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1.  Introduction
The subduction zone between 19° and 24°S in northern Chile exhibits frequent occurrence of interplate, 
intraslab and crustal earthquakes. Most of this seismicity is related to the relatively fast convergence rate 
(∼63 mm/yr) of the subducting Nazca plate beneath South America in this region (Kendrick et al., 2003).

Interplate earthquakes reach the largest magnitudes, with several historical and recent large earthquakes 
documented (Ruiz & Madariaga, 2018). Modern seismic networks have allowed the study of the source prop-
erties and rupture mechanisms of large interplate earthquakes in northern Chile (e.g., Peyrat et al., 2010; 
Ruegg et al., 1996; Ruiz et al., 2014), as well as the foreshock and aftershock sequences of the 2014 Iquique 
earthquake (González et al., 2015; Soto et al., 2019). Source properties of large intraslab earthquakes within 
the Nazca plate in this region are also well studied (e.g., Herrera et al., 2017; Kausel & Campos, 1992; Peyrat 
et al., 2006; Ruiz & Madariaga, 2011). Additionally, the stress field inferred from interplate and intraslab 

Abstract  We ​study the spatial variability of the crustal stress in northern Chile. A margin-parallel 
compressive crustal stress regime is inferred along the coastal region between 19° and 23.5°S, similar 
to stress observations in Cascadia and Japan. The Andean Precordillera shows a distinct stress field 
associated with a strike-slip faulting regime around 21°S. These results are constrained by over a decade 
of observations, for which earthquake catalogs report thousands of events in the continental crust. We 
present focal mechanisms for 817 of these crustal earthquakes, including mechanism qualities. The best 
mechanisms were grouped and inverted to infer the stress-field variability. We interpret the margin-
parallel compression to be caused by the concave shape of the margin and the locking of the plate 
interface. The inferred strike-slip regime in the Andes agrees with previous studies and has been proposed 
to be mostly caused by local stresses imposed by a thicker crust.

Plain Language Summary  New observations of thousands of earthquakes occurring within 
the continental crust (depths <60 km) in northern Chile provide an opportunity to study the tectonic 
forces acting in this region of the South American continent. We obtain fault orientations and slip 
directions of 817 crustal earthquakes. The orientations are used to understand the stresses that cause 
deformation of the crust. With hundreds of earthquakes studied, we can resolve differences in the stress 
between coastal and inland regions: The coastal region experiences a compression along an approximate 
north-south direction. Further east, near the Andes mountains, compression is nearly east-west, almost 
parallel to the collision direction of the tectonic plates. This could be mostly due to local stresses acting 
in higher topography regions. Here, earthquakes occur mostly in nearly vertical faults with slip in the 
horizontal direction. Conversely, the compression near the coast is likely due to the bending of this region 
along the coastline, in combination with the locking on the plate interface between the Nazca and South 
American tectonic plates. The results are remarkably similar to western North America and Japan, where 
the shape of plate boundaries cause similar stresses.
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earthquakes is predominantly compressional on the locked plate interface (from 20 km to about 60 km 
depth), and mostly extensional within the Nazca plate (Bloch et al., 2018; Delouis et al., 1996).

In contrast, the crustal seismicity within the continental plate in northern Chile has been studied much less. 
Crustal earthquakes generally have smaller magnitudes, and large-magnitude events are rare. Therefore, 
earthquake detection and location are challenging, particularly using sparse seismic networks. Despite this, 
the small number of large crustal earthquakes still pose a significant seismic hazard in the region. For exam-
ple, offshore crustal faults can create Mw ≥ 6.0 earthquakes, such as the Mw 6.7 foreshock that intensified the 
sequence that after 16 days triggered the 2014 Mw 8.2 Iquique earthquake (e.g., González et al., 2015; Ruiz 
et al., 2014). Further inland, the 2001 Mw 6.3 Aroma earthquake and its Mw 5.8 aftershock ruptured on crus-
tal strike-slip faults in the Andean Precordillera (Farías et al., 2005; Legrand et al., 2007). Additionally, a Mw 
5.8 crustal earthquake struck in the Central Valley between the Coastal and Andes cordilleras on September 
10, 2008 (discussed in the following sections), generating ground accelerations up to ∼0.6 g in the nearby 
town of Pica (as recorded by the RENADIC strong-motion network: http://terremotos.ing.uchile.cl/).

