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A B S T R A C T   

Severe droughts caused unprecedented impacts on grasslands in Central Europe in 2018 and 2019. Yet, spatially 
varying drought impacts on grasslands remain poorly understood as they are driven by complex interactions of 
environmental conditions and land management. Sentinel-2 time series offer untapped potential for improving 
grassland monitoring during droughts with the required spatial and temporal detail. In this study, we quantified 
drought effects in a major Central European grassland region from 2017 to 2020 using a regression-based 
unmixing framework. The Sentinel-2-based intra-annual time series of photosynthetic vegetation (PV), non- 
photosynthetic vegetation (NPV), and soil fractional cover provide easily interpretable quantities relevant for 
understanding drought effects on grasslands. Fractional cover estimates from Sentinel-2 matched in-situ condi
tions observed during field visits. The comparison to a multitemporal reference dataset showed the best 
agreement for PV cover (MAE = 7.2%). Agreement was lower for soil and NPV, but we observed positive re
lationships between fractional cover from Sentinel-2 and the reference data with MAE = 10.1% and MAE =
15.4% for soil and NPV, respectively. Based on the fractional cover estimates, we derived a Normalized Dif
ference Fraction Index (NDFI) time series contrasting NPV and soil cover relative to PV. In line with meteoro
logical and soil moisture drought indices, and with the Normalized Difference Vegetation Index (NDVI), NDFI 
time series showed the most severe drought impacts in 2018, followed by less severe, but persisting effects in 
2019. Drought-specific metrics from NDFI time series revealed a high spatial variability of onset, duration, 
impact, and end of drought effects on grasslands. Evaluating drought metrics on different soil types, we found 
that grasslands on less productive, sandy Cambisols were strongly affected by the drought in 2018 and 2019. In 
comparison, grasslands on Gleysols and Histosols were less severely impacted suggesting a higher drought 
resistance of these grasslands. Our study emphasizes that the high temporal and spatial detail of Sentinel-2 time 
series is mandatory for capturing relevant vegetation dynamics in Central European lowland grasslands under 
drought.   

1. Introduction 

Grasslands are important agroecosystems of Central Europe. They 
serve a broad variety of functions and provide a range of ecosystem 
services, from habitat provision and safeguarding biodiversity to pro
ducing forage crops for livestock farming (Bengtsson et al., 2019). 
However, grasslands are also threatened by impacts of climate change 
(Chang et al., 2017; Soussana and Lüscher, 2007), and land use inten
sification or abandonment (Kuemmerle et al., 2016). Meteorological 
extreme events such as droughts influence grasslands in Europe. With 

ongoing global climate change, extreme meteorological conditions, such 
as the consecutive drought in 2018 and 2019, are expected to become 
more frequent, more severe and longer in the coming years, affecting up 
to 60% of grasslands across Europe (Hari et al., 2020; Samaniego et al., 
2018). Summer droughts specifically decrease grassland yields (Hofer 
et al., 2016) and influence ecosystem services related to soils and 
nutrient cycling (Klaus et al., 2020; Walter et al., 2013), to carbon up
take (Ciais et al., 2005), or to faunal and floral species diversity (Barnett 
and Facey, 2016; Grant et al., 2014). 

Remote sensing-based analyses corroborated the high impact of 
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droughts on different ecosystems across Europe, e.g., during the summer 
droughts of 2003 and 2018. Vegetation changes such as early senescence 
and wilting were observed for forests (Schuldt et al., 2020) and crop
lands (Ciais et al., 2005; Ji and Peters, 2003). Different from other 
ecosystems, though, immediate and strong drought-induced changes of 
the vegetation were already apparent shortly after the drought onset in 
grasslands (Reinermann et al., 2019). Compared to forests, but also 
croplands, grassland vegetation was found to be more sensitive to 
changes of climatic water balance during drought years (Buras et al., 
2020). Identifying spatial patterns related to complex site-specific fac
tors such as different management intensities (Deléglise et al., 2015; 
Ingrisch et al., 2018), soil types (Buttler et al., 2019), and species 
compositions (Hofer et al., 2016) provide a better understanding on 
grassland vegetation changes during drought periods. Thereby, man
agement strategies of farmers and policy makers can be supported in the 
light of increasing impacts of droughts in the coming years and decades. 
Yet, the potential intra-class variability of the drought stress response of 
grasslands has not yet been quantified from dense and high-resolution 
Sentinel-2 time series. 

A medium spatial resolution of 10-30 m and frequent observations 
are mandatory to accurately capture the temporal and spatial vegetation 
dynamics caused by, e.g., management and drought stress (Ali et al., 
2016). MODIS and Landsat time series have been used to monitor intra- 
annual grassland management (Estel et al., 2018; Stumpf et al., 2020) 
and drought effects on grasslands in Europe (Reinermann et al., 2019; 
Schuldt et al., 2020). However, the spatial resolution of MODIS (250- 
500 m) and the observation frequency of Landsat limit spatially detailed 
intra-annual vegetation assessments. Since 2017, Sentinel-2A/B collect 
data on medium spatial resolution with an observation frequency of 5 
days globally (Drusch et al., 2012), making these data highly suitable for 
monitoring grasslands (Henebry, 2019). The value of Sentinel-2 for 
capturing intra-field vegetation dynamics has been demonstrated by 
mapping biophysical parameters in natural (J. Wang et al., 2019b) and 
permanent, managed grasslands (Punalekar et al., 2018; Schwieder 
et al., 2020). Utilizing the temporal frequency of intra-annual Sentinel-2 
time series, Griffiths et al. (2020) found that mowing intensity indicated 
typical, local management patterns across Germany. Similarly, Kolecka 
et al. (2018) showed that Sentinel-2 time series captured the majority of 
annual grassland management events. These studies indicate that the 
improved spatial and temporal resolution of Sentinel-2 opens up new 
possibilities for accurate and repeated mapping of grassland ecosystems 
on national to continental scales. 

Most commonly, time series of vegetation indices, e.g., the 
Normalized Difference Vegetation Index (NDVI) or the Enhanced 
Vegetation Index (EVI), were used to monitor the dynamics of grassland 
vegetation (a comprehensive overview on remote sensing of grasslands 
is provided in Reinermann et al., 2020). Time series of vegetation 
indices are suitable to detect changes of the grassland vegetation caused 
by management activities, e.g., mowing (Griffiths et al., 2020; Kolecka 
et al., 2018). However, the interpretation of vegetation index time series 
is limited to a measure of greenness in a dimensionless unit that can be 
influenced by, e.g., soil brightness (among others also relating to soil 
moisture deficits during droughts), colour and texture (Bannari et al., 
1995; Gao et al., 2000; Huete et al., 1985; Liu et al., 2012). A vegetation 
index value as such does not allow differentiation and quantification of 
physical quantities of, e.g., percent ground cover of different vegetation 
and non-vegetation land cover fractions (Asner and Heidebrecht, 2002; 
Xu et al., 2014), or of other biophysical parameters such as Leaf Area 
Index (LAI) and biomass (Ali et al., 2017; J. Wang et al., 2019b). 
Creating such physical quantities will instead provide physically-based 
and thematically interpretable insights into vegetation composition or 
vegetation productivity over time (Elmore et al., 2000; Numata et al., 
2007). 

Mapping time series of photosynthetic vegetation (PV), non- 
photosynthetic vegetation (NPV), and soil fractional cover constitutes 
a universally applicable framework for characterizing the state and 

dynamics of land cover in a quantitative way. With regard to grasslands, 
fractions of PV, NPV, and soil provide comprehensive measures of the 
essential ground cover components in interpretable quantitative units 
(Lewińska et al., 2020). The temporal interactions between these com
ponents support a better understanding of processes related to man
agement and environmental conditions such as drought (Guerschman 
et al., 2020). The initial response of grassland vegetation to drought 
stress is a decrease of leaf water content. A lasting water deficit causes 
leaf senescence and vegetation dieback (Bayat et al., 2016) resulting in 
decreasing PV cover and increasing NPV or soil cover. For grasslands, 
temporally dense information of fractional cover therefore has the po
tential to improve the understanding of vegetation response to meteo
rological variability. Vegetation transitions from PV to NPV or soil cover 
over longer time periods within the growing season are a robust indi
cator of seasonal drought (Coates et al., 2015; Dennison et al., 2019). To 
the best of our knowledge, intra-annual fractional cover time series of 
PV, NPV, and soil derived from Sentinel-2 imagery have not been uti
lized to analyze drought effects on grasslands in Central Europe. 

