
2-D numerical modelling of magnetotelluric fields

in anisotropic structures - an FD algorithm

Josef Pek 

Geophys. Inst., Acad. Sei. Czech Rep., Prague, Czech Republic 

Abstract 

An algorithm for numerical modelling of magnetotelluric fields in 2-D anisotropic block structures 

is proposed. Electrical properties of the individual homogeneous blocks are given by an arbitrary 

symmetric and positive definite conductivity tensor. The problem leads to a coupled system of 
differential equations for the strike-parallel components of the magnetotelluric field, E„ and H,, . 

These equations are approximated by the finite difference method, using the integration approach. 

Use is made of the constancy of the magnetic H„ component in the non-conductive air so that only 
equations for the electric mode are approximated within the air layer. The system of linear difference 
equations, resulting from the FD approximation, can be arranged in such a way that its matrix is 

symmetric and band-limited, and can be solved, for not too large models, by Gaussian elimination. 
The algorithm is applied to model situations which demonstrate the effect of 2-D anisotropy on the 

relation between magnetotelluric impedances and induction arrows. 

1 Motivation 

Recently several attempts to interpret magnetotelluric data have appeared in which strong electrical 
anisotropy of deep geoelectrical structures played a substantial role, 'strong' meaning as much as several 
orders of magnitude in terms of the anisotropy ratio >. = Pmax l Pmin · To mention at random, e.g. 
Tezkan [1] presented a model for magnetotelluric data from the eastern margin of the Hessische Senke 
(Germany) in which a crustal pseudo-anisotropic conductor (vertical dykes with conductivity contrast of 
100 f2m/5 f2m) was introduced below the transition from the Rhenohercynicum to the northern Phyllite 
Zone to account for the systematic divergence of magnetotelluric E and H polarization phases towards 
long periods. In [2] another example of a similar interpretation is presented for induction data from 
the contact zone between the Rhine Graben and Black Forest (Germany) where a deep anisotropic layer 
(dyke conductivity contrast of almost 103) is assumed at the depth of about 12 km under the Black
Forest stations to explain both the magnetotelluric phases and induction vectors in this region. 

Similarly, a strongly anisotropic structure of regional extent (>. as much as 103 !) is proposed by
several authors ( e.g. [3, 4, 5]) to explain strong anisotropy of the magnetotelluric curves and a systematic 
discrepancy between the magnetotelluric impedances and induction arrows in a broader vicinity of the 
ultradeep drilling site KTB in Oberpfalz (Germany). As a physical source of this strong anisotropy a 
joint effect of narrow, nearly vertical, graphitized cataclastic zones, detected in this region in near surface 
structures, is hypothesized [3], although other physical mechanisms cannot be excluded either (4). 

Interpreting the BC87 data set from British Columbia (Canada) Eisei and Bahr [7] and Jones et al. 
[8] both arrive at the conclusion that a strongly anisotrcipic layer (>. as much as 102) at lower crust/upper
mantle depths is required for their models to fit the magnetotelluric data at longer periods. A similar
phenomenon, with the anisotropic structure situated in the lower crust, is discussed by Rasmussen [9]
with regard to his magnetotelluric data from Sweden.

At present the most challenging, but also the most difficult problem is undoubtedly the question of 
what the physical mechanisms can be which generate, or simulate, such strong anisotropies within the 
deep structures of the earth. Unfortunately, we totally ignore this principal question in this contribution, 
and turn our attention to a much simpler problem of analyzing the influence of anisotropic domains upon 
the electromagnetic data in case of laterally inhomogeneous, particularly 2-D geoelectrical structures. 

