRef]

126. Xue, J.; Zhao, Y.; Bu, Y.; Liao, W.; Chan, J.C.-W.; Philips, W. Spatial-Spectral Structured Sparse Low-Rank Representation for
Hyperspectral Image Super-Resolution. IEEE Trans. Image Process. 2021, 30, 3084–3097. [CrossRef] [PubMed]

127. Rasti, B.; Scheunders, P.; Ghamisi, P.; Licciardi, G.; Chanussot, J. Noise Reduction in Hyperspectral Imagery: Overview and
Application. Remote Sens. 2018, 3, 482. [CrossRef]

128. Gómez-Chova, L.; Alonso, L.; Guanter, L.; Camps-Valls, G.; Calpe, J.; Moreno, J. Correction of systematic spatial noise in
push-broom hyperspectral sensors: Application to CHRIS/PROBA images. Appl. Opt. 2008, 47, 46–60. [CrossRef]

129. Bruzzone, L.; Marconcini, M.; Persello, C. Fusion of spectral and spatial information by a novel SVM classification technique. In
Proceedings of the IEEE International Geoscience and Remote Sensing Symposium, Barcelona, Spain, 23–27 July 2007.

130. Bovolo, F.; Bruzzone, L. A Context-Sensitive Technique Based on Support Vector Machines for Image Classification. In Proceedings
of the International Conference on Pattern Recognition and Machine Intelligence, Kolkata, India, 20–22 December 2005; pp. 260–
265.

131. Farag, A.A.; Mohamed, R.H.; El-Baz, A. A unified framework for MAP estimation in remote sensing image segmentation. IEEE
Trans. Geosci. Remote Sens. 2005, 43, 1617–1634. [CrossRef]

132. Sun, L.; Wu, Z.; Liu, J.; Xiao, L.; Wei, Z. Supervised spectral-spatial hyperspectral image classification with weighted Markov
Random Fields. IEEE Trans. Geosci. Remote Sens. 2015, 53, 1490–1503. [CrossRef]

133. Li, J.; Bioucas-Dias, J.M.; Plaza, A. Spectral-spatial hyperspectral image segmentation using subspace multinomial logistic
regression and markov random fields. IEEE Trans. Geosci. Remote Sens. 2012, 50. [CrossRef]

134. Wehr, A.; Lohr, U. Airborne laser scanning—An introduction and overview. ISPRS J. Photogramm. Remote Sens. 1999, 54, 68–82.
[CrossRef]

135. Clode, S.; Rottensteiner, F.; Kootsookos, P.; Zelniker, E. Detection and vectorization of roads from LiDAR data. Photogramm. Eng.
Remote Sens. 2007, 73, 517–535. [CrossRef]

136. Chehata, N.; Guo, L.; Mallet, C. Airborne LiDAR feature selection for urban classification using random forests. Laserscanning
2009, 38.

137. Guo, L.; Chehata, N.; Mallet, C.; Boukir, S. Relevance of airborne LiDAR and multispectral image data for urban scene classification
using random forests. ISPRS J. Photogramm. Remote Sens. 2011, 66, 56–66. [CrossRef]

138. Priestnall, G.; Jaafar, J.; Duncan, A. Extracting urban features from LiDAR digital surface models. Comput. Environ. Urban. Syst.
2000, 24, 65–78. [CrossRef]

139. Hecht, R.; Meinel, G.; Buchroithner, M.F. Estimation of urban green volume based on single-pulse LiDAR data. IEEE Trans. Geosci.
Remote Sens. 2008, 46. [CrossRef]

140. Alonso, L.; Picos, J.; Bastos, G.; Armesto, J. Detection of Very Small Tree Plantations and Tree-Level Characterization Using
Open-Access Remote-Sensing Databases. Remote Sens. 2020, 12, 2276. [CrossRef]

141. Grohmann, C.H.; Smith, M.J.; Riccomini, C. Muli-scale Analysis of Topographic Surface Roughness in the Midland Valley,
Scotland. IEEE Trans. Geosci. Remote Sens. 2011, 49, 1200–1213. [CrossRef]

142. Brubaker, K.M.; Myers, W.L.; Drohan, P.J.; Miller, D.A.; Boyer, E.W. The Use of LiDAR Terrain Data in Characterizing Surface
Roughness and Microtopography. Appl. Environ. Soil Sci. 2013, 2013. [CrossRef]

143. Brenner, C. Dreidimensionale Gebäuderekonstruktion aus digitalen Oberflächenmodellen und Grundrissen. Ph.D. Thesis,
Stuttgart University, Stuttgart, Germany, 2000.

144. Antonarakis, A.S.; Richards, K.S.; Brasington, J. Object-based land cover classification using airborne LiDAR. Remote Sens. Environ.
2008, 112, 2988–2998. [CrossRef]

145. Charaniya, A.P.; Manduchi, R.; Lodha, S.K. Supervised parametric classification of aerial LiDAR data. In Proceedings of the
IEEE Computer Society Conference on Computer Vision and Pattern Recognition Workshops, Washington, DC, USA, 27 June–2
July 2004.

146. Bartels, M.; Wei, H. Maximum likelihood classification of LiDAR data incorporating multiple co-registered band. In Proceedings
of the 4th International Workshop on Pattern Recognition in Remote Sensing in conjunction with the 18th International Conference
on Pattern Recognition, Hong Kong, 20–24 August 2006.

147. Im, J.; Jensen, J.R.; Hodgson, M.E. Object-based land cover classification using high-posting-density LiDAR data. GIsci. Remote
Sens. 2008, 45, 209–228. [CrossRef]

148. Song, J.H.; Han, S.H.; Yu, K.Y.; Kim, Y.I. Assessing the possibility of land-cover classification using LiDAR intensity data. Int.
Arch. Photogramm. Remote Sens. Spat. Inf. Sci. ISPRS Arch. 2002, 34, 259–262.