Two recent earthquake catalogs (Bloch et al., 2014; Sippl et al., 2018) report high-precision detections and 
locations of interplate, intraslab, and crustal earthquakes in northern Chile. By using dense arrays of perma-
nent and temporary seismic networks, these studies detected and located a considerable number of earth-
quakes that were previously unreported by the Centro Sismológico Nacional (CSN) of Chile, particularly 
in the continental crust. These new catalogs show an improved imaging of the seismicity distribution and 
enable a better analysis of crustal earthquakes and the associated stress field. This provides an opportunity 
to determine whether fault-slip observations at the surface (e.g., Allmendinger, González, et al., 2005; Victor 
et al., 2004) and crustal earthquakes beneath could be created by the same stress field.

In this work, the focal mechanism distribution and stress field in the continental crust of northern Chile 
are investigated using earthquakes from these two catalogs. High-precision locations and waveforms from 
dense seismic networks are used to constrain focal mechanisms for smaller events and moment tensors for 
the largest events. This is allowed by the frequent crustal seismicity detected along the coastal region and in 
some parts of the Andes (Figure 1). The calculated focal mechanisms are grouped and inverted to infer the 
spatial variability of the crustal stress field at regional scale.

2.  Data Set
Origin times and hypocenter locations from Bloch et al. (2014) and Sippl et al. (2018) are used. The Bloch 
et al. (2014) catalog (catalog 1) contains the 2005–2012 seismicity distribution between 20° and 21.5°S down 
to 120 km depth. However, no magnitudes are reported. Abundant crustal seismicity is observed onshore, 
particularly beneath the Coastal Cordillera and the Andean Precordillera (cross section B-B′ in Figure 1). 
The Sippl et al. (2018) catalog (catalog 2) reports the 2007–2014 seismicity between 18° and 25°S down to 
250 km depth, with a magnitude of completeness of ML ∼ 2.8. Most of the crustal seismicity in catalog 2 
occurs north of 21.6°S, mostly beneath the Coastal Cordillera, consistent with catalog 1. Catalog 2 also re-
ports a decrease in crustal earthquake occurrence in the coastal region south of 21.6°S (cross section C-C′). 
Although there are surface faults and scarp systems in the Coastal Cordillera (e.g., Allmendinger, González, 
et al., 2005), the seismicity underneath this tectonic structure seems to be pervasive, and no evident associ-
ation to large faults is observed.

Stations from several permanent and temporary seismic networks have operated in northern Chile since 
2005. In this work, broadband waveforms were used from the Chilean National Seismic Network (FDSN 
code: C), Red Sismológica Nacional (Universidad de Chile,  2013), Global Seismograph Network (ASL/
USGS, 1988), IPOC Network (GFZ & CNRS-INSU, 2006), Iquique Local Network (Cesca et al., 2009), Toco-
pilla Project (Sobiesiak & Schurr, 2007), and Hart-Pisagua Project (Asch et al., 2014), as well as short-period 
waveforms from the West-Fissure and Atacama-Fault Seismic Network (Wigger et al., 2016).

First, local magnitudes (ML) were calculated for catalog 1 using the Hutton and Boore  (1987) method 
(Data  Set S1), following Sippl et  al.  (2018). Then, earthquakes within the continental crust were select-
ed from both catalogs considering the 3-D plate interface geometry (Hayes et al., 2018; Sippl et al., 2018) 
and a maximum depth of 60 km as spatial limits. The crustal subset of catalog 1 shows a magnitude of 
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completeness of ML ∼  1.3, while the subset of slab-related earthquakes shows a higher proportion of 
large-magnitude events, decreasing the slope of the completeness curve (Supporting Information S1). Fi-
nally, the crustal subsets of catalog 1 and catalog 2 (extended to 2017) were combined and repeated events 
were removed, resulting in a combined catalog from 2005 to 2017.