Multiple approaches exist to estimate ground cover fractions of 
different surface types from satellite data. With linear spectral mixture 
analysis (SMA; Adams et al., 1986), cover fractions are estimated as a 
linear combination of pure endmember spectra weighted by percentage 
ground cover. Adapting this approach to include endmember variability, 
Multiple Endmember Spectral Mixture Analysis (MESMA) allows for 
several models from potential endmember combinations and the best 
model is determined for each pixel separately (Roberts et al., 1998). 
SMA and MESMA have been widely applied to map fractional cover of 
different grassland ecosystems. Using linear unmixing, Asner and Hei
debrecht (2002) and Guerschman et al. (2009) assessed the ability of 
multi- and hyperspectral sensors to estimate PV, NPV, and soil fractions 
in desert grass- and shrublands, and savanna ecosystems, respectively. 
Lewińska et al. (2020) used SMA to analyze short- and long-term 
changes and trends of vegetation cover in the Caucasus with multi
spectral Landsat data. Similarly, Numata et al. (2007) found that cover 
fractions derived from a linear mixing model were suitable for moni
toring pasture conditions in Brazil. Regression-based unmixing is an 
alternative approach for fraction mapping. Regression models predict 
fractions for a cover type based on prior model training with quantita
tive training samples, i.e., pairs of mixed spectra and related mixing 
fractions. Few studies using regression-based unmixing so far focused on 
grasslands. Gessner et al. (2013) predicted fractional cover of different 
vegetation types and bare surfaces in two Namibian savannas using high 
resolution training data and random forest regression. Lehnert et al. 
(2015) found that plant fractional cover on the Tibetan plateau was 
estimated with the highest agreement to field data by support vector 
regression models. A general challenge in using regression-based 
unmixing is the need for quantitative training samples. The use of syn
thetic training data from spectral libraries (Okujeni et al., 2013) pro
vides a straightforward way to produce such training information. The 
method of regression-based unmixing with synthetic training data has 
been applied to map ground cover components of various ecosystems, 
including shrublands (Suess et al., 2018), forests (Montorio et al., 2020; 
Senf et al., 2020), urban areas and urban to rural gradients (Okujeni 
et al., 2018; Schug et al., 2020). Cooper et al. (2020) used the method to 
quantify fractional cover of multiple vegetated ecosystems including 
grasslands, however, without a differentiation of grass fractions into PV 
and NPV cover. Moreover, the approach has been used to derive annual 
fractional cover time series (Senf et al., 2020; Suess et al., 2018). It has, 
however, not yet been tested for quantifying intra-annual fractional 
cover time series of PV, NPV, and soil in European grassland ecosystems. 

The overarching goal of our study accordingly was to quantify 
drought effects in a Central European grassland region during the per
sisting droughts of 2018 and 2019. We derived fractional cover time 
series of PV, NPV, and soil from 2017 to 2020 through regression-based 
unmixing of intra-annual Sentinel-2 time series. We then assessed the 
capability of Sentinel-2 data to estimate grassland cover fractions by 
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validating Sentinel-2-based fractional cover results with a reference 
dataset encompassing grassland cover at multiple phenological stages in 
the three growing seasons. For a qualitative evaluation, we additionally 
compared fractional cover estimates to in-situ photographs taken during 
field visits. Subsequently, we made use of a fraction cover index to 
emphasize changes in NPV and soil relative to PV as an indicator of 
drought throughout the time series. We specifically addressed the 
following research questions:  

(1) How reliably can time series of PV, NPV, and soil cover fractions 
be estimated from Sentinel-2 for grasslands in Central Europe?  

(2) How well do time series of a fractional cover-based index reveal 
drought effects between years?  

(3) How did drought effects on grasslands vary spatially during the 
severe drought from 2018 to 2019? 

2. Study area 

We developed our method in northeastern Germany, a region rich in 
grassland and specifically pastureland. Similar to many grasslands in 
Central Europe, the lowland grasslands in our study area are rainfed and 
mostly characterized by a moderate productivity (4–6 t/ha; Smit et al., 
2008) and management intensity (Estel et al., 2018). The area covers the 
two federal states of Brandenburg and Mecklenburg Western Pomerania 
(Fig. 1). Almost half (44.6%) of this area is used for agricultural pro
duction with a grassland share of 22.8% (Brandenburg) and 25.2% 
(Mecklenburg Western Pomerania; Statistisches Bundesamt, 2019). We 

chose the study area as it represents typical Central European grassland 
systems. The region is especially vulnerable to climate change impacts, 
e.g., droughts and decreasing precipitation, as comparably low precip
itation levels (<600 mm/year on average; German Weather Service, 
2020) meet extensive areas with poor, sandy soils. For the next decades, 
regional climate simulations indicate shifts in precipitation patterns 
towards drier summers and increasing temperatures (Enke et al., 2005; 
Seneviratne et al., 2012). Therefore, growing conditions in northeastern 
Germany are likely to deteriorate further. Additionally, droughts as 
observed in, e.g., 2003 and 2018, are expected to occur more frequently 
as a consequence of climate change (Horton et al., 2015; Seneviratne 
et al., 2012). In 2018, total annual precipitation was 30–32% lower than 
the long-term average in our study area (German Weather Service, 
2020), which, combined with extraordinarily high temperatures, led to 
one of the most severe compound drought and heatwave events ever 
recorded during the summer months. These meteorological conditions 
heavily affected both natural ecosystems and agricultural lands (Buras 
et al., 2020). In northeastern Germany, reported grassland yield 
decreased by 32–48% in 2018 compared to the previous 5 years (Amt für 
Statistik Berlin-Brandenburg, 2019; Statistisches Amt Mecklenburg- 
Vorpommern, 2018) indicating massive impacts of droughts on 
grasslands. 

The seasonal development of grassland ecosystems is generally 
driven by phenological transitions closely linked to temperature and 
water availability (Bolton et al., 2020; Jin et al., 2019). Variations of 
water availability and temperature during droughts or heatwaves 
consequently alter the standard phenological trajectory of grasslands 
depending on the ecosystem's sensitivity to such changes (de Beurs et al., 
2018; Ma et al., 2013). Additionally, management events such as 
mowing, or grazing represent short-term disturbances of the grassland 
seasonality. The long-term seasonality of grassland vegetation in our 
study area is shown based on average MODIS time series for the period 
from 2000 to 2020 (Fig. 2). The growing season of grasslands usually 
starts in April (Day-Of-the-Year (DOY) 91) with increasing vegetation 
growth and photosynthetic activity. During the following months, 
management events are characterized by vegetation removal (Bahn 
et al., 2019). After a management event, grassland cover therefore 
consists of a higher share of exposed soil and remaining dry vegetation. 
The first period of management activities is visible as declining average 
NDVI values during the end of May (DOY 150) until the beginning of 
July (DOY 190). On the plant physiological level, the removal of the 
aboveground biomass quickly initiates subsequent plant regrowth given 

Fig. 1. The study area of northeastern Germany comprising the federal states of 
Mecklenburg Western Pomerania (MV) and Brandenburg (BB), including vali
dation samples (compare section 3.4). Bottom left: location of the study area 
within Germany (GER) and Central Europe. 

Fig. 2. Average MODIS NDVI time series for grasslands from 2000 to 2020 
(grey shading marks the 25th to 75th percentiles) and average time series for 
the 2017 to 2020 growing seasons. The time series are based on 1000 randomly 
sampled grassland pixels in the study area. MODIS time series (based on the 
MOD13Q1 product; Didan, 2015a, 2015b) were downloaded using the Appli
cation for Extracting and Exploring Analysis Ready Samples (AppEEARS 
Team, 2021). 
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sufficient light, water, and nutrient availability (Gastal and Lemaire, 
2015). Consequently, an increase in green vegetation cover is usually 
following immediately after a management event, which is visible in the 
average NDVI time series as a second, but weaker green-up between 
DOY 190 (beginning of July) and DOY 230 (mid-August). While com
mon management periods in grasslands are visible in the average sea
sonality, individual grassland plots are managed with varying intensity 
and thus number and timing of management events during the growing 
season greatly vary in space and time (Griffiths et al., 2020). 

Beyond anthropogenic management, extreme meteorological con
ditions such as drought heavily impact grassland vegetation during the 
growing season. Effects of long-term drought stress on the plant leaf 
include decreasing leaf water content, tissue dieback, discoloration and 
chlorosis of leaves (Bayat et al., 2016). Regarding the vegetation of 
grasslands, persisting drought stress therefore leads to senescing vege
tation and – depending on the vegetation cover density – also to 
increasing soil cover. These effects are, however, also dependent on 
abiotic factors and species composition leading to varying responses of 
grassland vegetation exposed to drought (Beierkuhnlein et al., 2011; 
Hofer et al., 2016). In the annual NDVI time series (Fig. 2), negative 
deviations from the average seasonality are particularly apparent from 
June (DOY 150) until the end of the growing season for 2018 and 2019, 
indicating prolonged drought effects on the vegetation in these two 
years. Compared to the long-term average, the growing seasons between 
April and October had 45.2% and 13.7% lower precipitation in 2018 and 
2019, respectively (1991–2020; German Weather Service, 2020). The 
growing season of 2017 was instead characterized by above average 
vegetation growth in line with 42.2% above average precipitation. In 
2020, the NDVI time series was following the average seasonality during 
the first half of the growing season. Negative deviations occurred during 
mid- to late summer (DOY 200–250). During the growing season of 
2020, precipitation was 11.1% lower than the long-term average. The 
four years we investigated in this study represent a wide range of 
possible vegetation dynamics by covering negative extremes (2018, 
2019), positive deviations (2017) and average to dry conditions (2020) 
compared to the 20-year average seasonality. 