Methods currently used for modelling the effects of electrical anisotropy on the magnetotelluric data 
are mostly based on rather oversimplified assumptions-either 1-D approximations of the earth's struc­
ture are employed on local scale, or 2-D models are used with different conductivities for the E and 
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H polarization mode respectively, constraining thus the anisotropy in such a way that the conductivity 
tensor must reduce to the diagonal form just in the strike-bound coordinate system. A physically more 
plausible model of the electrical anisotropy, used in a series of interpretations ( e.g. (1, 3]), and based on 
stacking alternately conductive and nonconductive dykes, is subject to the same constraint. Except one 
can make use of powerful 3-D modelling tools, only structures with dykes parallel to the model's strike 
can be managed. lt is clear that particularly the above 2-D approximations of the electrical anisotropy 
do remain within the scope of 2-D algorithms currently used to model isotropic geoelectrical structures, 
and they do not allow a lot of features, which are intuitively expected to be generated by anisotropic 
subdomains within the structure, to be revealed and analyzed. 

Although a sufficiently general finite element algorithm for modelling magnetotelluric fields in 2-D 
structures with authentic anisotropy was already published now nearly twenty years ago [10], it has not 
been made use of in practical applications yet, as far as we know. Since then, articles dealing with 
anisotropy in multidimensional geoelectrical structures have appeared only sporadically, e.g. [11, 12, 13]. 
Now, obviously under the influence of the very practical problems like those mentioned for illustration 
above, this question seems to draw more attention again, as may be also evidenced by a few more papers 
presented at this colloquy [14, 15] 

The main aim of this contribution is to present a new version of a numerical algorithm which makes 
it possible to model magnetotelluric fields in 2-D structures containing quite generally anisotropic sub­
domains. Since much of the general ideas of the method is adopted from (10] we do not pretend to have 
developed a new algorithm, we rather consider our version a 'come back' of an old method with a few new 
features, from which the following ones are worth mentioning: (i) the physical problem is approximated 
by the method of finite differences, (ii) the conductivity tensor within each of the anisotropic subdomains 
of the medium can be represented by an arbitrary symmetric, positive definite matrix, allowing thus both 
horizontal and dipping anisotropies to be modelled, and (iii) for the quasi-stationary case, the numerical 
approximation of the H-mode equations is avoided within the non-conductive air layer. 

2 Mathematical formulation of the problem 

We assume a traditional 2-D geoelectric model with the structural strike parallel to the x-axis of the 
Cartesian coordinate system. The z-axis is positive downward. The model consists of a finite system 
of homogeneous, but in general anisotropic 2-D blocks. 2-D inhomogeneities are restricted to a finite 
region. Outside this region the structure merges into its anisotropic layered background, which can 
be in general different for either side of the model. The earth's surface is supposed to be planar (no 
topography is considered in this model) and to coincide with the coordinate plane z = 0. Above the 
surface a perfectly insulating air layer is assumed. The primary electromagnetic field is modeled as a 
monochromatic electromagnetic plane wave ( angular frequency w = 2rr /T, with T being the period) 
impeding perpendicularly to the earth's surface from sources located at z = -oo. 

In the quasi-steady state approximation the governing equations for the electromagnetic field in each 
of the homogeneous subregions of the model are Maxwell's equations 

"il x E = iwµoH, "il X jj = frE (1) 

where a time factor e-iwt is assumed. By virtue of the symmetry condition a/ax = 0, these equations, 
written for the x, y, and z-coordinates, reduce to 

aEz aEy 

ay ---r;;-

aEx 

Tz 
aEx 

ay 

aHz aHy 

ay -Tz
aHx 

f}z 

aHx 

ay 

iwµoH:,,, (2) 

iwµoHy , (3) 

iwµoHz , (4) 

U:z::z:Ex + U:z:yEy + U:z:zEz , (5) 

Uy:z:Ex + UyyEy + UyzEz , (6) 