3.  Focal Mechanisms and Style of Faulting
Region-wide, earthquakes with ML ≥ 3.0 were selected for focal mechanism calculations. The good coverage 
of the Wigger et al. (2016) seismic network in the Andean Precordillera around 21°S (cross-section B-B′ in 
Figure 1) aids the study of this area. Because seismicity is less frequent in the Andes, ML ≥ 2.0 earthquakes 
were selected in that area.

For the selected events, seismograms recorded within 300 km epicentral distance were integrated and a 1 Hz 
high-pass filter was applied. P-wave polarities were picked from the vertical components and S/P amplitude 
ratios were calculated from the maximum S- and P-wave amplitudes of the three-component Cartesian 
sum. Azimuth and takeoff angles were calculated using ray propagation through a 1-D velocity model. Fol-
lowing Bloch et al. (2014, 2018), and Sippl et al. (2018), we considered three velocity models for the region 
(Graeber & Asch, 1999; Husen et al., 1999; Oncken et al., 2003); from these, the Husen et al. (1999) model 
was selected for this study. Finally, polarities and amplitude ratios were inverted with HASH (Hardebeck & 
Shearer, 2002, 2003) to obtain the optimal double-couple focal mechanism that fits the observed radiation 
pattern. The stability of the solution was considered by randomly perturbing the azimuth and takeoff an-
gles by 5° in the inversion. Based on the solution stability (spread of the set of solutions with respect to the 
preferred solution), the focal mechanism quality was assigned to one of four classes ranging from A (stable 
solution) to D (unstable solution) (Supporting Information S2). This analysis resulted in a focal mechanism 
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Figure 1.  Seismicity in northern Chile reported by Bloch et al. (2014) and Sippl et al. (2018). Coseismic slip of the Tocopilla (Béjar-Pizarro et al., 2010) and 
Iquique (Ruiz et al., 2014) earthquakes are shown with 1 m purple contours. Stations used in this study are shown with triangles. Large brown circles show 
the events analyzed in this work. The rest of the seismicity is shown with gray dots. Convergence vector from Kendrick et al. (2003) and trench location from 
Bird (2003). The inset shows the location of the map within South America. Cross sections show the plate interface (Hayes et al., 2018) and the continental 
Moho (Yuan et al., 2000) with thick and thin lines, respectively.
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catalog of 817 crustal events that have at least 5 unambiguous polarity observations (Data Set S2), which are 
shown with brown circles in Figure 1.

Full moment tensor (MT) inversions were carried out for the largest earthquakes (ML ≥  4.5). Regional 
Green’s functions were precalculated for the Husen et al. (1999) velocity model using the Fomosto QSEIS 
code (Wang, 1999). The broadband velocity seismograms were inverted using the BEAT software (Vasyu-
ra-Bathke et al., 2020), which uses a nonlinear approach to estimate the full MT. Waveforms were modeled 
in various frequency bands defined within the 0.02 and 0.15 Hz range. The sequential Monte Carlo method 
(Del Moral et al., 2006) was used to sample the parameter space (centroid location, source time function, 
and components of the full MT). With this method, proper waveform modeling was achieved for seven 
ML ≥ 4.5 crustal earthquakes. The resulting MT components, uncertainties and waveforms are shown in 
Supporting Information S3. Overall, the full MT results confirm the fault geometries and pressure (P) and 
tension (T) axis orientations obtained with HASH, with relatively low (∼20°) Kagan angles (Kagan, 1991) 
between the two methods for five of the seven events (Supporting Information S4). The differences on fault 
orientations between HASH and BEAT could be attributable to station coverage limitations affecting the 
HASH solution, limitations of the velocity model, or a complex rupture propagation that is better represent-
ed by an MT solution. This could be the case for the largest event (that occurred on September 10, 2008), 
which exhibits the largest Kagan angle between the two methods.

