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1. Introduction
The Pamir orogen lies north of the western Himalayan syntaxis in the India-Asia collision zone (Figure 1) 
and attains an elevation of ≥4 km and a maximum crustal thickness of nearly 90 km by absorbing ∼55–
64% Cenozoic shortening within a relatively narrow north-south distance compared to the Tibetan Plateau 
(Schmidt et al., 2011; Schneider et al., 2019). A major orocline has formed due to the northward displace-
ment of the Pamir by at least 300 km relative to the Tibet and Hindu Kush, with bending of this orogen as-
sociated with several well-developed thrusting and strike-slip faults along its margins (Figure 1) (Burtman 
& Molnar, 1993); these include the sinistral Darvaz strike-slip fault bounding the Tajik Basin to the west, the 
dextral Kashgar-Yecheng Transfer System (KYTS) bounding the Tarim Basin to the east and the Main Pamir 
Thrust System (MPT) bounding the Alai Valley to the north (Figure 1). The Pamir can be divided into the 
North, Central, and South Pamir, which are separated by the Tanymas and Rushan-Pshart sutures (Schwab 
et al., 2004). Structurally, the Central and South Pamir comprises terranes of Gondawana origin, whereas 
the North Pamir and West Kunlun Shan (WKS) are of Asian affinity (Li et al., 2020).

Intense intermediate-depth seismicity has been observed beneath the Pamir and Hindu Kush (Pegler & 
Das,  1998; Sippl et  al.,  2013), which is interpreted as evidence for ongoing intracontinental subduction 
(Schneider et al., 2013; E. R. Sobel et al., 2013) or forced delamination (Kufner et al., 2016). The opposite 
dips of deep earthquakes beneath the Pamir and Hindu Kush have invoked different interpretations about 
the plate configuration ranging from a single contorted slab of Indian (Pegler & Das, 1998), or Asian origin 
(Perry et al., 2019) to a two-slab model that involves the eastward to southward subduction/delamination 
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from a recent seismic experiment in the region. The Pamir crust is extended into the western tip of the 
Tarim basin and is thickened by horizontal shortening, while in the south it is underthrusting beneath the 
West Kunlun Shan and Tarim Basin into the mantle to a depth of >100 km.

XU ET AL.

© 2021. American Geophysical Union. 
All Rights Reserved.

Deep Crustal Contact Between the Pamir and Tarim 
Basin Deduced From Receiver Functions
Qiang Xu1 , Junmeng Zhao1 , Xiaohui Yuan2 , Hongbing Liu1, Changhui Ju1 , 
Bernd Schurr2 , and Wasja Bloch2 

1State Key Laboratory of Tibetan Plateau Earth System Science (LATPES), Institute of Tibetan Plateau Research, 
Chinese Academy of Sciences, Beijing, China, 2Deutsches GeoForschungsZentrum GFZ, Telegrafenberg, Potsdam, 
Germany

Key Points:
• �The Asian lower crust is 

delaminated beneath the central 
east Pamir

• �The northeast Pamir crust extends 
into the Tarim Basin and thickens by 
pure shear shortening

• �The southeast Pamir crust is 
underthrusting beneath West 
Kunlun Shan and Tarim Basin

Supporting Information:
Supporting Information may be found 
in the online version of this article.

Correspondence to:
Q. Xu and J. Zhao,
xuqiang@itpcas.ac.cn;
zhaojm@itpcas.ac.cn

Citation:
Xu, Q., Zhao, J., Yuan, X., Liu, H., Ju, 
C., Schurr, B., & Bloch, W. (2021). Deep 
crustal contact between the Pamir and 
Tarim Basin deduced from receiver 
functions. Geophysical Research Letters, 
48, e2021GL093271. https://doi.
org/10.1029/2021GL093271