Uz:z:Ex + UzyEy + UzzEz , (7) 
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We will suppose throughout this paper that the conductivity tensor u is symmetric and positive definite.In practical implementation within our computer program the conductivity tensor is defined by its threeprincipal values and by three rotation angles, analogous to Euler's elementary rotations known fromclassical mechanics. The conductivity tensor is constructed by applying to its diagonal, principal formsuccessively three rotations-first around z-axis by the anisotropy strike angle, then around the newx-axis by the anisotropy dip angle, and finally around the current z-axis by the third angle involved. Insuch a way any orientation of the principal axes of the conductivity tensor in space can be achieved. To complete the mathematical formulation of the problem we must add the boundary conditions forthe field components, both on inner and outer boundaries of the model. On inner boundaries, whereblocks of different electrical properties make contact, the following conditions must hold: (i) continuity
of the tangential component of the electric field E, (ii) continuity of the normal component of the current
density J = uE, and (iii) continuity of all the components of the magnetic field ff, as we suppose themagnetic permeability to be equal to its vacuum value, µ = µo = 41r x 10- 7 H/m, everywhere within the
model. On the outer boundaries of the model Dirichlet boundary conditions are set, constructed from 1-Dsolutions for the corresponding layered media at the left and right hand side of the model. In our versionof the computer program this is accomplished by applying a matrix propagation method to the vectorcomposed of the horizontal components of the magnetotelluric field. This procedure may be considereda slight modification of well-known techniques of [16] or [17]. From equations (2) through (7), the field components Ey, Ez, Hy, and Hz can be eliminated, which,after some algebra, yields a coupled pair of second-order partial differential equations for E„ and H.,,

a
2 E„ a

2 E., . ( ) oy
2 

+ oz2 
+ iwµo er.,., + Acrz., + Bcry„ E.,+

. A oH., . B oH„ O+ iwµo oy 
+ iwµo Tz = 

for the E-mode, where
B = (cr„zCTzy - cr„yCTzz)/ D,

D = Cfyy Cfzz - CfzyCfyz,
and, for the H-mode,

where

� (cryy oH.,) + � (crzz oH.,) + � (crzy oH.,) + � (cryz oH.,) +oy D oy oz D oz oy D oz oz D oy 

. H o(LE.,) o(KE.,) O
+ iwµo ., - oy 

+ oz 
= 

' 

D = Cfyy CTzz - CfzyCfyz ·

(8)

(9)

lt can be seen immediately that for a symmetric conductivity tensor the following identity relationsbetween the coefficients of equations (8) and (9) hold true
A= L, B = K. (10) 

Of course, there is not a 'pure' E-mode or H-mode any more in generally anisotropic media. Thecoupling between the modes is expressed through the first-order terms in equations (8) and (9). For theseterms to vanish the conductivity tensor must be of degenerate form with cr„z = cr„y = 0, i.e. the couplingbetween the field modes dissolves if the anisotropy strike is zero. Then equations (8) and (9) decouple
into two separate, 'pure' field modes. The conductivity tensor then reduces to f, = ( W f,t ) , where
Ö is for zero-vector, and u" = ( <ryy cryz ) describes the anisotropy which affects solely the H-modeUzy CTzz solution. Non-zero values of the non-diagonal elements of u" cause the mixed-derivatives terms to appearin (9).
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integration cell (k,j) 

Figure 1: Section of the FD grid around the node point (j, k) along with geometrical grid parameters 
explained. 

3 N umerical approximation 

To approximate numerically the governing equations (8) and (9) we will use the finite-differences (FD) 
method in a most traditional way as it was used earlier to model 2-D isotropic structures (e.g. [18, 19, 20)). 
First of all, the structure is projected onto a numerical grid and, within a finite grid region, subdivided 
into a system of electrically homogeneous, but in general anisotropic rectangular grid cells. The grid 
is in general irregular and it is supposed both to fit the geometry of the model and to meet general 
rules accepted for designing numerical grids in induction modelling studics for isotropic structures (e.g. 
[21)), respecting, however, the fact that, unlike scalar conductivities in isotropic structures, the tensorial 
conductivities are characterized by a range of values rather than by a single value. 