149. Yoon, J.-S.; Lee, J.-I. Land cover characteristics of airborne LiDAR intensity data: A case study. IEEE Geosci. Remote Sens. Lett.
2008, 5, 801–805. [CrossRef]

150. MacFaden, S.W.; O´Neil-Dunne, J.P.M.; Royar, A.R.; Lu, J.W.T.; Rundle, A.G. High-resolution tree canopy mapping for New York
City using LiDAR and object-based image analysis. J. Appl. Remote Sens. 2012, 6. [CrossRef]

http://doi.org/10.1016/j.ejrs.2014.12.003
http://doi.org/10.1117/1.JRS.8.085098
http://doi.org/10.1109/TIP.2021.3058590
http://www.ncbi.nlm.nih.gov/pubmed/33596175
http://doi.org/10.3390/rs10030482
http://doi.org/10.1364/AO.47.000F46
http://doi.org/10.1109/TGRS.2005.849059
http://doi.org/10.1109/TGRS.2014.2344442
http://doi.org/10.1109/TGRS.2011.2162649
http://doi.org/10.1016/S0924-2716(99)00011-8
http://doi.org/10.14358/PERS.73.5.517
http://doi.org/10.1016/j.isprsjprs.2010.08.007
http://doi.org/10.1016/S0198-9715(99)00047-2
http://doi.org/10.1109/TGRS.2008.2001771
http://doi.org/10.3390/rs12142276
http://doi.org/10.1109/TGRS.2010.2053546
http://doi.org/10.1155/2013/891534
http://doi.org/10.1016/j.rse.2008.02.004
http://doi.org/10.2747/1548-1603.45.2.209
http://doi.org/10.1109/LGRS.2008.2000754
http://doi.org/10.1117/1.JRS.6.063567


Remote Sens. 2021, 13, 3393 34 of 39

151. Yan, W.Y.; Shaker, A. Reduction of striping noise in overlapping LiDAR intensity data by radiometric normalization. In
Proceedings of the XXIII ISPRS Congress, Prague, Czech Republic, 12–19 July 2016.

152. Nobrega, R.A.A.; Quintanilha, J.A.; O´Hara, C.G. A noise-removal approach for LiDAR intensity images using anisotropic
diffusion filtering to preserve object shape characteristics. In Proceedings of the ASPRS Annual Conference, Tampa, FL, USA,
7–11 May 2007.

153. Minh, N.Q.; Hien, L.P. Land cover classification using LiDAR intensity data and neural network. J. Korean Soc. Surv. Geodesy
Photogramm. Cartogr. 2011, 29.4, 429–438. [CrossRef]

154. Brennan, R.; Webster, T.L. Object-oriented land cover classification of LiDAR-derived surfaces. Can. J. Remote Sens. 2006,
32, 162–172. [CrossRef]

155. Wagner, W. Radiometric calibration of small-footprint full-waveform airborne laser scanner measurements: Basic physical
concepts. ISPRS J. Photogramm. Remote Sens. 2010, 65, 505–513. [CrossRef]

156. Mallet, C.; Bretar, F. Full-waveform topographic LiDAR: State-of-the-art. ISPRS J. Photogramm. Remote Sens. 2009, 64, 1–16.
[CrossRef]

157. Bretar, F.; Chauve, A.; Mallet, C.; Jutzi, B. Managing full waveform LiDAR data: A challenging task for the forthcoming years. Int.
Arch. Photogramm. Remote Sens. Spat. Inf. Sci. ISPRS Arch. 2008, XXXVII, 415–420.

158. Kirchhof, M.; Jutzi, B.; Stilla, U. Iterative processing of laser scanning data by full waveform analysis. ISPRS J. Photogramm.
Remote Sens. 2008, 63, 99–114. [CrossRef]

159. Höfle, B.; Pfeifer, N. Correction of laser scanning intensity data: Data and model-driven approaches. ISPRS J. Photogramm. Remote
Sens. 2007, 62, 1415–1433. [CrossRef]

160. Alexander, C.; Tansey, K.; Kaduk, J.; Holland, D.; Tate, N.J. Backscatter coefficient as an attribute for the classification of
full-waveform airborne laser scanning data in urban areas. ISPRS J. Photogramm. Remote Sens. 2010, 65, 423–432. [CrossRef]

161. Neuenschwander, A.L.; Magruder, L.A.; Tyler, M. Landcover classification of small-footprint, full-waveform LiDAR data. J. Appl.
Remote Sens. 2009, 3. [CrossRef]

162. Jutzi, B.; Stilla, U. Waveform processing of laser pulses for reconstruction of surfacer in urban areas. Meas. Tech. 2005. Available
online: https://www.researchgate.net/publication/43136634_Waveform_processing_of_laser_pulses_for_reconstruction_of_
surfaces_in_urban_areas (accessed on 2 May 2021).

163. Chauve, A.; Mallet, C.; Bretar, F.; Durrieu, S.; Pierrot-Deseilligny, M.; Puech, W. Processing full-waveform LiDAR data: Modelling
raw signals. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. ISPRS Arch. 2007, 36, 102–107.

164. Gross, H.; Jutzi, B.; Thoennessen, U. Segmentation of tree regions using data of a full-waveform laser. Int. Arch. Photogramm.
Remote Sens. Spat. Inf. Sci. ISPRS Arch. 2007, 36, 57–62.

165. Reitberger, J.; Krzystek, P.; Stilla, U. Analysis of full waveform LIDAR data for the classification of deciduous and coniferous
trees. Int. J. Remote Sens. 2008, 29, 1407–1431. [CrossRef]

166. Rutzinger, M.; Höfle, B.; Hollaus, M.; Pfeifer, N. Object-based point cloud analysis of full-waveform airborne laser scanning data
for urban vegetation classification. Sensors 2008, 8, 4505–4528. [CrossRef] [PubMed]

167. Melzer, T. Non-parametric segmentation of ALS point clouds using mean shift. J. Appl. Geod. 2007, 1, 158–170. [CrossRef]
168. Lin, Y.-C.; Mills, J.P. Factors influencing pulse width of small footprint, full waveform airborne laser scanning data. Photogramm.

Eng. Remote Sens. 2010, 76, 49–59. [CrossRef]
169. Doneus, M.; Briese, C.; Fera, M.; Janner, M. Archaeological prospection of forested areas using full-waveform airborne laser

scanning. J. Archaeol. Sci. 2008, 35, 882–893. [CrossRef]
170. Harding, D.; Lefsky, M.; Parker, G. Laser altimeter canopy height profiles. Methods and validation for closed canopy, broadleaf

forests. Remote Sens. Environ. 2001, 76, 283–297. [CrossRef]
171. Gross, H.; Thoennessen, U. Extraction of lines from laser point clouds. In Proceedings of the ISPRS Conference Photogrammetric

Image Analysis (PIA), Bonn, Germany, 20–22 September 2006; pp. 87–91.
172. West, K.F.; Webb, B.N.; Lersch, J.R.; Pothier, S.; Triscari, J.M.; Iverson, A.E. Context-driven automated target detection in 3-D data.