3. Data and methods 

We used all available Sentinel-2 data for the study period from 2017 
to 2020 to derive a four year intra-annual fractional cover time series of 
PV, NPV, and soil using regression-based unmixing with synthetic 
training data from spectral libraries (Okujeni et al., 2013, 2017), as 
detailed in the workflow diagram (Fig. 3). We validated fractional cover 
from Sentinel-2 at different time steps using a stratified random sam
pling across the study area. For a qualitative assessment, we compared 
fractional cover estimates to photographs from in-situ field visits in 2018 
and 2019. We then used the fractional cover time series to analyze the 
grassland response to drought by converting the PV, NPV, and soil es
timates into a normalized difference fraction index (NDFI) time series 
contrasting NPV and soil cover in relation to PV cover. We compared the 
monthly distributions of NDFI to the NDVI, to two commonly used 
meteorological drought indices, i.e., the standardized precipitation 
index (SPI) and the standardized precipitation evapotranspiration index 
(SPEI), as well as to the soil moisture index (SMI). Subsequently, we 
developed a set of metrics based on NDFI time series describing the 
specific drought response of grassland vegetation within each growing 
season. Most processing steps including the preprocessing of Sentinel-2, 
the regression-based unmixing of Sentinel-2, and time series analyses 
were carried out using the Framework for Operational Radiometric 
Correction for Environmental monitoring (FORCE, v.3.6.4; Frantz, 
2019). 

3.1. Preprocessing of Sentinel-2 data 

We obtained all available Sentinel-2 MSI scenes for our study area 

between 2017 and 2020 from the Copernicus Open Access Hub. We 
excluded images earlier than 1st April and later than 15th November for 
all years to limit the analysis to the grassland growing season. We used 
the Framework for Operational Radiometric Correction and Environ
mental monitoring (FORCE; Frantz, 2019) to build a Sentinel-2 time 
series of analysis-ready surface reflectance data. The geometric uncer
tainty between individual Sentinel-2 images of up to 11 m (European 
Space Agency (ESA), 2020) can introduce additional noise to a pixel- 
based time series. We therefore applied a geometric co-registration 
step during preprocessing within FORCE. The modified Landsat 
Sentinel Registration (LSReg) algorithm matches each Sentinel-2 image 
to monthly average Landsat composites over a 5-year period based on tie 
points detected on different spatial resolutions (Rufin et al., 2020; Yan 
et al., 2016). We found that NDVI time series noise was reduced by 
12.5% when using LSReg, confirming the usefulness of applying an 
improved co-registration in northeastern Germany. Subsequent radio
metric processing corrected atmospheric, topographic and bidirectional 
reflectance effects based on radiative transfer theory (Frantz, 2019; 
Frantz et al., 2016a). The six 20 m-bands of the Sentinel-2 Multispectral 
Imager (MSI) were resampled to match the four visible and near-infrared 
bands at 10 m resolution using the ImproPhe algorithm (Frantz et al., 
2016b). The preprocessing includes cloud and cloud-shadow masking 
based on an adapted version of the Fmask algorithm (Frantz et al., 2018; 
Zhu and Woodcock, 2012, 2014). Observations identified as cloud, 
cloud-shadow or snow were excluded based on the pixel-based quality 
information. Thereby, the average cloud-free observation frequency 
within the growing season was 23, 8, 10, and 10 days for 2017, 2018, 
2019, and 2020, respectively (Fig. S5). Data were then gridded into 30 
× 30 km tiles using Lambert Azimuthal Equal Area projection (Frantz, 
2019). We used a 2018 land use classification to mask all pixels which 
were not identified as grassland (Blickensdörfer et al., 2021). The pre
processed time series of the ten Sentinel-2 bands was used to model 
fractional cover time series of PV, NPV, and soil. 

Fig. 3. Workflow diagram for deriving grassland drought metrics.  
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3.2. Spectral library development 

We developed our spectral library based on the NDVI/SWIR ratio 
feature space concept as proposed by Guerschman et al. (2009). The 
NDVI separates PV cover with high NDVI values from NPV and soil cover 
with low NDVI values. The SWIR ratio, calculated as the ratio between 
SWIR2 and SWIR1, can be used to separate NPV from soil cover and was 
proposed as multispectral surrogate for the hyperspectral Cellulose 
Absorption Index (CAI; Daughtry et al., 2005). Consequently, plotting 
the NDVI versus the SWIR ratio results in a triangular feature space. The 
pure PV, NPV, and soil surface spectra can be extracted from the vertices 
of the triangular feature space while mixtures of these cover types are 
located within the triangle. The shape of the NDVI/SWIR ratio feature 
space is consistent through space and time. The concept therefore serves 
as a generalized framework for mapping and monitoring PV, NPV, and 
soil cover fractions based on single spectral signatures for each cover 
type (Guerschman et al., 2009). 

The triangular NDVI/SWIR ratio feature space throughout our study 
period is illustrated in Fig. 4. While the overall feature space shape re
mains consistent through time, changes in the density distribution 
indicate the seasonal changes of PV, NPV, and soil cover components in 
our study site. As suggested by Guerschman et al. (2009), we developed 
our spectral library based on pixel spectra which were located at the 
vertices of the NDVI/SWIR ratio feature space. To be able to compare 
changes in PV, NPV, and soil cover fractions consistently through time, 

we selected a global set of library spectra representative of the entire 
time series (Fig. 4). For PV, we used one spectral signature from May 
2019 as maximum PV cover in grasslands occurs after the start of the 
season (i.e., in late April to May). For NPV, we selected the spectral 
signature in July 2019, as NPV cover increases later in the season with 
senescing grass cover (Gastal and Lemaire, 2015). For soil, we extracted 
a spectral signature from ploughed cropland next to grassland as open 
soil cover rarely exists in Central European grasslands. Thereby, the 
selected spectra represent the maximum cover of each class under 
Central European climate conditions and land management. We added a 
virtual shade spectrum with 0% reflectance to the spectral library to 
account for albedo differences and sub-pixel shading in mixed pixel 
spectra. 

3.3. Regression-based unmixing 

We used regression-based unmixing with synthetic training data 
from spectral libraries (Okujeni et al., 2013, 2017) to estimate fractions 
of PV, NPV, and soil cover for each image of the Sentinel-2 time series. 
First, synthetic training data, i.e., pairs of the respective mixed spectrum 
and its related mixing fraction, were generated for each cover type based 
on the spectral library. Next, a regression model was trained for each 
cover type using the synthetic dataset as training data. In a third step, 
the regression model was applied to the image data to derive a fraction 
map for each cover type. We iterated the three steps multiple times and 

Fig. 4. Location of the global PV, NPV, and soil library spectra in the feature space created by NDVI and SWIR ratio (SWIR2/SWIR1). The distributions of the feature 
space are based on 30,000 randomly selected pixel observations per month from grasslands in the study area (yellow corresponds to high and purple corresponds to 
low densities). (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) 
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averaged the intermediate maps following Okujeni et al. (2017). 
Running such an ensemble, a high variability of different mixtures is 
included while the sample size is kept low. 

3.3.1. Generation of synthetic training data 
The generation of synthetic training data followed a similar strategy 

as described in Cooper et al. (2020) and Okujeni et al. (2021). Ten 
training datasets were generated from the spectral library for each cover 
type, in the following referred to as ‘target class’. Each dataset consisted 
of 1000 synthetic mixtures. The datasets were generated by mixing li
brary spectra with cover proportions between 0 and 1, i.e., corre
sponding to 0% and 100%. Covering this full range of proportions in the 
training set ensures that the regression model is capable of predicting 
the full potential range of PV, NPV, and soil proportions that may be 
present in the images to be unmixed, independent from the underlying 
distribution of proportions. Each of the 1000 synthetic mixtures was 
created as follows: First, the number of library spectra within the syn
thetic mixture, i.e., the mixing complexity, was randomly set to two or 
three. The first library spectrum was the target class spectrum which got 
assigned a random weight between 0 and 1. The second spectrum (and 
third spectrum, depending on the mixing complexity) was randomly 
selected from the remaining classes. Again, cover fractions were 
assigned randomly as a weight to the remaining mixing components 
ranging from 0 to 1 under the constraint of creating a sum of 1, i.e., 
100%, across all spectra proportions. The final synthetically mixed 
spectrum was calculated as the linear combination of the weighted li
brary spectra and added together with the mixing fraction of the target 
class to the training data. The pure library spectra were added to the 
training data with assigned mixing fractions of 0 or 1. 