Received 6 MAR 2021
Accepted 21 APR 2021

10.1029/2021GL093271
RESEARCH LETTER

1 of 8

https://orcid.org/0000-0001-6506-2745
https://orcid.org/0000-0003-2713-153X
https://orcid.org/0000-0002-2891-1354
https://orcid.org/0000-0003-0395-8567
https://orcid.org/0000-0002-3746-9166
https://orcid.org/0000-0002-0341-4925
https://doi.org/10.1029/2021GL093271
https://doi.org/10.1029/2021GL093271
https://doi.org/10.1029/2021GL093271
https://doi.org/10.1029/2021GL093271
https://doi.org/10.1029/2021GL093271
http://crossmark.crossref.org/dialog/?doi=10.1029%2F2021GL093271&domain=pdf&date_stamp=2021-05-09


Geophysical Research Letters

of Asian lithosphere in a tight 90° arc beneath the Pamir and northward 
subduction of Indian lithosphere beneath the Hindu Kush (Burtman & 
Molnar, 1993; Kufner et al., 2016; Negredo et al., 2007). A receiver func-
tion image along a north-south profile at ∼73.8° E reveals that these in-
termediate-depth earthquakes occur in a 10–15  km thick low velocity 
zone possibly associated with the southward subduction of Asian lower 
crust reaching a depth of 150 km (Schneider et al., 2013), consistent with 
the results of local earthquake tomography and guided waves analyses 
(Mechie et al., 2019; Sippl et al., 2013). Recently, an additional NW-SE 
trending intermediate-depth earthquake zone has been identified south 
of the eastern termination of the E-W striking segment of the Pamir seis-
mic zone (Bloch et al., 2021), roughly parallel to the WKS, which suggests 
a different tectonic origin compared to the Pamir-Hindu Kush seismic 
zone.

A previous receiver function analysis shows a double Moho structure at 
50–90 km depth in both the western and central Pamir, which hints at 
underthrusting of the Tajik and Alai lower crust beneath western Pamir 
(Schneider et  al.,  2013,  2019). Plate motion vectors, shear-wave veloci-
ty and radial anisotropy models, and seismotectonic analysis testify that 
crustal materials flow outward from the interior of the Pamir toward the 
western flanks and/or extrude upward along with a series of thrust faults 
(Liang et al., 2020; Metzger et al., 2020; Schurr et al., 2014). Conversely, 
the more rigid Tarim crust may hinder the eastward extrusion of the east 
Pamir (Metzger et al., 2020; Schurr et al., 2014). The dextral KYTS as the 
boundary between the east Pamir and Tarim Basin is supposed to be the 
eastern edge of subducting Asian lithosphere (E. R. Sobel et al., 2013). 
However, how the crust deforms in the east Pamir facing the obstruction 
of the Tarim Basin remains insufficiently constrained, partly due to lim-
ited data available in this region.

In this study, we employ P receiver functions (PRFs) derived from a re-
cently deployed temporary seismic array and permanent stations to in-

vestigate the crustal structure beneath the eastern Pamir and its adjacent region at a higher resolution than 
has previously been possible. Our observations of the crustal thickness and Vp/Vs ratio provide new insights 
into the crustal deformation patterns in the east Pamir under the resistance of Tarim Basin and Tien Shan 
during intracontinental orogenesis.

2.  Data and Methods
The three-component seismograms used in this study were recorded at 40 broadband stations during the pe-
riod from 2015 to 2017, consisting of 31 stations in a temporary two-dimensional (2-D) seismic array of the 
east Pamir seismic experiment (FDSN code 8H (Yuan et al., 2018); and nine permanent stations from China 
Earthquake Administration network (Zheng et al., 2010) (Figure 1). We selected teleseismic earthquakes 
with signal-to-noise ratios on the vertical component ≥2.5, body-wave magnitudes (Mb) ≥5.5, and epicentral 
distances of 30–95° for the PRF computations.