In Proceedings of the Automatic Target Recognition XIV, Orlando, FL, USA, 13–15 April 2004; pp. 133–143.
173. Ojala, T.; Pietikainen, M.; Maenpaa, T.T. Multi resolution gray scale and rotation invariant texture classification with local binary

pattern. IEEE Trans. Pattern Anal. Mach. Intell. 2002, 24, 971–987. [CrossRef]
174. Ge, C.; Du, Q.; Sun, W.; Wang, K.; Li, J.; Li, Y. Deep Residual Network-Based Fusion Framework for Hyperspectral and LiDAR

Data. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2021, 14, 2458–2472. [CrossRef]
175. Peng, B.; Li, W.; Xie, X.; Du, Q.; Liu, K. Weighted-Fusion-Based Representation Classifiers for Hyperspectral Imagery. Remote Sens.

2015, 7, 14806–14826. [CrossRef]
176. Manjunath, B.S.; Ma, W.Y. Texture features for browsing and retrieval of image data. IEEE Trans. Pattern Anal. Mach. Intell. 1996,

18, 837–842. [CrossRef]
177. Rajadell, O.; García-Sevilla, P.; Pla, F. Textural Features for Hyperspectral Pixel Classification. In Proceedings of the Iberian

Conference on Pattern Recognition and Image Analysis, Póvoa de Varzim, Portugal, 10–12 June 2009; pp. 208–216.
178. Aksoy, S. Spatial techniques for image classification. In Signal and Image Processing for Remote Sensing; CRC Press: Boca Raton, FL,

USA, 2006; pp. 491–513.
179. Zhang, G.; Jia, X.; Kwok, N.M. Spectral-spatial based super pixel remote sensing image classification. In Proceedings of the 4th

International Congress on Image and Signal Processing, Shanghai, China, 15–17 October 2011; pp. 1680–1684.

http://doi.org/10.7848/ksgpc.2011.29.4.429
http://doi.org/10.5589/m06-015
http://doi.org/10.1016/j.isprsjprs.2010.06.007
http://doi.org/10.1016/j.isprsjprs.2008.09.007
http://doi.org/10.1016/j.isprsjprs.2007.08.006
http://doi.org/10.1016/j.isprsjprs.2007.05.008
http://doi.org/10.1016/j.isprsjprs.2010.05.002
http://doi.org/10.1117/1.3229944
https://www.researchgate.net/publication/43136634_Waveform_processing_of_laser_pulses_for_reconstruction_of_surfaces_in_urban_areas
https://www.researchgate.net/publication/43136634_Waveform_processing_of_laser_pulses_for_reconstruction_of_surfaces_in_urban_areas
http://doi.org/10.1080/01431160701736448
http://doi.org/10.3390/s8084505
http://www.ncbi.nlm.nih.gov/pubmed/27873771
http://doi.org/10.1515/jag.2007.018
http://doi.org/10.14358/PERS.76.1.49
http://doi.org/10.1016/j.jas.2007.06.013
http://doi.org/10.1016/S0034-4257(00)00210-8
http://doi.org/10.1109/TPAMI.2002.1017623
http://doi.org/10.1109/JSTARS.2021.3054392
http://doi.org/10.3390/rs71114806
http://doi.org/10.1109/34.531803


Remote Sens. 2021, 13, 3393 35 of 39

180. Haralick, R.M.; Shanmugam, K.; Dinstein, I.H. Textural features for image classification. IEEE Trans. Syst. Man Cybern. Syst. 1973,
3, 610–621. [CrossRef]

181. Huang, X.; Zhang, L.; Gong, W. Information fusion of aerial images and LiDAR data in urban areas: Vector-stacking, re-
classification and post-processing approaches. Int. J. Remote Sens. 2011, 32, 69–84. [CrossRef]

182. Puissant, A.; Hirsch, J.; Weber, C. The utility of texture analysis to improve per-pixel classification for high to very high spatial
resolution imagery. Int. J. Remote Sens. 2005. [CrossRef]

183. Zhang, Y. Optimisation of building detection in satellite images by combining multispectral classification and texture filtering.
ISPRS J. Photogramm. Remote Sens. 1999, 54, 50–60. [CrossRef]

184. Huang, X.; Zhang, L.; Li, P. An Adaptive Multiscale Information Fusion Approach for Feature Extraction and Classification of
IKONOS Multispectral Imagery Over Urban Areas. IEEE Geosci. Remote Sens. Lett. 2007, 4. [CrossRef]

185. Pesaresi, M.; Benediktsson, J.A. A New Approach for the Morphological Segmentation of High-Resolution Satellite Imagery.
IEEE Trans. Geosci. Remote Sens. 2001, 39, 309–320. [CrossRef]

186. Soille, P.; Pesaresi, M. Advances in mathematical morphology applied to geoscience and remote sensing. IEEE Trans. Geosci.
Remote Sens. 2002, 40. [CrossRef]

187. Benediktsson, J.A.; Palmason, J.A.; Sveinsson, J.R. Classification of hyperspectral data from urban areas based on extended
morphological profiles. IEEE Trans. Geosci. Remote Sens. 2005, 43, 480–491. [CrossRef]

188. Benediktsson, J.A.; Pesaresi, M.; Amason, K. Classification and feature extraction for remote sensing images from urban areas
based on morphological transformations. IEEE Trans. Geosci. Remote Sens. 2003, 41, 1940–1949. [CrossRef]

189. Jouni, M.; Mura, M.D.; Comon, P. Hyperspectral Image Classification Based on Mathematical Morphology and Tensor Decompo-
sition. Math. Morphol. Theory Appl. 2020, 4, 1–30. [CrossRef]

190. Mura, M.D.; Benediktsson, J.A.; Waske, B.; Bruzzone, L. Extended profiles with morphological attribute filters for the analysis of
hyperspectral data. Int. J. Remote Sens. 2010, 31, 5975–5991. [CrossRef]

191. Aptoula, E.; Mura, M.D.; Lefevre, S. Vector attribute profiles for hyperspectral image classification. IEEE Trans. Geosci. Remote
Sens. 2016, 54, 3208–3220. [CrossRef]

192. Sayed, W.M. Processing of LiDAR Data using Morphological Filter. Int. J. Adv. Res. 2014, 2, 361–367.
193. Rottensteiner, F.; Briese, C. A new method for building extraction in urban areas from high-resolution LiDAR data. Int. Arch.