3.3.2. Support vector regression modeling 
We used support vector regression (SVR) to train ten regression 

models for each class using the synthetic training datasets. SVR is a 
supervised machine learning algorithm to estimate a continuous target 
variable based on a set of predictor variables (Awad and Khanna, 2015). 
The optimal SVR function is fitted by introducing an ε-insensitive area 
around the regression function where errors smaller than ε are not 
penalized. Non-linear relationships in the data space are solved by 
transforming the data into higher-dimensional space using a kernel 
function. SVR models have a high generalization capability (Smola and 
Schölkopf, 2004) and performed well for estimating fractional vegeta
tion cover of grasslands (Ge et al., 2018; Lehnert et al., 2015). We used 
the radial basis function kernel and tuned the model parameters by 
performing a grid search using 10-fold cross validation as described in 
van der Linden et al. (2015). We applied the ten respective SVR models 
to each image of the Sentinel-2 time series to produce ten intermediate 
fraction maps for each class and observation. Finally, the ten interme
diate predictions for each class and observation were averaged to pro
duce the PV, NPV, and soil fractional cover time series from Sentinel-2. 

3.4. Validation of fractional cover time series 

We used reference fractional cover information derived by visual 
interpretation of very high-resolution (VHR) images to validate the 
Sentinel-2-based fractional cover time series. Using VHR imagery for 
validation of fractional cover from multispectral data has proven a 
useful method in studies investigating, e.g., multiple vegetation growth 
forms (Cooper et al., 2020; Lippitt et al., 2018) as well as PV, NPV, and 
soil fractional cover (Roberts et al., 2012). To generate the reference 
dataset, we made use of a stratified random sampling design capturing 
the value range of PV, NPV, and soil fractional cover. We first digitized 
the spatial extents of all available VHR images available in Google Earth 
Pro © for our study area from April to mid-November 2017, 2018, 2019, 
and 2020, respectively. Overall, images were available during 19 
different observation dates covering 84% of grasslands in the study area 
(Fig. 1). Next, we created NDVI and SWIR ratio composites of all 

available Sentinel-2 images within a maximum of 5 days before and after 
the VHR acquisition dates (Table S1). We used the nearest observation if 
more than one observation was available. The stratified sample was built 
by randomly sampling 25 Sentinel-2 pixels within each 0.2 NDVI and 
SWIR ratio step (Fig. 5a). PV, NPV, and soil reference fractional cover for 
each Sentinel-2 pixel was estimated based on a grid sampling approach. 
First, each pixel sample was divided into 100 cells of 1 × 1 m (Fig. 5b). 
Second, the dominant cover type, i.e., PV, NPV, or soil, was assigned to 
each cell through visual interpretation of the underlying VHR image. 
And finally, the percentages of the cover types were calculated for the 
pixel sample. The final reference dataset consisted of 271 samples as we 
excluded, e.g., samples not fully located in grassland fields. 

To validate our fractional cover time series, we calculated the Mean 
Absolute Error (MAE) and Root Mean Square Error (RMSE) for each 
cover type based on our estimated and reference PV, NPV, and soil 
fractional cover. The MAE is the average absolute error between pre
dicted and observed values. It gives equal weights to all deviations. The 
RMSE is the square root of the mean of all squared deviations and 
consequently gives more weight to samples with high differences. As a 
measure of agreement, we additionally used the R2 to describe the 
percentage of the variance of the reference fractional cover explained by 
the variance of Sentinel-2 fractional cover. Additionally, we used slope 
and intercept of a simple linear regression of the reference data and 
Sentinel-2 fractional cover to evaluate the agreement along the 1:1 line. 

3.5. Assessment of drought stress 

3.5.1. Normalized Difference Fraction Index time series and metrics 
During a persisting drought, the NPV and soil cover is expected to 

increase, whereas PV cover will decrease. Following Souza et al. (2005), 
we adapted the Normalized Difference Fraction Index (NDFI) to express 
fractional cover proportions of NPV and soil, and PV. The NDFI has been 
used to characterize forest disturbance processes by contrasting PV 
relative to the combined soil and NPV fractions (Bullock et al., 2020; 
Souza et al., 2005): 

NDFI =
(fNPV + fsoil) − fPV

fNPV + fPV + fsoil
(1)  

where fNPV, fsoil, and fPV are the cover fraction estimates of NPV, soil and 
PV, respectively. In Central European grasslands, the amount of litter 
varies with different management regimes and with growing conditions 
in previous years (Huber et al., 2017; Török et al., 2012). Thereby, NPV 
fractional cover estimates may include residual litter originating from 
previous years. To only capture the seasonal change of NPV, we adapted 
the NDFI by subtracting the annual NPV base value from each 
observation: 

NDFI =
( (

fNPV − fiNPVbase

)
+ fsoil

)
− fPV

(
fNPV − fiNPVbase

)
+ fPV + fsoil

(2) 

The NPV base value fiNPVbase was derived for each growing season 
separately as the minimum NPV cover fraction observed during April to 
mid-June of the same year i. As vegetation senescence only occurs later 
in the growing season, i.e., during mid- to late summer, we assume that 
the minimum NPV fraction during that period represents the remaining 
NPV proportion from the previous year. The original NDFI (eq. 1) has a 
value range from − 1 to 1. By including the NPV base value, the adjusted 
NDFI (eq. 2) can exceed the value range, e.g., with NPV and soil cover 
values close to 0%. Accordingly, NDFI values >1 were set to 1. The NDFI 
(eq. 2) was calculated for each observation in the fractional cover time 
series. 

By assessing the NPV and soil fractions as NDFI time series in an 
integrated fashion, the different fractions and how those relate to each 
other becomes easily interpretable: If NDFI >0, the NPV and soil frac
tions are the predominant cover compared to the PV fractional cover. 
When a grassland pixel is predominantly covered by dead plant material 
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and soil for a time span of at least several weeks or longer within the 
growing season, this is likely caused by drought stress. Shorter time 
spans of dominating soil and NPV fractions indicate management dis
turbances and subsequent regrowth (see section 2 on the relevant pro
cesses in Central European grassland regimes). 

We captured these differences with temporal metrics characterizing 
the longest time span of NDFI >0 in each growing season (i.e., duration, 
day of onset, day of end, mean NDFI). To derive the longest time span of 
NDFI >0, we used a linearly interpolated time series with daily time 
steps. Compared to other commonly used interpolation techniques, e.g., 
radial basis functions (Schwieder et al., 2016) or splines (Bolton et al., 
2020), we relied on an approach preserving the minimum and maximum 
NDFI values in the time series. Preserving the original time series values 
is beneficial for analyzing time series of Central European grasslands due 
to their high temporal variability (Griffiths et al., 2020). We first iden
tified potential time periods of NDFI >0 as consecutive observations 
with a negative and a positive (potential day of start), or a positive and a 
negative NDFI value (potential day of end). We selected the time span 
with the longest duration in days and the corresponding day of start and 
day of end. Then, the mean NDFI during this time span was calculated. 

3.5.2. NDVI time series 
We compared the seasonal dynamics from NDFI time series to the 

NDVI (Tucker, 1979) as one standard vegetation index used for drought 
monitoring (West et al., 2019). We derived the NDVI time series from 
the preprocessed Sentinel-2 data from 2017 to 2020. We calculated 
monthly NDVI averages for each pixel to enable a comparison to the 
monthly distributions of the NDFI and to the meteorological drought 
indices (see section 3.5.3). 

3.5.3. Meteorological drought indices 
We used two common meteorological drought indicators, the Stan

dardized Precipitation Index (SPI; McKee et al., 1993) and the Stan
dardized Precipitation Evapotranspiration Index (SPEI; Vicente-Serrano 

et al., 2010), as well as the soil moisture index (SMI) to evaluate their 
distribution in comparison to the NDFI time series. For deriving the SPI 
and SPEI, we downloaded monthly precipitation and potential evapo
transpiration data with 1 km resolution (1970–2020 for SPI and 
1990–2020 for SPEI; DWD Climate Data Center (CDC), 2020a, 2020b). 
We calculated both indices based on a 3-month time window as previous 
studies have shown that such binning allows assessing seasonal drought 
effects (Ji and Peters, 2003). For obtaining the SPI, monthly precipita
tion values were first averaged for each month based on the preceding 
two months and the actual month. From the aggregated time series, a 
gamma probability density function was fitted for every month of the 
year based on the historic record for the respective month. The SPI value 
was then determined by applying the inverse normal function to the 
cumulative probability value of each precipitation observation. The 
SPEI evolved from the SPI by taking a simple climatic water balance, i.e., 
the difference between precipitation and potential evapotranspiration, 
into account (Vicente-Serrano et al., 2010). The SPEI is calculated 
similar to the SPI but instead of the gamma distribution, a log-logistic 
distribution is used. SPEI and SPI values give an indication of the de
viation of the observed value from the long-term median. Values close to 
0 consequently indicate average conditions whereas values close to 1 
and − 1 indicate wet and dry conditions, respectively. Additionally, we 
downloaded monthly SMI data (4 km spatial resolution) which is based 
on the mesoscale Hydrological Model (mHM; Samaniego et al., 2010). 
The SMI quantifies the percentile of the current soil moisture estimate 
for the topsoil based on a reconstructed data distribution from 1951 to 
2019 (Zink et al., 2016). As the meteorological indices and the SMI are 
available for each month, we calculated the monthly average NDFI for 
each pixel. We then compared the monthly distributions of SPI03, 
SPEI03, and SMI to the monthly NDFI distributions. 