PRF analysis is one of the most frequently used techniques to explore seismic structures underneath a seis-
mic station using the P-to-S (Ps) conversions and associated multiples that originate from discontinuities 
at different depths. The raw Z-N-E traces of each event are rotated into the ray-based P-SV-SH coordinate 
system using the theoretical back azimuth and incident angle. The P component is then deconvolved from 
the SV component using a time-domain Wiener filtering method to produce the SV receiver function (PRF) 
(Yuan et al., 1997). Visual quality control was carried out on all of the PRFs to eliminate outliers with signif-
icant oscillations or strong amplitudes. Finally, a total of 3,153 PRFs, obtained from 270 teleseismic events, 
were retained for subsequent processing.
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Figure 1.  Topographic map of East Pamir showing simplified faults and 
locations of the seismic stations. The red triangles represent 8H stations, 
and the blue squares denote the CEA permanent stations. The color-coded 
dots mark the intermediate-depth earthquakes at depths greater than 
50 km (Bloch et al., 2021). The top right inset illustrates the location of our 
study region (red box) relative to the India-Asia collision zone. KG, Kongur 
Shan; KKF, Karakoram fault; KXF, Karakax fault; KYTS, Kashgar-Yecheng 
Transfer System; MA, Muztagh Ata; MPT, Main Pamir Thrust; PFT, Pamir 
Frontal Thrust; WKS, West Kunlun Shan.
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We estimate the crustal thickness (H) and Vp/Vs ratio (κ) at each station 
using the delay times of the Moho Ps and PpPs phases (Xu et al., 2017). 
This algorithm avoids the effects of multiple extremes on the energy sur-
face that are often confronted by the popular H-κ stacking method in 
complex orogenic areas (Murodov et al., 2018; Zhu & Kanamori, 2000), 
thereby yielding more robust solutions for H and κ. We manually pick 
both delay times on two individual sum traces that are produced by stack-
ing all of the PRFs from each station after a moveout correction for the 
Ps and PpPs phases, respectively. To identify the PpPs phase reliably, we 
pick this phase within a predicted time window based on the picked delay 
time of the Moho Ps conversion and two κ values of 1.6 and 2.0. The two 
standard deviations obtained using the bootstrap resampling technique 
(Xu et  al.,  2017), are considered as the uncertainties for both H and κ 
(Table S1).

To delineate the morphology of the subsurface discontinuities, three 
cross-sections are constructed using a common conversion point (CCP) 
stacking technique (e.g., Yuan et al., 2000) (See supporting informaiton 
Text S1). In addition, we also obtain the 1-D crustal Vs models by forward-
ing modeling the PRFs stacks for six key stations located in the Moho 
depth anomalous regions along with three profiles. Synthetic PRFs are 
calculated from 1-D velocity models using the reflectivity method with a 
ray parameter of 6.4 s/° (Yuan et al., 1997).

3.  Results
Figure 2 exhibits PRF stacks for 38 stations, together with the careful-
ly picked delay times of the Moho Ps and PpPs phases. The Moho Ps 
and PpPs conversions arrive at 5.3–11.5 s and 18.2–38.1 s, respectively. 
Stations KSH and EP16 (Figure S1) are not included due to ambiguous 
Moho Ps signals caused by strong sedimentary reverberations. We simul-
taneously obtain H and κ values for 35 stations, for which both the Moho 
Ps and PpPs are clearly visible. For three other stations, we could not de-
termine the κ values because the Moho PpPs phases are unclear. We only 
estimate the H values using the arrival times of the Moho Ps conversions 
and κ values from their adjacent stations (Table S1).