Photogramm. Remote Sens. Spat. Inf. Sci. ISPRS Arch. 2002, 34, 295–301.
194. Morsy, S.S.A.; El-Rabbany, A. Multispectral LiDAR Data for Land Cover Classification of Urban Areas. Sensors 2017, 17, 958.

[CrossRef]
195. Suomalainen, J.; Hakala, T.; Kaartinen, H.; Räikkönen, E.; Kaasalainen, S. Demonstration of a virtual active hyperspectral LiDAR

in automated point cloud classification. ISPRS J. Photogramm. Remote Sens. 2011, 66, 637–641. [CrossRef]
196. Hakala, T.; Suomalainen, J.; Kaasalainen, S.; Chen, Y. Full waveform hyperspectral LiDAR for terrestrial laser scanning. Opt.

Express 2012, 20. [CrossRef]
197. Hughes, G.F. On the mean accuracy of statistical pattern recognizers. IEEE Trans. Inf. Theory 1968, 14, 55–63. [CrossRef]
198. Asner, G.P.; Knapp, D.E.; Boardman, J.; Green, R.O.; Kennedy-Bowdoin, T.; Eastwood, M.; Martin, R.E.; Anderson, C.; Field, C.B.

Carnegie Airborne Observatory-2: Increasing science data dimensionality via high-fidelity multi-sensor fusion. Remote Sens.
Environ. 2012, 124, 454–465. [CrossRef]

199. Brell, M.; Rogass, C.; Segl, K.; Bookhagen, B.; Guanter, L. Improving sensor fusion: A parametric method for the geometric
coalignment of airborne hyperspectral and LiDAR data. IEEE Trans. Geosci. Remote Sens. 2016, 54. [CrossRef]

200. Brell, M.; Segl, K.; Guanter, L.; Bookhagen, B. 3D hyperspectral point cloud generation: Fusing airborne laser scanning and
hyperspectral imaging sensors for improved object-based information extraction. ISPRS J. Photogramm. Remote Sens. 2019,
149, 200–214. [CrossRef]

201. Blaschke, T.; Hay, G.J.; Kelly, M.; Lang, S.; Hofmann, P.; Addink, E.; Feitosa, R.Q.; Meer, F.v.d.; Werff, H.v.d.; Coillie, F.v.; et al.
Geographic Object-Based Image Analysis—Toward a new paradigm. ISPRS J. Photogramm. Remote Sens. 2014, 87, 180–191.
[CrossRef]

202. Campagnolo, M.L.; Cerdeira, J.O. Contextual classification of remotely sensed images with integer linear programming. In
Proceedings of the Computational Modeling of Objects Represented in Images: Fundamentals, Methods, and Applications,
Niagara Falls, NY, USA, 21–23 September 2016; pp. 123–128.

203. Jong, S.M.D.; Hornstra, T.; Maas, H. An integrated spatial and spectral approach to the classification of Mediterranean land cover
types: The SSC method. Int. J. Appl. Earth Obs. Geoinf. 2001, 3, 176–183. [CrossRef]

204. Bhaskaran, S.; Paramananda, S.; Ramnarayan, M. Per-pixel and object-oriented classification methods for mapping urban features
using IKONOS satellite data. Appl. Geogr. 2010, 30, 650–665. [CrossRef]

205. Baker, B.A.; Warner, T.A.; Conley, J.F.; McNeil, B.E. Does spatial resolution matter? A multi-scale comparison of object-based and
pixel-based methods for detection change associated with gas well drilling operations. Int. J. Remote Sens. 2013, 34, 1633–1651.
[CrossRef]

206. Johnson, B.; Xie, Z. Unsupervised image segmentation evaluation and refinement using a multi-scale approach. ISPRS J.
Photogramm. Remote Sens. 2011, 66, 473–483. [CrossRef]

207. Zhong, P.; Gong, Z.; Li, S.; Schönlieb, C.B. Learning to diversify deep belief networks for hyperspectral image classification. IEEE
Trans. Geosci. Remote Sens. 2017, 55. [CrossRef]

http://doi.org/10.1109/TSMC.1973.4309314
http://doi.org/10.1080/01431160903439882
http://doi.org/10.1080/01431160512331316838
http://doi.org/10.1016/S0924-2716(98)00027-6
http://doi.org/10.1109/LGRS.2007.905121
http://doi.org/10.1109/36.905239
http://doi.org/10.1109/TGRS.2002.804618
http://doi.org/10.1109/TGRS.2004.842478
http://doi.org/10.1109/TGRS.2003.814625
http://doi.org/10.1515/mathm-2020-0001
http://doi.org/10.1080/01431161.2010.512425
http://doi.org/10.1109/TGRS.2015.2513424
http://doi.org/10.3390/s17050958
http://doi.org/10.1016/j.isprsjprs.2011.04.002
http://doi.org/10.1364/OE.20.007119
http://doi.org/10.1109/TIT.1968.1054102
http://doi.org/10.1016/j.rse.2012.06.012
http://doi.org/10.1109/TGRS.2016.2518930
http://doi.org/10.1016/j.isprsjprs.2019.01.022
http://doi.org/10.1016/j.isprsjprs.2013.09.014
http://doi.org/10.1016/S0303-2434(01)85009-1
http://doi.org/10.1016/j.apgeog.2010.01.009
http://doi.org/10.1080/01431161.2012.724540
http://doi.org/10.1016/j.isprsjprs.2011.02.006
http://doi.org/10.1109/TGRS.2017.2675902


Remote Sens. 2021, 13, 3393 36 of 39

208. Liu, P.; Zhang, H.; Eom, K.B. Active deep learning for classification of hyperspectral images. IEEE J. Sel. Top. Appl. Earth Obs.
Remote Sens. 2017, 10. [CrossRef]

209. Chen, Y.; Zhao, X.; Jia, X. Spectral-spatial classification of hyperspectral data based on deep belief network. IEEE J. Sel. Top. Appl.
Earth Obs. Remote Sens. 2015, 8. [CrossRef]

210. Lin, Z.; Chen, Y.; Zhao, X.; Wang, G. Spectral–Spatial Classification of Hyperspectral Image Using Autoencoders. In Proceedings
of the 9th International Conference on Information, Communications Signal Processing, Tainan, Taiwan, 10–13 December 2013;
pp. 1–5.