3.5.4. Soil type data 
We further analyzed spatial patterns of the mean NDFI and the 

duration metric for different soil types. A detailed soil map on the scale 

Fig. 5. Feature space of NDVI and SWIR ratio based on Sentinel-2 data close to the acquisition dates of VHR images (a). Twenty-five Sentinel-2 pixels were randomly 
sampled in each NDVI and SWIR ratio stratum. Three exemplary 10 × 10 m pixel samples and their estimated ground cover based on VHR imagery from Google Earth 
Pro © (b). 
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of 1:200,000 was available for the complete study area (Bundesanstalt 
für Geowissenschaften und Rohstoffe (BGR), 2018). Soil types were 
derived and aggregated based on soil horizon information according to 
Eckelmann et al. (2005). 

4. Results 

4.1. Validation of Sentinel-2 fractional cover estimates 

Comparing fractional cover estimated from Sentinel-2 to the refer
ence dataset, we found the overall best agreement for PV, followed by 
soil and NPV (Fig. 6). For PV, we observed a consistently high agreement 
close to the 1:1 line with an MAE of 7.2%. Soil estimates from Sentinel-2 
show a linear correlation to the reference data with an MAE of 10.1%. 
Point patterns reveal a slight over- and underestimation in the lowest 
and highest fraction cover values, respectively. Agreement between NPV 
fractional cover from Sentinel-2 and the reference dataset was less 
strong while we still observed a positive correlation. A negative bias of 
6.3% indicates that Sentinel-2 generally underestimated NPV fractional 
cover, while we also observed an overestimation of NPV for low cover 
values. 

4.2. Fractional cover time series from Sentinel-2 

The temporal changes of average PV, NPV, and soil fractional cover 
estimates followed the distinct phenological development of the grass
land vegetation in 2017–2020 (Fig. 7). The green-up in spring (April and 
May) was characterized by strongly increasing PV cover and decreasing 
NPV and soil fractions across the study area in all years. During the 
growing season of 2017, PV remained on an overall high level whereas 
NPV and soil were, on average, below a maximum cover of about 40% 
and 20%, respectively. In 2018, PV cover decreased strongly during May 
and June, shortly after the spring green-up. Simultaneously, NPV cover 
increased and soil cover followed during June. In 2019, PV fractional 
cover also decreased after peaking in spring, although changes in frac
tional cover during May and June were not as strong as during the most 
extreme drought in 2018. Similar dynamics as in 2019 were observed for 
2020 with slightly higher PV cover during green-up from May to June. 
Still, NPV and soil cover increased during the summer months of July 
and August. 

Photographs taken during field visits in 2018 and 2019 confirmed 
the agreement between estimated fractions from Sentinel-2 and overall 
vegetation cover conditions (Fig. 8). Our estimates captured changes of 
the vegetation cover over time related to management and drought. The 
field in Fig. 8a was grazed during the dry summer months of 2019, 
resulting in high NPV cover at the end of July (t1). After grazing and 
subsequent mowing, high NPV cover persisted during late August (t2) 
before vegetation regrowth started in mid-September. In Fig. 8b, high 
PV occurred during vegetation regrowth (t1, late July) after a mowing 
event in late June. In early August, the next mowing event caused a 
decrease of PV cover along with increasing NPV and slightly increasing 
soil cover, which was still evident in late August (t2). In Fig. 8c, vege
tation did not fully recover after the first management event in June 
2018. In line with conditions observed on the field, PV fractional cover 
from Sentinel-2 stayed below ca. 30% during the summer drought with 
consistently higher NPV and soil fractional cover. In close proximity (<
200 m distance), we observed good growing conditions corroborated by 
Sentinel-2 fractional cover estimates (Fig. 8d). The corresponding NDFI 
time series show the relative proportions of NPV and soil to PV cover. 
Management events in the example sites were characterized well by 
short increases of NDFI above the threshold of 0 (Fig. 8b, d), whereas 
NDFI exceeded the threshold for extended time spans on sites with low 
vegetation growth during drought periods in 2018 and 2019 (Fig. 8a, c). 
NDVI time series showed very similar seasonal patterns as the NDFI. 
However, compared to the NDVI, increasing NDFI values are directly 
linked to increasing NPV and soil fractional cover, e.g., during vegeta
tion changes after management events (Fig. 8b, d) and during drought 
periods (Fig. 8a, c). 

4.3. Seasonal drought impacts on grassland vegetation 

The density distributions of monthly NDFI values indicated the 
highest proportions of NPV and soil relative to PV during the growing 
season of 2018, followed by 2019, 2020, and 2017 (Fig. 9a). In 2017, 
mean PV cover remained on a high level during the growing season from 
May to November indicated by NDFI values below 0 for most of the data 
distribution. In contrast, most grasslands were covered by a higher 
proportion of NPV and soil relative to PV from June to the end of 2018, 
suggesting strong drought effects on the vegetation during the majority 
of the growing season. In 2019, NPV and soil cover fractions were 

Fig. 6. Comparison of PV, NPV, and soil fractional cover from Sentinel-2 and reference fractional cover from VHR imagery.  
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slightly lower than in 2018. Still, more than half of the grassland area 
had high NPV and soil fractions from July to September. In 2020, NPV 
and soil cover were overall less dominating than in 2018 and 2019, 
indicating recovery of the grassland vegetation. In August, half of the 
grasslands had high NPV and soil cover, similar to the previous year. 

The seasonal development of the NDFI and NDVI were very similar. 
Yet, the NDFI provided a higher degree of differentiation of grassland 
conditions. This became especially evident in the drier summer months 
of 2018, 2019 and 2020 when grassland vegetation changed from high 
PV to high NPV and soil fractional cover (Fig. 9a, b). Within these 
months, fractional cover-based NDFI values stretched across the whole 
value range from − 1 to 1, allowing an optimized differentiation of 
drought-related processes, whereas NDVI values were mostly con
strained to the range of 0.4 to 0.85. 

The high drought impact on grassland vegetation in 2018, 2019, and 
partly 2020 was corroborated by the distributions of the meteorological 
drought indices and the SMI (Fig. 9c, d, e). All indices showed the most 
severe precipitation and soil moisture deficits in 2018, followed by 2019 
and 2020, whereas 2017 was characterized by average precipitation and 
soil moisture. SPI03, SPEI03 and SMI values below their respective 
thresholds indicate the beginning of the drought in May 2018. From 
NDFI time series, the effects on the majority of grasslands become 
apparent in June and July 2018, suggesting a time lag of precipitation 
and soil moisture deficit effects on grasslands of 1–2 months. SPI03, 
SPEI03 and SMI showed that growing conditions did not improve 
considerably during early spring 2019. For 2020, SPI, SPEI, and SMI 
suggested slightly improved growing conditions compared to the pre
vious two years, but the indices were below their respective thresholds 
for most months in 2020 indicating a mild to moderate drought. Slight 
improvements of growing conditions were in line with the NDFI indi
cating dominating PV cover in all months for most grasslands, except for 
August when ca. 50% of grasslands had higher NPV and soil cover again. 
Interestingly, the SPI03 showed less severe drought conditions from 
2018 to 2020 compared to the SPEI03 and SMI, suggesting that tem
perature had a strong impact on drought severity captured by SPEI03 

and SMI. Compared to the NDFI, both meteorological indices and the 
SMI exhibited considerably lower spatial variations across the study area 
during the drought years of 2018 and 2019. 

4.4. NDFI-based drought metrics 

Investigating drought-specific metrics of the longest period of NDFI 
>0, we again found differences between but also within the three 
growing seasons. The season of 2017 was characterized by short-time 
increases of NPV and soil cover relative to PV cover (Fig. 10b) for ca. 
60% of the grasslands. The timing of these cover changes was distributed 
across the growing season with the strongest increase in early September 
(Fig. 10a). Combined with the short duration of cover changes, this in
dicates that high NPV or soil cover occurred during short time man
agement events within the season or during senescence in autumn. For 
the remaining 40% of the grasslands, no time period of NDFI >0 was 
found within the growing season suggesting high PV cover from April to 
mid-November. For 2018, we found the overall longest and most severe 
drought impacts in the study period. For example, seasonal NPV and soil 
cover persisted for a minimum of three months within the growing 
season on nearly 50% of all grasslands (Fig. 10b). In 2019 and 2020, this 
was the case for 25% and 15% of all grasslands, respectively, showing 
continuously shorter time periods of high NPV and soil cover. For 2018, 
2019, and 2020, the onset of high NPV and soil cover was concurrent 
with the strongest increase (ca. 50% of grasslands) from the end of May 
until mid-July (Fig. 10a). 