Figure 2 summarizes the predominant faulting types and P-axis orientations of the best focal mechanism 
solutions. This is a subset of 355 events that only considers quality A and B mechanisms that had at least 
10 unambiguous polarity observations and a stereographic station gap smaller than 180°. P-axes of offshore 
and onshore events along the coast show a predominantly margin-parallel orientation, especially beneath 
the Coastal Cordillera (Figure 2a). This is consistent with the mechanisms of coastal events reported by 
González et al. (2015). Ternary plots (Álvarez-Gómez, 2014; Kaverina et al., 1996) in Figure 2b show that 
these mechanisms in the coastal region correspond to predominantly reverse (thrust) earthquakes, which 
occur throughout the crust. Their orientations appear to be stationary in time over the decade of obser-
vations, particularly for the onshore events, which are not affected by the occurrence of large interplate 
earthquakes (Figure 2c). Conversely, P-axis orientations of the seismicity in the Andean Precordillera (east 
of 69.4°W at 21°S) show a predominantly NE-SW orientation (Figure 2a). The faulting style corresponds 
to mostly shallow strike-slip mechanisms (some of them with oblique component), and some deeper nor-
mal-faulting events (Figure 2b). These results suggest a different faulting style in the Andean Precordillera 
compared with the coastal region.

4.  Stress Field
The Bayesian method developed by Arnold and Townend (2007) was used to estimate the stress tensor by 
inverting the strike, dip, and rake angles of a group of focal mechanisms, including focal mechanism un-
certainties. The subset of best focal mechanisms (355 events in Figure 2) was used as input data to estimate 
the crustal stress field in northern Chile. The RMS angle obtained from HASH (Supporting Information S2) 
was used to define the average uncertainty of each focal mechanism. The method estimates the three stress 
tensor components (S1 > S2 > S3), the stress ratio R = (S2–S3)/(S1–S3) that describes the shape of the stress 
ellipsoid, and the maximum horizontal compressive stress direction, SHmax (Lund & Townend, 2007).

To analyze the spatial variability of the stress field, seismicity was divided into groups and a stress ten-
sor was calculated for each group. Following Balfour et al. (2011), we assumed that the stress is constant 
throughout the crust thickness. Seismicity along the Coastal Cordillera was divided into groups at equal lat-
itudinal spacing, and the seismicity in the Andean Precordillera around 21°S was defined as another group.

Stress field results are summarized in Figure 3 and Supporting Information S5. Stress tensors reflect the 
clear trends shown by the focal mechanisms. Tensors A, B, and C were obtained from sets of 78, 75, and 141 
focal mechanisms, respectively, while D and E were obtained from somewhat smaller sets of 29 and 32 focal 
mechanisms, respectively, due to the less frequent seismicity occurrence in those regions. Along the coast, 
S1 and S3 are almost horizontal and vertical, respectively, due to the predominance of thrust earthquakes in 
the region. SHmax of the four stress tensors along the coastal region show a clear horizontal margin-parallel 
compression. Stress tensor E in the Andean Precordillera exhibits larger uncertainties for its components 
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due to the smaller number of events and the more balanced occurrence of strike-slip and normal events. 
Nevertheless, this stress tensor shows a predominantly strike-slip regime in this area, with nearly horizontal 
S1 and S3 components, and an SHmax oriented ENE-WSW, suggesting an abrupt shift in kinematics compared 
with the coastal region.

5.  Discussion
Pervasive seismicity occurs throughout the crust in the coastal region. These earthquakes have mostly re-
verse mechanisms with margin-parallel P-axes at all depths, indicating a margin-parallel compressional 
stress field in the region. These results are even clearer for the onshore events beneath the Coastal Cor-
dillera (Figure 2c). This likely indicates an abrupt change of stress regime from the plate interface to the 
overlying crust in the coastal region.