211. Tao, C.; Pan, H.; Li, Y.; Zhou, Z. Unsupervised spectral-spatial feature learning with stacked sparse autoencoder for hyperspectral
imagery classification. IEEE Geosci. Remote Sens. Lett. 2015, 12, 2438–2442.

212. Yue, J.; Mao, S.; Li, M. A deep learning framework for hyperspectral image classification using spatial pyramid pooling. Remote
Sens. Lett. 2016, 7, 875–884. [CrossRef]

213. Campbell, J.B. Introduction to Remote Sensing, 3th ed.; Guilford Press: New York, NY, USA, 2002; p. 621.
214. Enderle, D.I.M.; Weih, R.C., Jr. Integrating supervised and unsupervised classification methods to develop a more accurate land

cover classification. J. Ark. Acad. Sci. 2005, 59, 65–73.
215. Shabbir, S.; Ahmad, M. Hyperspectral Image Classification—Traditional to Deep Models: A Survey for Future Prospects. arXiv

2021, arXiv:2101.06116.
216. Liu, C.; He, L.; Li, Z.; Li, J. Feature-driven active learning for hyperspectral image classification. IEEE Trans. Geosci. Remote Sens.

2017, 56, 341–357. [CrossRef]
217. Richards, J.A. Remote Sensing Digital Image Analysis: An. Introduction, 3rd ed.; Springer-Verlag New York, Ed.; Springer: Secaucus,

NJ, USA, 1999.
218. Garcia, S.; Zhang, Z.L.; Altalhi, A.; Alshomrani, S.; Herrera, F. Dynamic ensemble selection for multi-class imbalanced datasets.

Inf. Sci. 2018, 445–446, 22–37. [CrossRef]
219. Lv, Q.; Feng, W.; Quan, Y.; Dauphin, G.; Gao, L.; Xing, M. Enhanced-Random-Feature-Subspace-Based Ensemble CNN for the

Imbalanced Hyperspectral Image Classification. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2021, 14, 3988–3999. [CrossRef]
220. Paing, M.P.; Pintavirooj, C.; Tungjitkusolmun, S.; Choomchuay, S.; Hamamoto, K. Comparison of sampling methods for

imbalanced data classification in random forest. In Proceedings of the 11th Biomedical Engineering International Conference,
Chaing Mai, Thailand, 21–24 November 2018; pp. 1–5.

221. Momeni, R.; Aplin, P.; Boyd, D.S. Mapping Complex Urban Land Cover from Spaceborne Imagery: The Influence of Spatial
Resolution, Spectral Band Set and Classification Approach. Remote Sens. 2016, 8, 88. [CrossRef]

222. Rasti, B.; Hong, D.; Hang, R.; Ghamisi, P.; Kang, X.; Chanussot, J.; Benediktsson, J.A. Feature Extraction for Hyperspectral
Imagery: The Evolution from Shallow to Deep (Overview and Toolbox). IEEE Geosci. Remote Sens. Lett. 2020, 8, 60–88. [CrossRef]

223. Rauber, P.E.; Fadel, S.G.; Falcao, A.X.; Telea, A.C. Visualizing the hiden activity of artificial neural networks. IEEE Trans. Vis.
Comput. Graph. 2017, 23, 101–110. [CrossRef]

224. Paoletti, M.E.; Haut, J.M.; Plaza, J.; Plaza, A. A new deep convolutional neural network for fast hyperspectral image classification.
ISPRS J. Photogramm. Remote Sens. 2018, 145, 120–147. [CrossRef]

225. Yu, S.; Jia, S.; Xu, C. Convolutional neural networks for hyperspectral image classification. Neurocomputing 2017, 219, 88–98.
[CrossRef]

226. Zhou, W.; Kamata, S. Multi-Scanning Based Recurrent Neural Network for Hyperspectral Image Classification. In Proceedings of
the 25th International Conference on Pattern Recognition (ICPR), Milan, Italy, 10–15 January 2021.

227. Lee, H.; Kwon, H. Contextual deep CNN based hyperspectral classification. In Proceedings of the Geoscience and Remote
Sensing Symposium (IGARSS), Beijing, China, 10–15 July 2016; pp. 3322–3325.

228. Seidel, D.; Annighöfer, P.; Thielman, A.; Seifert, Q.E.; Thauer, J.H.; Glatthorn, J.; Ehbrecht, M.; Kneib, T.; Ammer, C. Predicting
Tree Species From 3D Laser Scanning Point Clouds Using Deep Learning. Front. Plant. Sci. 2021, 12. [CrossRef]

229. Huang, L.; Chen, Y. Dual-Path Siamese CNN for Hyperspectral Image Classification with Limited Training Samples. IEEE Geosci.
Remote Sens. Lett. 2020, 18, 518–522. [CrossRef]

230. Neagoe, V.E.; Diaconescu, P. CNN Hyperspectral Image Classification Using Training Sample Augmentation with Generative
Adversarial Networks. In Proceedings of the 13th International Conference on Communications (COMM), Bucharest, Romania,
18–20 June 2020.

231. Haut, J.M.; Paoletti, M.E.; Plaza, J.; Plaza, A.; Li, J. Hyperspectral Image Classification Using Random Occlusion Data Augmenta-
tion. IEEE Geosci. Remote Sens. Lett. 2019. [CrossRef]

232. Yu, C.; Han, R.; Song, M.; Liu, C.; Chang, C.I. A Simplified 2D-3D CNN Architecture for Hyperspectral Image Classification
Based on Spatial-Spectral Fusion. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2020, 13. [CrossRef]

233. Hochreiter, S. The Vanishing Gradient Problem During Learning Recurrent Neural Net and Problem Solutions. Int. J. Uncertain.
Fuzziness Knowl. Based Syst. 1998, 6, 107–116. [CrossRef]

234. Krizhevsky, A.; Sutskever, I.; Hinton, G.E. ImageNet classification with deep convolutional neural networks. Adv. Neural Inf.
Process. Syst. 2012, 25. [CrossRef]

235. Ioffe, S.; Szegedy, C. Batch normalization: Accelerating deep network training by reducing internal covariate shift. In Proceedings
of the 32nd International Conference on International Conference on Machine Learning, Lille, France, 6–11 July 2015.