We generate a regional-scale crustal thickness map across the Pamir and 
its surrounding region by combining previously published results with 

the measurements obtained in this study (Table S2 and Figure 3a). Details of crustal thickness variations 
outside our study region can be found in Schneider et al. (2019) and Zhang et al. (2020). The map reveals 
two deep Moho regions (called here Moho troughs), one in the western and central Pamir along the bound-
ary region of the Pamir with the Tajik Basin and Alai Valley (Schneider et al., 2019), the other in the east 
Pamir along the WKS, the boundary region with the Tarim Basin. Both Moho troughs are parallel to inter-
mediate-depth seismic zones. In this paper, we focus on our observations in the eastern Pamir. The resulting 
H values decrease from 67-88 km beneath the east Pamir to 50–60 km along the southern Tien Shan and 
41–50 km beneath the Tarim Basin. The thickest crust (up to 88 km) is observed in the southeastern Pamir 
along the West Kunlun Shan and an elongated region of thicker crust with a thickness ranging from 68 to 
74 km in the northeastern margin of the Pamir extends northeastward to the Pamir Frontal Thrust (PFT). 
Figure 3b indicates that the κ values vary significantly, ranging from 1.68 to 1.89 with an average uncertainty 
of 0.02.

Strong positive conversions at depths of 40–90 km, which are interpreted to be indicative of the Moho, are 
clearly identified in the CCP stacking images along three selected cross-sections (Figure 4). Superimposing 
the crustal thicknesses over the three CCP images reveals a good agreement with the lateral variations in 
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Figure 2.  Stacks of PRFs for each station with moveout corrections 
already completed for (a) Ps and (b) PpPs sorted by the delay time of the 
Moho Ps conversion. The red ticks and green squares delineate the picked 
arrivals of the Moho Ps and PpPs phases, respectively. The blue ticks mark 
the predicted time windows for the appearance of the PpPms phase at each 
station. PRF, P receiver functions.
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Moho depth, giving confidence that the imaged Moho structure is robust. A Moho offset of at least 12 km 
appears below the surface trace of the PFT along profile A-A′, separating a sub-horizontal Moho at depths 
of 70–78 km in the south from a shallowly south-dipping Moho at 50–58 km depth in the north. Profile C-C′ 
is characterized by another significant Moho offset of about 18 km below Muztagh Ata (MA); this offset 
separates a south-dipping Moho at 60–88 km depth in the north from a sub-horizontal Moho at 70–78 km 
depth in the south. A double Moho structure is observed below the surface trace of the KXF along profile 
B-B'; the deeper Moho reaches a depth of 88 km and continues to dip eastward, while the shallower Moho 
at depths of 62–66 km gradually shallows to 45 km beneath the Tarim Basin. The individual PRFs at stations 
EP29 and EP30 (Figure S1) which are located above this double structure are shown in Figure S2. These 
key observations are supported by the Vs models obtained from the waveform modeling (Figures S3–S5).

4.  Discussion
The most striking features observed in our CCP stacking images are the presence of a double Moho struc-
ture and two Moho offsets, which contribute fresh insights into the dynamic processes of crustal deforma-
tion in the eastern Pamir and its surrounding region. Figure 5 summarizes our structural interpretation of 
the imaged crustal structure.