The Coastal Cordillera in northern Chile is the remnant of a magmatic arc that was active during the Ju-
rassic and early Cretaceous periods of the Mesozoic era (e.g., Mpodozis & Ramos, 1990), during the birth 
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Figure 2.  Fault characterization of crustal earthquakes. (a) Spatial distribution of fault types and P-axis orientations obtained from focal mechanisms. Rose 
diagrams summarize dominant P-axis trends on areas delimited by gray dashed lines. (b) Ternary plots characterizing the type of faulting in the Coastal and 
Andes regions. (c) P-axis trend distribution as a function of depth and time for events that occurred in the coastal region. The 2007 Tocopilla and 2014 Iquique 
earthquakes are highlighted with red lines.
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of the modern Andes. Its most important structure is the Mesozoic-Cenozoic Atacama Fault System (AFS) 
(e.g., Cembrano et al., 2007; González et al., 2003), extending from 21° to 29.5°S with mostly normal and 
dextral strike-slip faults. Additionally, the Coastal Cordillera features several scarps between 19° and 21.6°S 
striking perpendicular to the margin with reverse-fault kinematics, indicating a margin-parallel shortening 
(Allmendinger, González, et al., 2005). Geochronology analysis suggests that these scarps are more recent, 
having been active during the late Miocene and Pliocene periods (Allmendinger, González, et al., 2005), 
with some still active today (Allmendinger & González, 2010). These scarps and the crustal earthquakes 
occurring beneath exhibit the same fault kinematics and compression direction (Figures 2a and 4a), indi-
cating that both may have been created by the current crustal stress field inferred in this study, which could 
then be long-lasting.

Margin-parallel compression in the continental crust has also been observed in other concave subduction 
regions; for example, in Cascadia (e.g., Balfour et al., 2011; Johnson et al., 2004) and in Hokkaido, Japan 
(e.g., Kusunoki & Kimura,  1998). Earlier work discussed how variations of plate convergence obliquity 
along the margin (depending on the forearc geometry) can produce variations of margin-parallel strain; 
these strain rates were estimated using deflections of interplate earthquake slip vectors from plate conver-
gence directions in several subduction zones (McCaffrey, 1992, 1996). Although results have considerable 
uncertainties, it was found that northern Chile was one of the few regions that exhibit margin-parallel com-
pression (McCaffrey, 1996). Later, Bevis et al. (2001) used a concave forearc geometry with a fully locked 
plate interface to properly model the observed interseismic velocity field of the central Andes. This results 
in both a margin parallel shortening and a change in the sense of vertical axis rotation across the symmetry 
plane of the Andean orogen (Gephart, 1994) (Figure 4). This change in sign was later corroborated using 
GNSS and paleomagnetic data (Allmendinger, Smalley, et al., 2005; Allmendinger et al., 2007) (Figure 4b).

Therefore, the margin-parallel shortening observations along the coastal region (e.g., crustal stress field, 
thrust scarps) are likely caused by two simultaneous factors: (1) the concave margin geometry creating a 
bending of the orocline’s inner arc (coastal region). The symmetry plane crosses northern Chile roughly at 
the center of our study area (Figure 4), where bending forces would be largest. (2) High friction on the plate 
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Figure 3.  Crustal stress field in northern Chile. Red arrows on the map show the direction of SHmax with wedges that show the 95% credibility interval of the 
result. Earthquakes are colored according to their group. Stereographic projections of the stress tensors are shown on the right. Contours show the posterior 
probability densities of the three principal stress components.
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interface (Bevis et al., 2001; Boutelier et al., 2014), which is consistent with the large patches of intermediate 
and nearly full interseismic coupling observed by Métois et al. (2016) in northern Chile.

The stress field beneath the Andean Precordillera was analyzed only in a local region around 21°S (east of 
69.4°W in cross-section B-B′ in Figure 1), where good station coverage allowed the calculation of high-qual-
ity focal mechanisms in the Andes. Seismicity in this area shows a west-dipping distribution following a 
rheological boundary (350°C isotherm), where fluid migration may facilitate seismicity occurrence (Bloch 
et al., 2014; Salazar et al., 2017). Stress tensor E in Figure 3 shows that this area exhibits a strike-slip regime 
with an ENE-WSW oriented SHmax that is nearly parallel to the plate convergence direction. The observed 
shallow strike-slip earthquakes seem to make the largest contribution to the stress tensor. Our set of best 
focal mechanisms for this area is smaller and less diverse than that reported by Salazar et al. (2017); never-
theless, the resulting stress tensor from the two studies is highly consistent.