236. Ba, J.L.; Kiros, J.R.; Hinton, G.E. Layer normalization. arXiv 2016, arXiv:1607.06450.

http://doi.org/10.1109/JSTARS.2016.2598859
http://doi.org/10.1109/JSTARS.2015.2388577
http://doi.org/10.1080/2150704X.2016.1193793
http://doi.org/10.1109/TGRS.2017.2747862
http://doi.org/10.1016/j.ins.2018.03.002
http://doi.org/10.1109/JSTARS.2021.3069013
http://doi.org/10.3390/rs8020088
http://doi.org/10.1109/MGRS.2020.2979764
http://doi.org/10.1109/TVCG.2016.2598838
http://doi.org/10.1016/j.isprsjprs.2017.11.021
http://doi.org/10.1016/j.neucom.2016.09.010
http://doi.org/10.3389/fpls.2021.635440
http://doi.org/10.1109/LGRS.2020.2979604
http://doi.org/10.1109/LGRS.2019.2909495
http://doi.org/10.1109/JSTARS.2020.2983224
http://doi.org/10.1142/S0218488598000094
http://doi.org/10.1145/3065386


Remote Sens. 2021, 13, 3393 37 of 39

237. Camps-Valls, G.; Tuia, D.; Bruzzone, L.; Benediktsson, J.A. Advances in hyperspectral image classification: Earth monitoring with
statistical learning methods. IEEE Signal. Process. Mag. 2014, 31, 45–54. [CrossRef]

238. Linden, S.v.d.; Janz, A.; Waske, B.; Eiden, M.; Hostert, P. Classifying segmented hyperspectral data from a heterogeneous urban
environment using support vector machines. J. Appl. Remote Sens. 2007, 1.

239. Li, W.; Wu, G.; Zhang, F.; Du, Q. Hyperspectral image classification using deep pixel-pair features. IEEE Trans. Geosci. Remote
Sens. 2017, 55, 844–853. [CrossRef]

240. Fauvel, M.; Chanussot, J.; Benediktsson, J.A. Evaluation of kernels for multiclass classification of hyperspectral remote sensing
data. In Proceedings of the IEEE International Conference on Acoustics, Speech, and Signal Processing, Toulouse, France, 14–19
May 2006; pp. II-813–II-816.

241. Chen, Y.; Nasrabadi, N.M.; Tran, T.D. Hyperspectral image classification using dictionary-based sparse representation. IEEE
Geosci. Remote Sens. 2011, 49, 3973–3985. [CrossRef]

242. Plaza, A.; Benediktsson, J.A.; Boardman, J.W.; Brazile, J.; Bruzzone, L.; Camps-Valls, G.; Chanussot, J.; Fauvel, M.; Gamba, P.;
Gualtieri, A.; et al. Recent advances in techniques for hyperspectral image processing. Remote Sens. Environ. 2009, 13, 110–122.
[CrossRef]

243. Mallet, C.; Soergel, U.; Bretar, F. Analysis of full-waveform LiDAR data for classification of urban areas. Int. Arch. Photogramm.
Remote Sens. Spat. Inf. Sci. ISPRS Arch. 2008, 37, 85–92.

244. Zhang, Y.; Cao, G.; Li, X.; Wang, B. Cascaded random forest for hyperspectral image classification. IEEE J. Sel. Top. Appl. Earth
Obs. Remote Sens. 2018. [CrossRef]

245. Matikainen, L.; Karila, K.; Hyyppä, J.; Litkey, P.; Puttonen, E.; Ahokas, E. Object-based analysis of multispectral airborne laser
scanner data for land cover classification and map updating. ISPRS J. Photogramm. Remote Sens. 2017, 128, 298–313. [CrossRef]

246. Li, Y.; Zhang, H.; Shen, Q. Spectral–spatial classification of hyperspectral imagery with 3D convolutional neural network. Remote
Sens. 2017, 9, 67. [CrossRef]

247. Mei, S.; Ji, J.; Bi, Q.; Hou, J.; Du, Q.; Li, W. Integrating spectral and spatial information into deep convolutional neural networks
for hyperspectral classification. In Proceedings of the International Geoscience and Remote Sensing Symposium, Beijing, China,
10–15 July 2016; pp. 5067–5070.

248. Ran, L.; Zhang, Y.; Wei, W.; Zhang, Q. A hyperspectral image classification framework with spatial pixel pair features. Sensors
2017, 17, 2421. [CrossRef] [PubMed]

249. Vaddi, R.; Manoharan, P. Hyperspectral image classification using CNN with spectral and spatial features integration. Infrared
Phys. Technol. 2020, 107. [CrossRef]

250. Ge, Z.; Cao, G.; Li, X.; Fu, P. Hyperspectral Image Classifiacation Method Based on 2D-3D CNN and Multibranch Feature Fusion.
IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2020, 13, 5776–5788. [CrossRef]

251. Vaddi, R.; Manoharan, P. CNN based hyperspectral image classification using unsupervised band selection and structure-
preserving spatial features. Infrared Phys. Technol. 2020, 110. [CrossRef]

252. Guo, H.; Liu, J.; Xiao, Z.; Xiao, L. Deep CNN-based hyperspectral image classification using discirmnative multiple spatial-spectral
feature fusion. Remote Sens. Lett. 2020, 11. [CrossRef]

253. Wang, J.; Song, X.; Sun, L.; Huang, W.; Wang, J. A Novel Cubic Convolutional Neural Network for Hyperspectral Image
Classification. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2020, 13, 4133–4148. [CrossRef]

254. Gong, H.; Li, Q.; Li, C.; Dai, H.; He, Z.; Wang, W.; Li, H.; Han, F.; Tuniyazi, A.; Mu, T. Multiscale Information Fusion for
Hyperspectral Image Classification Based on Hybrid 2D-3D CNN. Remote Sens. 2021, 13, 2268. [CrossRef]

255. Kutluk, S.; Kayabol, K.; Akan, A. A new CNN training approach with application to hyperspectral image classification. Digit.
Signal. Process. 2021, 113. [CrossRef]

256. Yin, J.; Qi, C.; Chen, Q.; Qu, J. Spatial-Spectral Network for Hyperspectral Image Classification: A 3-D CNN and Bi-LSTM
Framework. Remote Sens. 2021, 13, 2353. [CrossRef]

257. He, X.; Chen, Y.; Lin, Z. Spatial-Spectral Transformer for Hyperspectral Image Classification. Remote Sens. 2021, 13, 498. [CrossRef]
258. Rao, M.; Tang, P.; Zhang, Z. A Developed Siamese CNN with 3D Adaptive Spatial-Spectral Pyramid Pooling for Hyperspectral

Image Classification. Remote Sens. 2020, 12, 1964. [CrossRef]
259. Pan, S.; Guan, H.; Chen, Y.; Yu, Y.; Goncalves, W.N.; Junior, J.M.; Li, J. Land-cover classification of multispectral LiDAR data using

CNN with optimized hyper-parameters. ISPRS J. Photogramm. Remote Sens. 2020, 166, 241–254. [CrossRef]
260. Xie, J.; Chen, Y. LiDAR Data Classification Based on Automatic Designed CNN. IEEE Geosci. Remote Sens. Lett. 2020. [CrossRef]
261. Hang, R.; Li, Y.; Ghamisi, P.; Hong, D.; Xia, G.; Liu, Q. Classification of Hyperspectral and LiDAR Data Using Coupled CNNs.