We found a high variability of metrics within and between grassland 
sites (Fig. 10). For example, the duration of high NPV and soil cover 
fractions differed considerably within and across grassland parcels 
during 2018 and 2019, where spatial patterns indicated differences that 
may relate to soil type, species composition or grassland management 
(Fig. 10b). The beginning and end of high NPV and soil cover in 2017 
aligned well with the shapes of individual grassland parcels, suggesting 
that high NPV and soil cover in 2017 was mostly driven by grassland 
management (Fig. 10a, d). From 2018 to 2020, different field patterns 

Fig. 7. Weekly averages of PV, NPV, and soil fractional cover from Sentinel-2 (2017–2020) for the complete study area. Shading around the mean values indicate the 
25th and 75th percentiles. 
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were still evident but both metrics were more homogenously distributed 
across different fields, especially during the most severe drought in 
2018. For grasslands in Fig. 10c, a strong East-West gradient of the 
fractional cover changes was evident in 2018 whereas this gradient was 
less apparent in 2017 and became weaker in 2019 and 2020. 

Combining the duration and magnitude (i.e., mean NDFI during 

NDFI >0) of high NPV and soil cover into a bivariate map (Fig. 11 for 
2018, Fig. S1, Fig. S2, and Fig. S3 for 2017, 2019, and 2020, respec
tively. The maps are available via an interactive web viewer: https:// 
ows.geo.hu-berlin.de/webviewer/grassland_drought/) enabled identi
fying different fractional cover dynamics within a season: Short periods 
of high NPV and soil cover with highest mean NDFI appear in bright 

Fig. 8. Time series of PV, NPV, and soil fractional cover, NDFI, and NDVI from Sentinel-2 for different field sites (a-d). Sentinel-2 fractional cover and corresponding 
images show in-situ conditions. Field sites relating to the time series and images are marked with yellow circles. (For interpretation of the references to colour in this 
figure legend, the reader is referred to the web version of this article.) 
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blue, whereas the longest-lasting changes with a low mean NDFI appear 
in yellow. The most striking drought impacts, with high and long-lasting 
NPV and soil cover fractions dominating are colored in magenta. The 
maps reveal spatial clusters of similar grassland cover dynamics across 
the study area within each growing season. We observed that these 
clusters were located on different soil types. For example, large coherent 
grassland areas on fen soils (Histosols) in the northeastern part of the 
study area were characterized by mainly short and moderately high NPV 
and soil cover during 2018 (Fig. 11b, c, central part in Fig. 11f). We 
abundantly found similar dynamics across the entire study area when 
grasslands were located on Histosols (Fig. S4). Compared to other soil 
types, grasslands on Histosols experienced the weakest (mean NPV and 
soil cover of 64–67%) and shortest (41–62 days) drought impacts in 
2018 and 2019 (Table 1). In contrast, we found more severe and long 
drought effects on grasslands on sandy Cambisols (e.g., Fig. 11g, 
Table 1). Similarly, grasslands on Fluvisols along the Elbe river near the 
western border of the study area (Fig. 11a) were covered by high per
centages of NPV and soil (66–73%) for most of the growing season of 
2018 and 2019 (Table 1). Grasslands on these soils showed the strongest 
decrease in both duration and mean NDFI in 2020 (Fig. S3a), indicating 
improving growing conditions. Although drought impacts differed be
tween the soil types, we observed substantially higher NPV and soil 
cover (9–18% increase) with a longer duration (26–104 days longer) in 

2018 and 2019 compared to 2017 on all soil types. This corroborates the 
high impacts of the continuing drought event on all grasslands. In 2020, 
the duration of high NPV and soil cover decreased substantially by 
29–74 days and 8–31 days compared to 2018 and 2019, respectively. 
Similarly, average NPV and soil cover was up to 11% lower in 2020 than 
in the previous two years, indicating recovery of grassland growth after 
the severe drought in 2018 and 2019. 

5. Discussion 

5.1. PV, NPV, and soil fractional cover time series from Sentinel-2 

Comparing the fractional cover from multispectral Sentinel-2 data to 
a multitemporal reference dataset based on interpretation of VHR im
agery, we found that Sentinel-2 is well suited to derive fractional cover 
of PV, NPV, and soil in our study area. PV cover agreed best with the 
reference data. Our results confirm previous studies showing that mul
tispectral data, and in particular Sentinel-2, are well suited for mapping 
the PV fraction accurately (e.g. Corbane et al., 2014; Guerschman et al., 
2015; Ji et al., 2020). Using PV fractional cover reduces saturation ef
fects (Gitelson et al., 2002) as well as sensitivity deficiencies under 
drought (Xu et al., 2014). For NPV and soil, we observed higher un
certainties than for PV. Over- and underestimations of soil and NPV in 

Fig. 9. Monthly density distributions of NDFI, NDVI, SPI03, SPEI03, and SMI from 2017 to 2020. NDFI values above 0 indicate higher NPV and soil cover in relation 
to PV cover. For SPI03 and SPEI03, negative values denote increasingly dry conditions. SMI values below 0.3 indicate abnormally dry conditions. Note that the 
density scaling is different for each index. 
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low and high value ranges, respectively, indicated a slight confusion of 
these cover types. Estimating NPV and soil fractional cover from mul
tispectral data is generally challenging due to the spectral similarity 
between the two classes (Asner and Heidebrecht, 2002). Regarding the 
spectral configuration of Sentinel-2, two aspects are important for esti
mating NPV and soil fractional cover: First, Sentinel-2 spectral bands do 
not capture the cellulose and lignin absorption of NPV in the shortwave 
infrared directly, while this spectral absorption feature at 2100 nm has 
been frequently used to differentiate NPV and soil cover from hyper
spectral data (Asner and Heidebrecht, 2002). However, similar to 
Guerschman et al. (2009), we found that NPV typically has a consider
ably lower reflectance than soil in the SWIR band centered on 2200 nm, 

increasing the spectral separability of NPV and soil for our study area. 
Second, results by Ji et al. (2020) and Tian et al. (2021) suggest, that the 
three red-edge bands and the relatively narrow NIR band of Sentinel-2 
provide additional information for separating NPV from soil. NPV 
often exhibits a stronger reflectance increase in the red-edge wavelength 
region towards the NIR than soils. However, this increase also varies 
with decomposition status of NPV and soil moisture (Nagler et al., 
2000). Such variations partly explain the confusion of soil and NPV from 
our models as managed, temperate grasslands in Central Europe often 
exhibit a thin layer of litter with different decomposition stages 
depending on the management type (Sanaullah et al., 2010). 

Photographs from field visits on multiple dates corroborated that the 

Fig. 10. Cumulative distribution of drought metrics based on NDFI time series across the study area (left column) and examples of different grassland sites for each 
growing season (dark grey areas correspond to pixels with no time period of NDFI >0). 
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Fig. 11. Bivariate map of the duration and mean NDFI based on the longest time period when NDFI >0 for the growing season 2018. Values were binned into deciles.  
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fractional cover time series tracked in-situ grassland conditions during 
management events and drought. The reference dataset based on VHR 
images facilitated a temporally and spatially detailed validation of 
fractional cover time series. While available VHR images provide 
detailed reference information, very fine-scale features, e.g., single plant 
leaves and soil under a thin layer of litter, were not always clearly 
discernible. This likely contributed to deviations of NPV and soil frac
tional cover derived from Sentinel-2 in low value ranges. Still, the cm- 
resolution images allowed for identifying the dominant cover type of 
PV, NPV, or soil on a 1 × 1 m scale based on colour, structural and 
contextual information. 