Following [20), we use the integration method to derive the FD equations at individual grid nodes. 
In this approach equations (8) and (9) are intcgrated across a rectangular integration cell, say, [Yj -
1 h(y) 1 h(y) l [ 1 h(z) 1 h(z) l [ - +1 [ - +1 ·r d ( . k) . "d d (F" 1) d2 j , Yj + 2 j+l X Zk 

- 2 k 'Zk + 2 k+l = Yj 'Yj X z
,. ' z

,. , 1 no e J, • IS cons1 ere '1g. , an 
only these integrals are approximated around the grid point involved. Thus, the integral rather than the 
differential form of the basic field equations (8) and (9) is used for the FD approximation. 

Although a bit tedious, the integration is quite a straightforward procedure and will not be given 
herc in dctail. As far as possible the integration is carried out exactly. Several steps, however, involve 
approximations of the field values and their derivatives. The following four formulae summarize the 
nature of all the approximation steps employed in the course of evaluating the integrals: 

oF(yj, z) F(j + 1, k) - F(j, k) 
0 

~ 
( l for z E [z_;, ztj,

Y h y 
j+l 

F(y, z) c::: F(j, k) for z E [y1, yj] x [z_;, zt],

F(yj, z,.) c::: �[F(j, k) + F(j + 1, k}), 

1 
F(Yj, zt) c::= 

4
[F(j, k) + F(j + 1, k) + F(j, k + 1) + F(j + 1, k + 1)), 

These formulae refer to particular points marked in Fig.l and must be altered appropriately if different 
points are considered. 

For an arbitrary grid point (j, k) the FD approximation results in a pair of linear algebraic equations 

j+l k+l j+l k+l 

L L cftE(p,q)E,,(p,q)+ I: I: cftH(p,q)H,, (p,q)=0, M=E,H, (11) 
p=j-lq=k-1 p=j-lq:k-1 
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which relate the components E:,; and H:,; at the central node (j, k) to their eight nearest neighbours in 
the grid. Falls a grid point involved in equations (11) on the outer boundary of the grid region, then 
the field values at this node are replaced by the appropriate boundary conditions and the corresponding 
terms are transferred to the right-hand sides of equations (11). 

In Appendix to this article all the coefficients Cf{.N(p, q), M = E, H, N = E, H, p = j-1, j,j+l, q =
k-1, k, k+l are given explicitely. From these FD scheme patterns we can see that the matrix of coefficients
Cf{.N(p,q) is never fully occupied, i.e. we need not deal with a 9-point, i.e. 18-value scheme in any case.
For the E-mode, we have a 5-point (10-value) scheme only. For the H-mode a complete 9-point scheme
must be considered, it contains, however, 14 non-zero coefficients only. These are maximum numbers of 
coefficients, with full anisotropy considered. The number of coefficients will decrease as the anisotropy
within the involved grid cells degenerates.

The FD scheme particularly simplifies within the insulating air layer. By virtue of equations (6) and 
(7), {)H:,;/oz = O and oH:,;/oy = 0 in the air, i.e. H:,; is constant everywhere in the air, and equation (9) 
need not be approximated at all. Equation (8) reduces to Laplace equation. Hence, within the air layer 
only the E-mode equation is FD approximated, which yields a 5-point FD scheme with only 5 coefficients 
Cf,.E. 

4 Solution of the FD equations 

Having the governing field equations (8) and E9) FD approximated at all grid nodes, the linear algebraic 
equations (11) must be properly arranged into a system for further treatment. This may seem a bit 
intricate task since two sets of variables are involved, E„ and H:,; , Moreover, these variables are not 
sought on identical sets of grid nodes-while the E-mode equation is approximated throughout the grid, 
the H-mode equation is to be solved within the conducting earth only. 