IEEE Trans. Geosci. Remote Sens. 2020, 68, 4939–4950. [CrossRef]
262. Feng, Q.; Zhu, D.; Yang, J.; Li, B. Multisource Hyperspectral and LiDAR Data Fusion for Urban Land-Use Mapping based on a

Modified Two-Branch Convolutional Neural Network. ISPRS Int. J. Geoinf. 2019, 8, 28. [CrossRef]
263. Zhang, M.; Li, W.; Du, Q.; Gao, L.; Zhang, B. Feature Extraction for Classification of Hyperspectral and LiDAR Data Using

Patch-to-Patch CNN. IEEE Trans. Cybern. 2020, 50, 100–111. [CrossRef]
264. Morchhale, S.; Pauca, V.P.; Plemmons, R.J.; Torgersen, T.C. Classification of pixel-level fused hyperspectral and LiDAR data

using deep convolutional neural networks. In Proceedings of the 8th Workshop on Hyperspectral Image and Signal Processing:
Evolution in Remote Sensing (WHISPERS), Los Angeles, CA, USA, 21–24 August 2016; pp. 1–5.

http://doi.org/10.1109/MSP.2013.2279179
http://doi.org/10.1109/TGRS.2016.2616355
http://doi.org/10.1109/TGRS.2011.2129595
http://doi.org/10.1016/j.rse.2007.07.028
http://doi.org/10.1109/JSTARS.2018.2809781
http://doi.org/10.1016/j.isprsjprs.2017.04.005
http://doi.org/10.3390/rs9010067
http://doi.org/10.3390/s17102421
http://www.ncbi.nlm.nih.gov/pubmed/29065535
http://doi.org/10.1016/j.infrared.2020.103296
http://doi.org/10.1109/JSTARS.2020.3024841
http://doi.org/10.1016/j.infrared.2020.103457
http://doi.org/10.1080/2150704X.2020.1779374
http://doi.org/10.1109/JSTARS.2020.3008949
http://doi.org/10.3390/rs13122268
http://doi.org/10.1016/j.dsp.2021.103016
http://doi.org/10.3390/rs13122353
http://doi.org/10.3390/rs13030498
http://doi.org/10.3390/rs12121964
http://doi.org/10.1016/j.isprsjprs.2020.05.022
http://doi.org/10.1109/LGRS.2020.3005209
http://doi.org/10.1109/TGRS.2020.2969024
http://doi.org/10.3390/ijgi8010028
http://doi.org/10.1109/TCYB.2018.2864670


Remote Sens. 2021, 13, 3393 38 of 39

265. Chen, Y.; Li, C.; Ghamisi, P.; Jia, X.; Gu, Y. Deep fusion of remote sensing data for accurate classification. IEEE Geosci. Remote Sens.
Lett. 2017, 14, 1253–1257. [CrossRef]

266. Wu, H.; Prasad, S. Convolutional recurrent neural networks for hyperspectral data classification. Remote Sens. 2017, 9, 298.
[CrossRef]

267. Venkatesan, R.; Prabu, S. Hyperspectral image features classification using deep learning recurrent neural networks. J. Med. Syst.
2019, 43. [CrossRef]

268. Paoletti, M.E.; Haut, J.M.; Plaza, J.; Plaza, A. Scalable recurrent neural network for hyperspectral image classification. J.
Supercomput. 2020. [CrossRef]

269. Zhang, X.; Sun, Y.; Jiang, K.; Li, C.; Jiao, L.; Zhou, H. Spatial sequential recurrent neural network for hyperspectral image
classification. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2018, 11, 1–15. [CrossRef]

270. Hao, S.; Wang, W.; Salzmann, M. Geometry-Aware Deep Recurrent Neural Networks for Hyperspectral Image Classification.
IEEE Trans. Geosci. Remote Sens. 2020, 59, 2448–2460. [CrossRef]

271. Vapnik, V. The support vector method of function estimation. In Nonlinear Modeling; Suykens, J.A.K., Ed.; Springer-Science-
Business Media: Dordrecht, The Netherlands, 1998.

272. Camps-Valls, G.; Bruzzone, L. Kernel-based methods for hyperspectral image classification. IEEE Trans. Geosci. Remote Sens.
2005, 43. [CrossRef]

273. Gualtieri, J.A.; Chettri, S.R.; Cromp, R.F.; Johnson, L.F. Support vector machines applied to AVIRIS data. In Proceedings of the
Summaries of the Airborne Earth Science Workshop, Pasadena, CA, USA, 8–11 February 1999.

274. Gualtieri, J.A.; Cromp, R.F. Support vector machines for hyperspectral remote sensing classification. Proc. SPIE 1998, 221–232.
275. Melgani, F.; Lorenzo, B. Classification of hyperspectral remote sensing images with support vector machines. IEEE Trans. Geosci.

Remote Sens. 2004, 42, 1778–1790. [CrossRef]
276. Camps-Valls, G.; Serrano-López, A.J.; Gómez-Chova, L.; Martín-Guerrero, J.D.; Calpe-Maravilla, J.; Moreno, J. Regularized RBF

networks for hyperspectral data classification. Image Anal. Recognit. 2004, 429–436.
277. Mercies, G.; Lennon, M. Support vector machines for hyperspectral image classification with spectral-based kernels. In Proceed-

ings of the International Geoscience and Remote Sensing Symposium, Toulouse, France, 21–25 July 2003.
278. Camps-Valls, G.; Gomez-Chova, L.; Munoz-Mari, J.; Vila-Frances, J.; Calpe-Maravilla, J. Composite kernels for hyperspectral

image classification. IEEE Geosci. Remote Sens. Lett. 2006, 3, 93–97. [CrossRef]
279. Okwuashi, O. Deep support vector machine for hyperspectral image classification. Pattern Recognit. 2020, 103. [CrossRef]
280. Genuer, R.; Poggi, J.M.; Tuleau-Malot, C. Variable selection using random forests. Pattern Recognit. Lett. 2010, 31, 2225–2236.

