Deutsch
 
Datenschutzhinweis Impressum
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT

Freigegeben

Hochschulschrift

Iron isotope fractionation in carbonatite melt systems

Urheber*innen
/persons/resource/stuff

Stuff,  Maria
3.6 Chemistry and Physics of Earth Materials, 3.0 Geochemistry, Departments, GFZ Publication Database, Deutsches GeoForschungsZentrum;

/persons/resource/max

Wilke,  M.
3.6 Chemistry and Physics of Earth Materials, 3.0 Geochemistry, Departments, GFZ Publication Database, Deutsches GeoForschungsZentrum;

Franz,  Gerhard
External Organizations;

Weyer,  Stefan
External Organizations;

Externe Ressourcen
Es sind keine externen Ressourcen hinterlegt
Volltexte (frei zugänglich)
Es sind keine frei zugänglichen Volltexte in GFZpublic verfügbar
Ergänzendes Material (frei zugänglich)
Es sind keine frei zugänglichen Ergänzenden Materialien verfügbar
Zitation

Stuff, M. (2021): Iron isotope fractionation in carbonatite melt systems, PhD Thesis, Potsdam : Universität Potsdam, xvi, 137 p.
https://doi.org/10.25932/publishup-51992


Zitierlink: https://gfzpublic.gfz-potsdam.de/pubman/item/item_5008495
Zusammenfassung
Carbonatite magmatism is a highly efficient transport mechanism from Earth’s mantle to the crust, thus providing insights into the chemistry and dynamics of the Earth’s mantle. One evolving and promising tool for tracing magma interaction are stable iron isotopes, particularly because iron isotope fractionation is controlled by oxidation state and bonding environment. Meanwhile, a large data set on iron isotope fractionation in igneous rocks exists comprising bulk rock compositions and fractionation between mineral groups. Iron isotope data from natural carbonatite rocks are extremely light and of remarkably high variability. This resembles iron isotope data from mantle xenoliths, which are characterized by a variability in δ56Fe spanning three times the range found in basalts, and by the extremely light values of some whole rock samples, reaching δ56Fe as low as -0.69 ‰ in a spinel lherzolite. Cause to this large range of variations may be metasomatic processes, involving metasomatic agents like volatile bearing high-alkaline silicate melts or carbonate melts. The expected effects of metasomatism on iron isotope fractionation vary with parameters like melt/rock-ratio, reaction time, and the nature of metasomatic agents and mineral reactions involved. An alternative or additional way to enrich light isotopes in the mantle could be multiple phases of melt extraction. To interpret the existing data sets more knowledge on iron isotope fractionation factors is needed. To investigate the behavior of iron isotopes in the carbonatite systems, kinetic and equilibration experiments in natro-carbonatite systems between immiscible silicate and carbonate melts were performed in an internally heated gas pressure vessel at intrinsic redox conditions at temperatures between 900 and 1200 °C and pressures of 0.5 and 0.7 GPa. The iron isotope compositions of coexisting silicate melt and carbonate melt were analyzed by solution MC-ICP-MS. The kinetic experiments employing a Fe-58 spiked starting material show that isotopic equilibrium is obtained after 48 hours. The experimental studies of equilibrium iron isotope fractionation between immiscible silicate and carbonate melts have shown that light isotopes are enriched in the carbonatite melt. The highest Δ56Fesil.m.-carb.melt (mean) of 0.13 ‰ was determined in a system with a strongly peralkaline silicate melt composition (ASI ≥ 0.21, Na/Al ≤ 2.7). In three systems with extremely peralkaline silicate melt compositions (ASI between 0.11 and 0.14) iron isotope fractionation could analytically not be resolved. The lowest Δ56Fesil.m.-carb.melt (mean) of 0.02 ‰ was determined in a system with an extremely peralkaline silicate melt composition (ASI ≤ 0.11 , Na/Al ≥ 6.1). The observed iron isotope fractionation is most likely governed by the redox conditions of the system. Yet, in the systems, where no fractionation occurred, structural changes induced by compositional changes possibly overrule the influence of redox conditions. This interpretation implicates, that the iron isotope system holds the potential to be useful not only for exploring redox conditions in magmatic systems, but also for discovering structural changes in a melt. In situ iron isotope analyses by femtosecond laser ablation coupled to MC-ICP-MS on magnetite and olivine grains were performed to reveal variations in iron isotope composition on the micro scale. The investigated sample is a melilitite bomb from the Salt Lake Crater group at Honolulu (Oahu, Hawaii), showing strong evidence for interaction with a carbonatite melt. While magnetite grains are rather homogeneous in their iron isotope compositions, olivine grains span a far larger range in iron isotope ratios. The variability of δ56Fe in magnetite is limited from - 0.17 ‰ (± 0.11 ‰, 2SE) to +0.08 ‰ (± 0.09 ‰, 