Two possibilities of arranging the variables into an array are obvious (Fig. 2). For both, the variables 
are ordered throughout the grid in a column-by-column manner, but row-by-row alternative is possible 
as well. In the first variant, (i), at first all electric components are ordered throughout the grid, from the 
top to the bottom within each column, and afterwards a block of magnetic components, ordered in the 
very same way, is joined to the electric array (Fig. 2, left). In the second variant, (ii), within a column, 
electric components are ordered in succession from the top of the column to the earth 's surface, and then, 
inside the earth, electric and magnetic components are stacked up alternately until the bottom of the 
column is reached. Then the next column is taken (Fig. 2, right). 

Each of these arrangements of the variables leads to a specific form of the matrix of the system of 
linear algebraic equations for the approximate field values. Arrangement (i) gives a four-block matrix 
which contains the principal mode coefficients in the diagonal blocks, and the coupling coefficients in the 
anti-diagonal blocks (Fig. 2 left). For isotropic structures the field modes, E and H, separate clearly into 
two matrices. 

Arrangement (ii) mixes the principal mode coefficients and those arising due to inter-mode coupling 
together within each row, but leads to a more compact, band matrix (Fig. 2 right). Although we have not 
tried an exact proof, in our opinion this arrangement yields a matrix with the narrowest band possible. 
lt may be easily shown that, after multiplying all the H-mode equations by a constant factor iwµo, 
the matrix is symmetric (the same applies, naturally, also to matrix (i)). In our computer program we 
prefer arrangement (ii), as it allows Gaussian elimination, in a special modification for symmetric, band 
matrices, to be used to solve the FD linear algebraic system. To store the upper half-band of the matrix, 
as required by the modified_algorithm of Gaussian elimination, needs NsTOR complex numbers to be 
placed in memory, 

NsTOR = (N - 1)(2Me + MA - 2) (2Me +MA + l), 
number oJ equation• band-width 

where N is the number of horizontal grid steps, and Me, MA are the numbers of vertical grid steps 
within the conducting earth and in the air layer, respectively. This is usually by far the most memory 
consuming part of the modelling algorithm. 
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Figure 2: Two variants of ordering the variables throughout the grid, along with a symbolic form of
the resulting matrices of the systems of FD equations. Circles are for electric components, squares for
magnetic components, emtpy symbols in matrix patterns are for coefficients which arise only due to
anisotropy.

5 Magnetotelluric functions on the earth's surface 

Solving the system of linear FD equations provides us with approximate values of the field components
Ex and llx at all grid points. For practical purposes, all components of thc magnetotclluric field must be
evaluated on the earth-air interface. From these, various magnetotelluric functions and parameters can
be computed as practice-oriented modelling outputs.

Knowing Ex and Hx throughout the grid, values of the 'secondary' field components Ey , E2, Hy , and
H2 can be evaluated at any grid point using equations (3), (4), and (6), (7)

E _ <Tyz ÖHx <Tzz ÖHx J( E y - D Öy + D öz + x, H = _I_ öEx
1 Y iwµo Öz 

E - - <Tyy öHx - <Tzy ÖHx LE• - D Öy D öz + x, 

H. = __ l_ öEx .iwµo Öy 

On the surface, E. = 0 and öHx /ay 
= 0, as no vertical current can flow through the earth-air interface.

The remaining field components on the surface are computed by approximating numerically the deriva­
tives ÖEx /Öy, ÖEx /öz, and ÖHx/öz in above formulae. In our computer program a 3-point differences,
based on parabolic interpolation, are used to approximate thesc derivatives. However, for a next version,
we intend to employ refined formulae for the spatial derivatives, similar to those derived in [22, 23].

32 

~ 
H 
~ 

1 



,f 

r 
::> 

_:-i X 

----t MODEL REDDY - RANKIN 

E 10 
• 
E 
.r:. 

,8. 