This study demonstrates the opportunities provided by the Sentinel-2 
mission for retrieving fractional cover time series for grassland ecosys
tems. Our findings from a Central European region complement similar 
studies based in other regions or on other sensors (e.g., Guerschman 
et al., 2009; Lewińska et al., 2020). The trajectory of PV fractional cover 
represented the expected seasonal phenology well within individual 
years, with highest growth rates, i.e., increase in PV fractions in late 
spring to early summer, and growth cessation, i.e., decrease in PV 
fractions, in late summer to autumn with decreasing photoperiod and 
beginning cold acclimation at temperatures of 5–10 ◦C (Wingler and 
Hennessy, 2016). This seasonal variation was shown to be altered by 
other factors, including meteorological variability, i.e., droughts or 
extreme rainfall (Chang et al., 2017; Cremonese et al., 2017) and land 
management (Wingate et al., 2015). In this context, the trajectories of 
NPV and soil fractional cover provided additional thematically relevant 
information, e.g., increasing average NPV and soil cover during the drier 
years in 2018 and 2019 compared to the pluvial season of 2017 indi
cating the value of both quantities for drought assessment. This is in line 
with Meyer and Okin (2015) and Numata et al. (2007) who emphasize 
the use of NPV fractions for monitoring savannas and grasslands, 
respectively, during the dry seasons. In our study area, the high spatial 
heterogeneity of fractional cover time series between and within indi
vidual grassland plots pointed to differences in land use intensity but 
also soil characteristics (Fig. 8). In this regard, it is obvious that the 
spatial resolution of Sentinel-2 is especially relevant to capture such 
spatial details. 

5.2. Seasonal drought impacts on grasslands based on NDFI time series 

We introduced a normalized fraction index based on proportions of 
NPV and soil relative to PV cover to emphasize the use of our fractional 
cover time series for drought effect assessment in Central European 
grasslands. We found extended time periods with high NPV and soil 
cover during the growing seasons of 2018 and 2019, indicating that the 
majority of grasslands was not resistant to the persisting drought. This is 
not surprising as the growing season of 2018 was characterized by the 
highest temperatures combined with lowest precipitation recorded in 
Germany since 1881 (Zscheischler and Fischer, 2020). Similar, but less 
severe conditions persisted during the growing season of 2019 (Hari 
et al., 2020) and 2020 (German Weather Service, 2020), when we 

observed shorter and weaker NPV and soil cover increases. 
SPI03, SPEI03 and SMI indicated similar dynamics between the four 

years. However, based on the high-resolution fractional cover time se
ries from Sentinel-2 we found a high variation of vegetation response to 
drought across the study area for 2018 and 2019. In comparison, SPI03, 
SPEI03, and SMI did not show such a high variability in these years. 
These differences can be expected, as meteorological droughts captured 
by SPI and SPEI are controlled by large-scale atmospheric circulation 
patterns leading to homogenous drought conditions in our study region 
in 2018 (Drouard et al., 2019; López-Moreno and Vicente-Serrano, 
2008). The process-based mesoscale Hydrological Model (mHM) is 
also forced with meteorological variables. Additionally, topography, soil 
texture, and land cover data are included in the model (Samaniego et al., 
2010). However, the resulting SMI is available on a resolution of 4 km 
only, which likely contributed to the lower variability compared to the 
NDFI. Drought effects on grassland cover vary locally with management 
intensity (Zwicke et al., 2013), soil characteristics (e.g. organic matter 
content (Buttler et al., 2019)) and drought resistance of plant species 
(Mariotte et al., 2013). It is not possible to analyze these local-scale 
differences with purely meteorological information of SPI03 and 
SPEI03, or with the SMI on 4 km spatial resolution. Analyzing spatially 
aggregated drought indices such as SPI, SPEI, and SMI together with the 
fractional cover-based NDFI now allows for a more nuanced, local-scale 
evaluation of vegetation changes during drought periods. 

The NDFI showed overall similar seasonal patterns as the NDVI 
within the four growing seasons. The seasonal dynamics observed from 
both indices are in line with the findings by Reinermann et al. (2019), 
who also identified the first negative deviations in June 2018 based on 
the EVI. Different from NDVI and other greenness-based indices, NDFI is 
based on percent cover of PV, NPV, and soil in grasslands. Thereby, the 
NDFI allows for an intuitive interpretation and thresholding, which is 
not possible when using NDVI alone without ancillary data or long time 
series. Apart from vegetation indices, other biophysical measures (e.g., 
Leaf Area Index (LAI) and aboveground biomass (AGB)) have been used 
to analyze drought impacts on grassland vegetation (e.g., Li et al., 2018; 
Mariano et al., 2018). Grassland-specific LAI and AGB estimates usually 
rely on extensive field databases, which often limit their application for 
larger areas and across time series (Ali et al., 2016). Compared to frac
tional cover, senescent grassland vegetation is usually not accounted for 
in AGB or LAI estimations (Delegido et al., 2015; Schwieder et al., 2020; 
J. Wang et al., 2019a), even that recent findings indicate potential of 
using LAI-based models for differentiating PV and NPV in croplands 
based on Sentinel-2 data (Amin et al., 2021). Deriving quantitative es
timates of non-photosynthetically active and photosynthetically active 
plant materials is, however, important for analyzing grassland vegeta
tion during drought periods (Coates et al., 2015; Guerschman et al., 
2020). The adapted version of the NDFI presented in this study quan
tifies NPV changes within each season by correcting for pre-season NPV 
cover (e.g., from previous years). Thus, the resulting NDFI and corre
sponding fractional cover values can be interpreted as the seasonal in
crease of NPV and soil during drought periods. Overall, the fractional 

Table 1 
Averages of seasonal drought metrics (mean NDFI and duration) for different soil types in the study area according to Fig. S4. We excluded soil types summing up to less 
than 1% of the total grassland area (Regosols, Podzols, Chernozems).    

Mean NDFI > 0 
(% NPV/soil) 

Duration in days 

Soil type Grassland area (%) 2017 2018 2019 2020 2017 2018 2019 2020 

Cambisols 20.26 0.16 (58%) 0.49 (75%) 
0.40  
(70%) 0.35 (69%) 29 116 90 70 

Fluvisols 4.39 0.10 (55%) 0.45 (73%) 0.33 (66%) 0.24 (62%) 12 116 73 42 
Gleysols 24.8 0.13 (57%) 0.42 (71%) 0.33 (67%) 0.30 (65%) 21 95 64 48 
Histosols 30.1 0.11 (55%) 0.34 (67%) 0.27 (64%) 0.26 (63%) 15 62 41 33 
Luvisols 5.54 0.14 (57%) 0.44 (72%) 0.36 (68%) 0.35 (68%) 22 97 66 57 
Podzoluvisols 2.39 0.17 (59%) 0.49 (74%) 0.41 (70%) 0.40 (70%) 27 111 80 66 
Pseudogley 6.81 0.14 (57%) 0.38 (69%) 0.32 (66%) 0.31 (66%) 22 84 55 47  
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cover-based NDFI is accordingly a promising approach for quantifying 
the grassland response to drought based on a physically meaningful 
measure. 

5.3. Spatial patterns of grassland drought 

We found a high spatial variability of the drought response of 
grasslands associated with different soil types. Almost a third of all 
grasslands in the study area are located on peat soils (Histosols) where 
grassland vegetation was less severely affected by drought compared to 
other soil types. These peatlands have been drained in the past to make 
the land available for grassland cultivation (Landesamt für Ländliche 
Entwicklung, Landwirtschaft und Flurneuordnung (LELF), 2014; Land
esumweltamt Brandenburg (LUA), 2004). Grasslands likely benefited 
from groundwater resources during the drought in 2018 and 2019, 
which usually respond with a time lag of several months to drought 
(Hellwig et al., 2020). Moreover, the high soil organic matter content of 
Histosols and Gleysols contributes to a higher drought resistance (But
tler et al., 2019). Yet, future drought impacts might be alleviated by 
permanently increasing water levels on such grasslands. This would not 
only enhance their drought resistance but also mitigate the substantial 
greenhouse gas emissions, submergence, and soil degradation of drained 
peatlands (Tanneberger et al., 2020). However, it is still unclear how 
and if rewetting of former peatlands can be harmonized with the needs 
of land users (e.g., fodder production for dairy/cattle farming) and 
current fauna and flora conservation goals (Buschmann et al., 2020). 
Conversely, grasslands on Cambisols were strongly impacted by drought 
conditions in 2018 and 2019. Grasslands on these soil types were 
already characterized by slightly higher shares of NPV and soil cover 
compared to other grasslands in the wet year of 2017. These vegetation 
dynamics suggest a low productivity under pluvial growing conditions. 
The observed differences to other soil types were further amplified 
during the drought in 2018 and 2019. As the temperate grasslands of 
Central Europe are mostly located on poorer sites, which are not suitable 
for cropping, a lower water holding capacity and low soil organic matter 
content of Cambisols can explain the stronger drought impacts on these 
grasslands. More frequent droughts in the future will likely exacerbate 
the observed differences with highest drought impacts on less produc
tive grassland sites. 