The Moho offset observed below the PFT in the northeastern (NE) Pamir marks the tectonic boundary 
between the Pamir and the Tarim Basin. In the tectonic context of northward indentation of the Pamir and 
resistance of the strong Tarim lithosphere, the development of the Moho offset suggests that pure shear 
shortening is responsible for the crustal thickening in the NE Pamir. On both sides of this Moho offset, the 
Vs models of station EP23 in the NE Pamir to the south and station KSZ in the Tarim Basin to the north 
(Figure S3), as well as the Vp model from a wide-angle seismic transect (X. K. Zhang et al., 2002), clearly 
show that the middle-lower crust of the NE Pamir is significantly thicker than that of the Tarim basin. This 
observation correlates well with the feature of pure shear shortening, which can be considered as the direct 
evidence to support our interpretation. This interpretation is also consistent with stratigraphic and magne-
tostratigraphic data, suggesting the topographic uplift and exhumation of the NE Pamir since the Pliocene 
which cause the deformation front of the NE Pamir margin to migrate northward from the MPT to the PFT 
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Figure 3.  Maps of the (a) crustal thickness and (b) average Vp/Vs ratio. The crustal thickness values from Schneider 
et al. (2019) and Zhang et al. (2020) have also been included in Figure 3a. The intermediate-depth earthquakes at 
depths greater than 50 km from Bloch et al. (2021) are marked in Figure 3a by color-coded circles. The results for the 
area delineated by the black line in Figure 3a are analyzed in detail in this study. The white lines in Figure 3a outline 
the two Moho troughs.
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around 5–6 Ma (Thompson et al., 2015). Analogous scenarios have also been reported in the transitional 
regions between the South-Central Tien Shan and northern Tarim Basin (B. Zhang et al., 2020), and along 
the boundary between western Tibet and the southern Tarim Basin (Murodov et al., 2018). Furthermore, 
a similar Moho offset is absent in the North Pamir-Tien Shan collision zone, west of 75° E. The reasons for 
this phenomenon could be that the lithospheric strength of Tien Shan is weaker than that beneath Tarim 
Basin (Bagdassarov et al., 2011), and much of the shortening between North Pamir and the southern Tien 
Shan has migrated into the Tien Shan east of 75° E since 10 Ma (E. Sobel et al., 2006). We, therefore, propose 
that the manner of crustal interactions among different blocks appears to be controlled by their stiffness 
and density.

Previous studies have suggested the delamination of Asian lower crust beneath North and Central Pamir 
west of our study area (Kufner et al., 2016). Following these studies and considering the dominant E-W 
strike of intermediate-depth seismicity, we suggest that the Moho offset observed beneath MA represents 
the eastward expansion of the delaminated Asian lower crust terminating at the KYTS. The Vs model for 
station EP15 to the south of this Moho offset exhibits a 67 km thick crust with a lower crust of 3.8–4.1 km/s, 
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Figure 4.  CCP stacking images along three cross sections, A-A′, B-B′, and C-C'. The positive (negative) amplitudes are 
filled in red (blue) to indicate the interfaces where the velocity increases (decreases) with depth. The resulting crustal 
thicknesses and errors are marked by the green squares and bars, respectively, and are superimposed on the well-
resolved Moho conversions (black dashed lines). The black circles are the projected intermediate-depth earthquakes 
with depths greater than 50 km perpendicular to the profile within 50 km. C marks an intracrustal interface. Stations 
used in the three CCP cross sections are marked by red color. The green lines in Figure 4a highlight the anomalous 
locations of the Moho depth discussed in the text. CCP, common conversion point.
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whereas that for station EP14 to the north of this Moho offset shows a 
lower crust of 4.0 km/s reaching a depth of 88 km (Figure S4). This sce-
nario of no overlapping Moho and sinking Asian lower crust is in more 
accordance with delamination than classical subduction because the 
downgoing Asian crust is primarily driven by the indentation of the Indi-
an lithosphere and negative buoyancy due to the eclogitization of Asian 
lower crust (Kufner et al., 2016; Schneider et al., 2013).

The most intriguing structure of our observations is a double Moho in the 
southern portion of the east Pamir. In conjunction with the NW-SE trend-
ing intermediate-depth seismicity, we suggest that this double Moho 
structure provides direct evidence for eastward underthrusting of the 
Pamir lower crust beneath the West Kunlun Shan and Tarim Basin. The 
Vs model for station EP29 sampling this double Moho structure reveals a 
30 km thick layer of 4.0 km/s below 70 km depth between two identified 
Moho interfaces (Figure S5), suggesting the presence of underthrusting 
mafic crustal material which can be connected to the 3.9 km lower crust 
of station EP30 on the southwest of this double Moho structure. Con-
versely, a similar structure identified below western Pamir has been in-
terpreted to represent underthrusting of the Tajik lower crust (Schneider 
et al., 2019). The spatial relationship of the two Moho troughs with the 
intermediate-depth seismic zones implies that underthrusting involves 