The main structure in this area of the Andean Precordillera is the West Fissure Fault System (WFFS), fea-
turing faults with diverse slip kinematics striking sub-parallel to the margin (e.g., Salazar et al., 2017; Victor 
et al., 2004). In particular, a strike-slip fault regime has been observed in higher altitude areas of the Andean 
Precordillera (Farías et al., 2005; Victor et al., 2004), near the locations of the shallow strike-slip earthquakes 
shown in Figure 2. The local vertical stresses exerted by the gravitational forces of the elevated topography 
have been proposed to be the cause of the strike-slip regime in the Andes (Salazar et al., 2017). These forces 
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Figure 4.  Interpretation of the crustal stress field. (a) SHmax orientations (red arrows) in a seismotectonic context. The focal mechanism shows the 2001 Mw 6.3 
Aroma earthquake (Legrand et al., 2007). (b) SHmax orientations and the grid of vertical axis rotation rates (Allmendinger et al., 2007; R.W. Allmendinger pers. 
comm., 2021). (c) Cartoon summarizing the crustal (this study) and slab-related (Bloch et al., 2018) S1 orientations, which are shown by the red arrows and the 
circled cross (representing stress into the page).
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change the regime from reverse faulting at lower altitudes to strike-slip faulting at higher altitudes, since the 
increase of the vertical stress at higher altitudes would surpass the minimum horizontal stress component, 
resulting in a nearly vertical S2 component. Similar spatial variations of stress orientations with topography 
have also been discussed for the arc-backarc region of Japan (Yoshida et al., 2015).

Although it was not possible to analyze more earthquakes over a wider area in the Andean Precordillera, 
there is evidence of a dextral strike-slip regime in the Andes between 19.5° and 21°S (Farías et al., 2005). 
In fact, the large 2001 Mw 6.3 Aroma crustal earthquake ruptured on a dextral strike-slip fault (Farías 
et al., 2005; Legrand et al., 2007) in the Andean Precordillera near 19.5°S (Figure 4a). Its kinematics are 
consistent with our stress regime inferred further south.

6.  Conclusions
A focal mechanism catalog of crustal earthquakes and the associated crustal stress field were inferred for 
northern Chile. The catalog contains focal mechanisms of 817 earthquakes. A subset of 355 earthquakes 
with high-quality focal mechanisms were inverted to infer the crustal stress field.

To date, this data set provides the most complete estimate and coverage of the contemporary crustal stress 
field in northern Chile. Crustal stress field results show different regimes for the Coastal Cordillera and 
the Andean Precordillera. The Coastal Cordillera region exhibits margin-parallel compression within a re-
verse-fault regime, which is consistent with the fault kinematics of the scarps observed in the region. This 
could be due to the interplay of a concave margin geometry and a coupled plate interface that extends down 
to 60 km depth (Figure 4c), creating a bending of this coastal region (inner arc of the Bolivian Orocline). 
Conversely, the inferred stress in the Andean Precordillera suggests a strike-slip regime around 21°S. Its 
SHmax direction is oriented nearly parallel to the plate convergence direction. This regime could mostly result 
from local stresses imposed by the thicker crust in the higher Andes. In the future, the deployment of dense 
seismic networks over a wider area into de Andean Orogen will allow a better determination of the spatial 
extent of the inferred crustal stress field.

Data Availability Statement
Waveform data were downloaded from the Federation of Digital Seismograph Networks (FDSN) web servic-
es using the ObsPy toolkit (Beyreuther et al., 2010). ObsPy was also used to process the downloaded seismic 
data. Maps were created using Generic Mapping Tools (Wessel et al., 2013).
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