The drought response of grasslands is modulated by a variety of 
factors (e.g., abiotic growing conditions, soil characteristics, land man
agement, functional groups of grassland species) and their local in
teractions (De Boeck et al., 2011; Vogel et al., 2012; Wellstein et al., 
2017). For example, grasslands in Fig. 10b are growing on drained fen 
soils with varying soil organic matter content and groundwater levels. 
Such growing conditions cause different species compositions (Kaiser 
et al., 2001; Schwieder et al., 2020) and therefore heterogeneous 
drought impacts on grassland vegetation on fine spatial scales. Grass
lands in Fig. 10d were an example of the strong influence of varying 
groundwater levels on grassland vegetation during drought periods. The 
East-West gradient in the drought impact was related to the close-by (ca. 
2 km distance) open-pit lignite mine, which requires permanent 
lowering of the groundwater level around the mine (Grünewald, 2001). 
While this is not a typical setting for grasslands in Central Europe, it 
confirms the high impact of local water management on grassland 
vegetation during droughts. Overall, these findings indicate that hy
drological processes play a major role in determining the vegetation 
development during droughts. More detailed information on hydrolog
ical processes should therefore be used in future studies together with 
remote sensing-based estimates of drought effects to gain a better un
derstanding of grasslands' response to droughts. 

For 40% of the grassland area, no period of NDFI >0 was identified in 
2017. While the other three years were characterized by overall warmer 
and drier conditions, high NPV and soil cover should still be observable 
after management events in 2017, which was rarely the case. Such short- 
term disturbances of the grassland vegetation were likely missed in the 

NDFI time series due to the lower observation frequency in 2017 
(Fig. S5). Griffiths et al. (2020) also noted that less cloud-free observa
tions likely led to the omission of mowing events in their detection al
gorithm which was applied across Germany. The seasonal metrics 
derived for 2017 should therefore be interpreted with caution. Overall, 
the NDFI time series and metrics derived thereof still showed the ex
pected seasonal patterns in line with the meteorological drought indices 
and SMI which were not influenced by cloud cover. The season of 2017 
was an exception with high cloud cover and incomplete Sentinel-2B 
acquisitions until summer. However, cloud-free observation fre
quencies similar to 2017 still occurred outside swath overlap areas in all 
other years. The variations of cloud-free observations within and be
tween years consequently require further research, as the number of 
valid observations can affect time series metrics, which has already been 
shown for our study area (Kowalski et al., 2020). 

5.4. Transferability of regression-based unmixing for drought analysis 

We presented a framework for estimating grassland fractional cover 
time series in a Central European grassland region based on Sentinel-2 
data. Within this framework, a spectral library for generating syn
thetic training data for subsequent regression-based unmixing was 
constructed. To ensure consistent and comparable PV, NPV, and soil 
cover estimates through time, we selected a global set of library spectra 
representative of the entire time series based on the triangular NDVI/ 
SWIR ratio feature space from 4 years of Sentinel-2 data. We followed 
the common approach to choose one representative spectral signature 
for each cover class (e.g., Lewińska et al., 2020; Röder et al., 2008) from 
the vertices of the feature space (Guerschman et al., 2009; G. Wang 
et al., 2019a). The position of the library spectra relative to the overall 
shape of the feature space throughout the time series showed that the 
selected spectra were representative for grasslands in our study area 
from 2017 to 2020. 

Transferring this approach to other grassland ecosystems requires 
insights into the spectral variability of cover types in the target region. 
The spectral variability is related to different vegetation structures, soil 
characteristics, and topography. While topographic illumination differ
ences in mountainous regions can be accounted for with rigorous pre
processing (Buchner et al., 2020), different species compositions, soil 
colors and changing moisture contents can change the shape of PV, soil 
and NPV reflectance spectra and thus the shape of the feature space 
(Daughtry and Hunt, 2008; Lopatin et al., 2017). For the case that pure 
spectra of PV, NPV, and soil form a similar triangular NDVI/SWIR ratio 
feature space in other grassland ecosystems, separation between these 
cover types should be possible and we assume that our framework can be 
transferred based on adapted or region-specific spectral libraries. In fact, 
the concept of the NDVI/SWIR ratio feature space for quantifying PV, 
NPV, and soil fractional cover was developed in Australian savanna 
ecosystems (Guerschman et al., 2009) and our study therefore repre
sents a successful case for a transfer of the approach. However, dis
tinguishing NPV from soil with multispectral data is very critical in 
many regions (Guerschman et al., 2015). In case that pure NPV and soil 
are spectrally too similar and thus do not form a triangular feature space, 
it is likely that the framework cannot be transferred. Hill et al. (2016) 
and Hill et al. (2017) estimated PV, NPV, and soil fractional cover in two 
savanna ecosystems in southern Africa and Brazil, respectively. Their 
results suggested high uncertainties for estimating NPV and soil frac
tional cover in heterogenous vegetation types with a complex 
phenology. Uncertainties of separating NPV and soil also relate to the 
limited information content of multispectral data. In this regard, data 
from forthcoming spaceborne hyperspectral missions (e.g., CHIME 
(Nieke and Rast, 2018) and SBG (Green, 2018)) have a high potential for 
more precise estimates with a continuous global coverage. Compared to 
structurally complex ecosystems such as savannas, the vegetation 
structure of most grasslands in Central Europe is comparably homoge
nous without any considerable shrub or tree cover (Hejcman et al., 
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2013). Overall, we therefore expect that the framework is transferable to 
similar Central European grasslands, while detailed analyses of spectral 
variance are needed in regions where soils, topography and climate are 
inherently different. 

We developed our approach based on all available Sentinel-2 data 
from four years. By including all seasons with combined Sentinel-2A/B 
data, we covered extreme as well as average growing conditions. 
Compared to other multispectral sensors used for estimating fractional 
cover time series, Sentinel-2 offers improved spectral and spatial reso
lution which captured grassland vegetation dynamics with high detail. 
However, fractional cover time series from Sentinel-2 are limited to 
recent years. Analyses of historic time series and respective deviations of 
intra-annual observations are crucial to gain a better understanding of 
recent drought impacts in comparison to past decades. The vegetation 
condition index (VCI) has been widely used for this purpose, as it 
compares the observed NDVI value to the long-term minima and max
ima during the same time period (Ji and Peters, 2003; Kogan, 1995). 
Generalizing the regression-based unmixing approach across sensors, e. 
g., by making regression models transferable through the Landsat 
archive would enable time series analyses including data from more 
than three decades (Wulder et al., 2016). However, compared to 
Sentinel-2, Landsat has a considerably lower observation frequency. 
Sparse time series require modified approaches such as pooling obser
vations from several years (Melaas et al., 2013; Senf et al., 2017) or 
annual cumulative fractional cover estimates (Lewińska et al., 2020). 
Detailed intra-annual analyses of grassland time series are thus limited 
to recent years with Sentinel-2 data. Moreover, Landsat's lower spatial 
resolution of 30 m and the lower spectral information can lead to higher 
uncertainties for fractional cover estimation (Ji et al., 2020). Yet, PV, 
NPV, and soil fractional cover have been derived from Landsat for 
grasslands (Guerschman et al., 2015; He et al., 2020; Yu et al., 2019) 
indicating potential for using Landsat time series in Central European 
grasslands as well. 

6. Conclusions 

In this study, we presented an approach for quantifying drought ef
fects in a major Central European grassland region. The approach in
cludes (i) the derivation of intra-annual PV, NPV, and soil fractional 
cover time series using all available Sentinel-2 data between 2017 and 
2020 and regression-based unmixing, and (ii) the calculation of the 
NDFI, an index to emphasize the use of our fractional cover time series 
for drought effect assessment. Validation based on multitemporal 
reference information from VHR imagery revealed that PV, NPV, and 
soil fractions were effectively estimated in our study site, while the NDFI 
calculated thereof proved to track the strongest drought impacts in 2018 
and 2019. Yet, grasslands responded non-uniformly to the severe 
drought and heatwave within each season. Differences were related to 
soil types and varying growing conditions within and between grassland 
parcels. Consequently, compatible in-situ data are needed to deepen a 
process-based understanding of the complex drought responses of 
grasslands to diverse environmental conditions and management. 
Future experiments should be distributed across grassland drought 
impact gradients – knowledge that is only derivable in space and time 
based on detailed and quantitative maps from satellite remote sensing. 

Our study showed that high spatial and temporal resolution satellite 
remote sensing data are mandatory to monitor grassland dynamics 
during drought periods. To date, Sentinel-2 provides the only freely 
available data with sufficient spatial and temporal resolution. Given the 
universality of our methodological framework, we are convinced that 
our approach constitutes a useful means for drought impact assessment 
in Central European grassland systems from Sentinel-2 data in general. 
Therefore, future research should focus on transferring the approach to 
ecologically different Central European grassland systems. 
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Kaiser, T., Leipnitz, W., Käding, H., Haberstock, W., Glemnitz, M., 2001. Die räumliche 
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Gimeno, C., Porcar-Castell, A., Galvagno, M., Nakaji, T., Morison, J., Kolle, O., 
Knohl, A., Kutsch, W., Kolari, P., Nikinmaa, E., Ibrom, A., Gielen, B., Eugster, W., 
Balzarolo, M., Papale, D., Klumpp, K., Köstner, B., Grünwald, T., Joffre, R., 
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