[CrossRef]
281. Svetnik, V.; Liaw, A.; Tong, C.; Culberson, J.C.; Sheridan, R.P.; Feuston, B.P. Random forest: A classification and regression tool for

compound classification and QSAR modeling. J. Chem. Inform. Comput. Sci. 2003, 43, 1947–1958. [CrossRef]
282. Amini, S.; Homayouni, S.; Safari, A. Semi-supervised classification of hyperspectral image using random forest algorithm. In

Proceedings of the International Geoscience and Remote Sensing Symposium, Quebec, QC, Canada, 13–18 July 2014.
283. Niemeyer, J.; Rottensteiner, F.; Soergel, U. Classification of urban LiDAR data using conditional random field and random forests.

In Proceedings of the Joint Urban Remote Sensing Event, Sao Paulo, Brazil, 21–23 April 2013; pp. 139–142.
284. Jackson, Q.; Landgrebe, D. Adaptive bayesian contextual classification based on markov random fields. IEEE Trans. Geosci.

Remote Sens. 2002, 40, 2454–2463. [CrossRef]
285. Izquierdo, A.; Lopez-Guede, J.M. Active Learning for Road Lane Landmark Inventory with Random Forest in Highly Uncontrolled

LiDAR Intensity Based Image. In Proceedings of the 15th International Conference on Soft Computing Models in Industrial and
Environmental Applications, Burgos, Spain, 16–18 September 2020.

286. Romero, A.; Gatta, C.; Camps-Valls, G. Unsupervised deep feature extraction for remote sensing image classification. IEEE 2015.
[CrossRef]

287. Hinton, G.; Salakhutdinov, R. Reducing the dimensionality of data with neural networks. Science 2006, 313, 504–507. [CrossRef]
288. Lee, H.; Ekanadham, C.; Ng, A. Sparse deep belief net model for visual area v2. Adv. Neural Inf. Process. Syst. 2008, 20, 873–880.
289. Masci, J.; Meier, U.; Ciresan, D.; Schmidhuber, J. Stacked convolutional auto-encoders for hierarchical feature extraction. In

Proceedings of the International Conference on Artificial Neural Networks, Espoo, Finland, 14–17 June 2011; pp. 52–59.
290. Kavukcuoglu, K.; Sermanet, P.; Boureau, Y.L.; Gregor, K.; Mathieu, M.; LeCun, Y. Learning convolutional feature hierarchies for

visual recognition. Adv. Neural Inf. Process. Syst. 2010.
291. Lecun, Y.B.Y.; Bottou, L.; Haffner, P. Gradient-based learning applied to document recognition. Proc. IEEE 1998, 86, 2278–2324.

[CrossRef]
292. Sermanet, P.; Eigen, D.; Zhang, X.; Mathieu, M.; Fergus, R.; Lecun, Y. OverFeat: Integrated recognition, localization and detection

using convolutional networks. In Proceedings of the 2nd International Conference on Learning Representations, Banff, AB,
Canada, 14–16 April 2014.

293. Chen, Y.; Jiang, H.; Li, C.; Jia, X.; Ghamisi, P. Deep feature extraction and classification of hyperspectral images based on
convolutional neural networks. IEEE Trans. Geosci. Remote Sens. 2016, 54. [CrossRef]

294. Prokhorov, D.V. Object recognition in 3D LiDAR data with recurrent neural network. In Proceedings of the Computer Vision and
Pattern Recognition Workshop, Miami, FL, USA, 20–25 June 2009.

http://doi.org/10.1109/LGRS.2017.2704625
http://doi.org/10.3390/rs9030298
http://doi.org/10.1007/s10916-019-1347-9
http://doi.org/10.1007/s11227-020-03187-0
http://doi.org/10.1109/JSTARS.2018.2837222
http://doi.org/10.1109/TGRS.2020.3005623
http://doi.org/10.1109/TGRS.2005.846154
http://doi.org/10.1109/TGRS.2004.831865
http://doi.org/10.1109/LGRS.2005.857031
http://doi.org/10.1016/j.patcog.2020.107298
http://doi.org/10.1016/j.patrec.2010.03.014
http://doi.org/10.1021/ci034160g
http://doi.org/10.1109/TGRS.2002.805087
http://doi.org/10.1109/TGRS.2015.2478379
http://doi.org/10.1126/science.1127647
http://doi.org/10.1109/5.726791
http://doi.org/10.1109/TGRS.2016.2584107


Remote Sens. 2021, 13, 3393 39 of 39

295. Waske, B.; Benediktsson, J.A.; Arnason, K.; Sveinsson, J.R. Mapping of hyperspectral AVIRIS data using machine-learning
algorithms. Can. J. Remote Sens. 2009, 35, 106–116. [CrossRef]

296. Senchuri, R.; Kuras, A.; Burud, I. Machine Learning Methods for Road Edge Detection on Fused Airborne Hyperspectral and
LIDAR Data. In Proceedings of the 11th Workshop on Hyperspectral Imaging and Signal Processing: Evolution in Remote
Sensing (WHISPERS), Amsterdam, The Netherlands, 24–26 March 2021.

http://doi.org/10.5589/m09-018

	Introduction 
	Classified Urban Land Cover Classes 
	Buildings 
	Vegetation 
	Roads 
	Miscellaneous 

	Key Characteristics of Hyperspectral and Lidar Data 
	Hyperspectral (HS) Images 
	Spectral Features 
	Spatial Information 

	Lidar Data 
	Height Features and Their Derivatives (HD) 
	Intensity Data 
	Multiple-Return 
	Waveform-Derived Features 
	Eigenvalue-Based Features 

	Common Features—HS and Lidar 
	Textural Features 
	Morphological Features 

	Hyperspectral-Lidar Data Fusion 

	Classification of Urban Land Cover Classes 
	Support Vector Machines (SVM) 
	Buildings 
	Vegetation 
	Roads 

	Random Forest (RF) 
	Buildings 
	Vegetation 
	Roads 

	Convolutional Neural Network (CNN) and Recurrent Neural Network (RNN) 
	Buildings 
	Vegetation 
	Roads 


	Discussion 
	HS-Based Classification 
	Lidar-Based Classification 
	HL-Fusion Classification 

	Conclusions and Future Perspectives 
	References