1 
0:: 

ffi ' 
� 

XX 

a. i CONfACT 
< 10 .. ,-1-,.,.""" ........ �.,...... ....... � 10 1 21\. 2 

DISTANCE (km)

o,--------, 

10 
'''
1 

1 
1 
1 
1 

! XY 
:CONTH:T 

1 1 2 

DISTANCE (km 

-1•o+,...+,.,.,....,1"TTT"""1 ...... "'2 ,.,.,-,:L 
DISTANCE (km) 

MEDIUM 1 

P1• 40, e2• 100, Ps· 50, strlke • 55 0 

MEDIUM 2 

e1 - 3, e2- 10, e3- 20, strike • 30 °

10-------

10 

0 

' 
YX 1 

1 

: CONTACT 

10 1 2 
DISTANCE (km 

' 
1 
1 

: CONTACT 

YX 

-70+,,,,,.+,-�1,...,....,,1......,2..,...� 

DISTANCE (km) 

yy 

10
◄ 

10 1 2� DISTANCE (km 
2 

120 
1 

'COHTACT 
go : 

yy 

: 
eo 

' 
1 

1 
1 
1 

JO : 
: 

Figure 3: Comparison of apparent resistivities (upper row of plots) and phases (lower row of plots) for 
the horizontally anisotropic dyke model of Reddy and Rankin (10]. The comparison is carried out along 
a 25km section from the center of the model to the right. Dashed line at 4km indicates the position of 
the contact. Solid line-modelling results of Reddy and Rankin (10], squares-results obtained by the 
present FD algorithm. 

The magnetotelluric and geomagnetic transfer functions on the earth's surface (impedances, admi­
tances, components of the induction vectors, etc.) are evaluated using the field components computed for 
two independent polarizations of the primary electromagnetic wave. Anisotropy within a 2-D structure 
leads in general to a full and non-diagonizable impedance tensor, imitating thus locally a 3-D under­
ground. Other magnetotelluric parameters, such as Swift's principal direction, skew, ellipticity, etc., can 
be now computed easily. 

6 N umerical tests 

There are only few chances to check the results of our modelling algorithm with other independent 
computations. Except some trivial checks, such as the identity of magnetotelluric functions when different 
polarizations of the primary wave are used, we carried out the following tests: 

a) The results for an isotropic structure are identical with those obtained independently by a 2-D
'isotropic' modelling program of Cerv and Praus (20] for the same model. 

b) The results for a 1-D anisotropic layered structure, approximated as a 2-D model, are practically
identical with those obtained independently by a 1-D algorithm based on the matrix propagation of the 
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Figure 4: Real induction arrows and polar impedance diagrams for a two-layer earth with an anisotropic 
layer inserted in the first layer. The conductivity tensor of the anisotropic layer is given by the principal 
resistivities Px f Py /Pz = 3/100/3 and the anisotropy strike of 30 degrees towards R. All resistivities are 
in nm. 

electromagnetic fields through the layers. The deviations do not exceed one percent, except inadequate 
grid parameters are chosen. 

c) Reddy and Rankin [10) studied a 2-D horizontally anisotropic dyke model in detail. In Fig. 3 a
comparison of our results with those taken from [10) is shown for a set of magnetotelluric functions­
apparent resistivities and phases. For this model the results are almost identical, very small differences 
are observed only near the dyke contacts, where the difference in the approximation techniques is likely 
to play some role. 

7 Numerical examples 

We will demonstrate the developed algorithm by showing two simple models which illustrate the effect of 
strong electrical anisotropy upon magnetotelluric functions and induction arrows. We chose these models 
since absolutly nothing could have been said earlier about induction arrows in anisotropic structur�s with 
solely 1-D modelling algorithms available. 

Model in Fig. 4 consists of a two layer earth with an anisotropic half-layer inserted in the first layer. 
The principal resistivities of the anisotropic inhomogeneity are Px/Py/Pz = 3/100/3, in Dm, and the 
anisotropy strike is 30 degrees with respect to the structural strike of the model. In the upper part of 
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Figure 5: Real induction arrows and polar impedance diagrams for a model with a lateral conductivity 
contact overlaid with an anisotropi,;; layer. The conductivity tensor of the anisotropic layer is given by 
the principal resistivities pz f py/ Pz = 30/1000/30 and the anisotropy strike of 30 degrees towards R. All 
resistivities are in Dm. 