crust. In the west Pamir, the Moho trough is located northwest of the seismic zone, suggesting a southeast-
ward underthrusting of the Asian crust (Schneider et al., 2019). In the east Pamir, the Moho trough is to 
the west of the seismic zone, indicating analogically an eastward underthrusting of the Pamir crust. Our 
interpretation is compatible with sedimentary and magnetostratigraphic analyses along the Aertashi sec-
tion, which indicate eastward-directed thrusting of the Pamir onto Tarim Basin and a rotation from approxi-
mately N-S to E-W in the maximum strain orientation at 15 Ma (Blayney et al., 2019). Crustal xenoliths from 
the Dunkeldik volcanic field erupted at 11 Ma in the southeastern Pamir suggest that Gondwanan Pamir 
crust was subducted to depths of 90–100 km beneath Eurasia (Hacker et al., 2005), which is analogous to 
our interpretation. A notable high-velocity anomaly imaged below 180 km depth has been interpreted as 
northward underthrusting Indian mantle lithosphere (Kufner et al., 2018; Liang et al., 2020), which may 
provide the driving force for the development of the underthrusting structure described here. Furthermore, 
the contrasting subduction styles in the west and east Pamir can be partly explained by the steep subduction 
of the Indian lithosphere under the Hindu Kush and the flat-slab underthrusting of the Indian lithospheric 
mantle beneath the Pamir (Kelly & Beaumont, 2021).

We also observe a positive converter at depths of 20–40 km, which is labeled by C on CCP images of profiles 
B-B′ and C-C' (Figure 4). This gently dipping C corresponds to an intracrustal interface, which is also the 
bottom of the low velocity zone evidenced by the obtained Vs models (Figures S4 and S5). We interpret C to 
represent a décollement surface (Singh et al., 2010), along which the Pamir upper crust is decoupled from 
the underlying crust. Note that the low lateral resolution at shallow depth due to the sparse station coverage 
does not allow us to further discuss its implication.

Additionally, the κ values of 1.68–1.81 mainly occur at most stations of the east Pamir, station BPM in the 
southern Tien Shan, and station EP22 in the Tarim Basin. These low to moderate κ values suggest felsic and 
intermediate bulk crustal compositions probably resulted from delamination or foundering of the mafic 
lower crust. The high κ values of more than 1.81 in Tarim Basin are likely caused by the thick sedimentary 
sequences, whereas those in the east Pamir and southern Tien Shan may be the result of fractured damage 
zones and/or partial melt within the crust.
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Figure 5.  3-D schematic illustration for the proposed deformation 
patterns beneath the east Pamir. The black circles are the symbolic 
intermediate-depth earthquakes. ALC, Asian lower crust; ALM, Asian 
lithospheric mantle; ILM, Indian lithospheric mantle; PC, Pamir crust; 
PLC, Pamir lower crust; TC, Tarim crust; TLM, Tarim lithospheric mantle.
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5.  Conclusions
We obtain the crustal structure below the east Pamir and its adjacent region by applying PRF techniques to 
teleseismic waveforms recorded at a temporary 2-D seismic array and the permanent stations. The crustal 
thickness ranges from 67-88 km beneath the east Pamir and reduces to 50–60 km along the southern Tien 
Shan and 41–50 km in the Tarim Basin. Our depth migration images indicate the presence of a double Moho 
structure and two Moho offsets, which shed new light on crustal deformation patterns in the east Pamir. 
We suggest that pure shear shortening accounts for crustal thickening in NE Pamir, while delamination of 
Asian lower crust and eastward underthrusting of Pamir lower crust dominate the deformation processes 
in the central and southern portions of the east Pamir, respectively.
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Tibetan Plateau Research, Chinese Academy of Sciences. We thank the Data Management Center of the 
China National Seismic Network at the Institute of Geophysics, China Earthquake Administration, for 
providing waveform data of permanent stations (SEISDMC, https://doi.org/10.11998/SeisDmc/SN, http://
www.seisdmc.ac.cn/).
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