2SE). δ56Fe in olivine range from -0.66‰ (± 0.11 ‰, 2SE) to +0.10 ‰ (± 0.13 ‰, 2SE). Olivine and magnetite grains hold different informations regarding kinetic and equilibrium fractionation due to their different Fe diffusion coefficients. The observations made in the experiments and in the in situ iron isotope analyses suggest that the extremely light iron isotope signatures found in carbonatites are generated by several steps of isotope fractionation during carbonatite genesis. These may involve equilibrium and kinetic fractionation. Since iron isotopic signatures in natural systems are generated by a combination of multiple factors (pressure, temperature, redox conditions, phase composition and structure, time scale), multi tracer approaches are needed to explain signatures found in natural rocks.
Karbonatitische Schmelzen, die im Erdmantel gebildet werden, transportieren Material aus dem Erdmantel zur Erdkruste und ermöglichen somit Einblicke in Chemismus und Dynamiken des Erdmantels. Die Analyse stabiler Eisenisotopenverhältnisse ist eine neue und vielversprechende Methode um Schmelzprozesse und Interaktionen von Schmelzen im Erdmantel nachzuverfolgen, insbesondere da Eisenisotopenfraktionierung vom Oxidationszustand und der Bindungsumgebung in der Schmelze abhängig ist. Mittlerweile existiert ein großer Datensatz zur Eisenisotopenfraktionierung in magmatischen Gesteinen, der sowohl Zusammensetzungen von Gesamtgesteinen als auch von separierten Mineralgruppen umfasst. Karbonatite weisen extrem leichte Eisenisotopensignaturen und gleichzeitig eine breite Spannweite der δ56Fe auf. Darin ähneln sie Mantelxenolithen, die ebenfalls sehr variable und teilweise extrem leichte δ56Fe aufweisen, wie zum Beispiel -0.69 ‰ in einem Spinelllherzolith. Ein möglicher Grund für diese große Spannweite sind metasomatische Prozesse, an denen Fluide wie hochalkalische Silikatschmelzen oder Karbonatschmelzen beteiligt sind. Welche Auswirkung Metasomatose auf die Eisenisotopenfraktionierung hat, hängt von Parametern wie dem Verhältnis von Schmelze zu Gestein, der Reaktionszeit und der Art der beteiligten metasomatischen Fluide sowie den Mineralreaktionen ab. Auch mehrere aufeinanderfolgende Phasen der Schmelzextraktion könnten zur Heterogenisierung von Teilen des Erdmantels beigetragen haben. Bisher existieren allerdings nur wenige Untersuchungen zur Eisenisotopenfraktionierung zwischen Silikat- und Karbonatphasen. Um Eisenisotopenfraktionierung im Karbonatitsystem besser zu verstehen, wurden im Rahmen dieser Arbeit Experimente im Natrokarbonatitsystem durchgeführt. Dazu wurden unmischbare Silikat- und Karbonatschmelzen bei Temperaturen zwischen 900 und 1200 °C und Drücken von 0,5 und 0,7 GPa in einem intern beheizten Autoklaven bei intrinsischen Redoxbedingungen equilibriert. Im Anschluss wurden die Silikat- und Karbonatschmelzen separiert, aufgeschlossen und die Eisenisotopenverhältnisse beider Phasen mittels MC-ICP-MS analysiert. Dabei konnte gezeigt werden, dass die Proben nach spätestens 48 Stunden Fe-isotopisch equilibriert sind und dass im Gleichgewicht leichte Eisenisotope in der Karbonatschmelze angereichert sind. Die größte Isotopenfraktionierung von Δ56Fesil.m.-carb.melt (mean) = 0,13 ‰ wurde in einem System mit stark peralkalischer Zusammensetzung der Silikatschmelze (ASI ≥ 0,21, Na/Al ≤ 2,7) gemessen. In den Systemen mit extrem peralkalischer Zusammensetzung der Silikatschmelze (ASI zwischen 0,11 and 0,14) hingegen war die Eisenisotopenfraktionierung analytisch nicht auflösbar. Zusätzlich wurde die Eisenisotopenfraktionierung zwischen Magnetit- und Olivinkörnern in situ mittels UV-Femtosekunden-Laserablation gekoppelt mit MC-ICP-MS untersucht. Bei der Probe handelt es sich um eine Melilititbombe aus der Salt-Lake-Crater-Gruppe in Honolulu (Oahu, Hawaii), die deutliche Anzeichen für Kontakt mit einer karbonatitischen Schmelze aufweist. Während die Magnetite eher homogen hinsichtlich ihrer Eisenisotopenzusammensetzung sind (-0,17 ‰, ± 0,11 ‰, 2SE, to +0,08 ‰, ± 0,09 ‰, 2SE), weisen die Olivine eine weitaus größere Spannweite an δ56Fe auf (-0,66 ‰, ± 0,11 ‰, 2SE, to +0,10 ‰, ± 0,13 ‰, 2SE). Da Eisen unterschiedliche Diffusionskoeffizienten in Olivin und Magnetit hat, sind in beiden unterschiedliche Informationen zur kinetischen und Gleichgewichtsisotopenfraktionierung enthalten. Die Beobachtungen aus den Experimenten und in den Eisenisotopenanalysen in situ deuten darauf hin, dass die extrem leichten Eisenisotopensignaturen in Karbonatiten durch Isotopenfraktionierung in mehreren Schritten während der Karbonatitgenese entstanden sind, die sowohl Gleichgewichts- als auch kinetische Fraktionierung umfassen können. Da die Eisenisotopensignaturen in natürlichen Systemen durch eine Kombination mehrerer Faktoren (Druck, Temperatur, Redoxbedingungen, Phasenzusammensetzung und -struktur, Zeitskala) entstehen, werden Multi-Tracer-Ansätze benötigt, um die in natürlichen Gesteinen beobachteten Signaturen zu erklären.