Fig. 4 real induction arrows, along with polar impadance diagrams for Zxx and Zxy , are shown for selected 
points along the model's surface and for a series of pcriods from 10 to 3000s. Under the influence of the 
anisotropic half-layer, real induction arrows behave as qualitatively expected-they are deflected so as to 
keep their perpendicular direction with respect to the predominant induced currents. Similar effect can be 
observed for the polar impedance diagrams Zxy-their minimum axes indicate the direction of preferred 
conductivity, i.e. the anisotropy strike in this case. For long periods, however, and also for increasing 
distance from the contact info the isotropic quarter-space, the fade-away of the anisotropy contact effect 
is connected with certain over-relaxation expressed by a contrary orientation of the impedance diagrams. 

Different pattern, however, is observed if two isotropic domains make contact and the effect of an 
additional anisotropic layer is superimposed over that excited by the lateral inhomogeneity. Model in 
Fig. 5 is a modified version of the preceding model-the conducting half-layer is made isotropic and it 
is overlaid with an additional anisotropic layer. In this case, the real induction arrows are orientated 
in the direction of preferred conductivity of the anisotropic layer, and not perpendicularly to it as one 
would expect. We explain this phenomenon by the effect of compensation currents within the anisotropic 
layer, which try to cancel out the vertical magnetic field excited by the underlying lateral conductivity 
contrast. In an isotropic structure, these compensating currents would be of opposite direction with 
rcspect to the exciting currents and would cause the induction arrows on the surface to become smaller. 
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With anisotropy within the layer, the compensating currents are deflected, and the resulting induction 
arrows are rotated towards the direction of preferred conductivity. The impedance diagrams for this model 
behave as intuitively expected, their minimum axes are turned into the direction of preferred conductivity. 
Quite a similar effect as that described here for an anisotropic cover is observed if the anisotropic layer 
is situated below the lateral contact, only the frequency range of the maximum anisotropy influence is 
shifted, towards longer periods, due to a greater depth of the layer. 

We consider the results of these simple modellings quite interesting as regards the induction studies 
in a regional vicinity of the KTB borehole. A discrepancy often discussed when considering inductior. 
data from this area consists in a regionally observed directional difference of induction arrows and prin­
cipal impedances-while the impedances display rather strong anisotropy with minimum axes directec 
predominantly towards NW, the induction vectors are almost uniformly directed towards S, for longe: 
periods from 10 s at least. Without penetrating deeper into this problem, we only want to emphasizt 
that within the class of 2-D anisotropic models such a relation between impedances and induction arrow� 
is quite possible. 

References 

(1] Tezkan, B., 1988. Ein Interpretationsversuch zur Erklärung der konträren Phasenverlaufe der E- und 
B-Polarisation am Ostrand der Hessischen Senke mit zweidimensionalen Leitfähigkeitsmodellen, in 
Protokoll Kolloquium Elektromagnetische Tiefensondierung, Königstein, 1-3 March 1988, pp. 35-54.
eds Haak, V. & Homilius, J., Niedersächsisches Landesamt für Bodenforschung, Hannover.

(2] Tezkan, B., Cerv, V. & Pek, J., 1992. Resolution of anisotropic and shielded highly conductive 
layers using 2-D electromagnetic modelling in the Rhine Graben and Black Forest, Phys. · Barth 
planet. Inter., 74, 159-172. 

[3] Eisel M., 1994. Modell Oberpfalz-anisotrop. Paper presented at Kolloquium Elektromagnetische
Tiefenforschung, Höchst/Odenwald, 29-31 March 1994.

(4] Tauber, S., 1993. Die Leitfähigkeitsverteilung in den nördlichen Varisziden untersucht mit den 
Methoden der Magnetotellurik und der geomagnetischen Tiefensondierung auf einem Profil vom 
Oberpfiilzer Wald ins Vogtland. Diploma thesis, Inst. für Geol., Geoph. und Geoinform., Freie Uni­
versität Berlin, 102 pp. 

[5] Cerv, V., Pek, J. & Praus 0., 1993. MT and MV measurements in SW Bohemia. In KTB­
Report, (submitted).

[6] Eisel, M., 1992. Effekte lateral anisotroper Leitfiihigkeitsstrukturen in der MT, in Protokoll Kol­
loquium Elektromagnetische Tiefenforschung, Borkheide, 25-29 Mai 1992, eds Haak, V. & Rode­
mann, H., Deutsche Geophysikalische Gesellschaft.

[7] Eisel, M. & Bahr, K., 1993. Electrical anisotropy in the lower crust of British Columbia: an interpre­
tation of a magnetotelluric profile after tensor decomposition, J. Geomag. Geoelectr., 45,1115-1126.

[8] Jones, A. G., Groom, R. W. & Kurtz, R. D., 1993. Decomposition and modelling of the BC87
dataset, J. Geomag. Geoelectr., 45, 1127-1150.

[9] Rasmussen, T. M., 1988. Magnetotellurics in southwestern Sweden: evidence for electrical anisotropy
in the lower crust?, J. Geophys. Res., 93, 7897-7907.

[10] Reddy, 1. K. & Rankin, D., 1975. Magnetotelluric response of laterally inhomogeneous and anisotropic
structure, Geophysics, 40, 1035-1045.

(11] Saraf, P. D., Negi, J. G. & Cerv, V., 1986. Magnetotelluric response of a laterally inhomogeneous 
anisotropic inclusion, Phys. Barth planet. Inter., 43, 196-198. 

(12] Xiong, Z., 1989. Electromagnetic fields of electric dipoles embedded in a stratified anisotropic 
earth, Geophysics, 54, 1643-1646. 

[13] Osella, A. M. & Martinelli, P., 1993. Magnetotelluric response of anisotropic 2-D structures, Geo­
phys. J. Int. , 115, 819-828.

36 



n 
:1 
'· 

r 

s 

s 

11 

[14) Schmucker, U., 1994. 2 dimensionale dünne Schichten über anisotropen geschichteten Halbräumen, 
Poster presented at Kolloquium Elektromagnetische Tiefenforschung, Höchst/Odenwald, 29-31
March 1994. 

[15] Grubert, D., 1994. Eine Verallgemeinerung der klassischen Lösung von d'Erceville & Kunetz für
anisotrope Widerstände, Poster presented at Kolloquium Elektromagnetische Tiefenforschung,
Höchst/Odenwald, 29-31 March 1994.

[16) Reddy, I. K., & Rankin, D., 1971. Magnetotelluric effect of dipping anisotropies, Geophys.

Prosp., 19, 84-97. 

[17] Loewenthal, D. & Landisman, M., 1973. Theory for magnetotelluric observations on the surface of
a layered anisotropic half space, Geophys. J: R. astr. Soc., 35, 195-214.

[18) Brewit-Taylor, C. R. & Weaver, J. T., 1976. On the finite difference solution of two-dimensional 
induction problems, Geophys. J. R. astr. Soc., 47, 375-396. 

[19] Haak, V., 1972. Magnetotellurik: Bestimmung der Übertragungsfunktionen in Gebieten mit lateraler
Änderung der elektrischen Leitfähigkeit, z. Geophys., 38, 85-102.

[20) Cerv, V. & Praus, 0., 1978. Numerical modelling in laterally inhomogeneous geoelectrical struc­
tures. Studia Geophys. et Geodaet., 22, 72-81. 

[21] Yudin, M. N., 1982. Algorithm of selection of net parameters in calculations of magnetotelluric field
by the finite-difference method, in Geomagnetic Researches No. 29, pp. 91-95, eds Vanyan, L. L., De­
babov, A. S. & Kharin, J. P., Radio i Svyaz, Moscow (in Russian).

[22] Weaver, J. T., Le Quang, B. V. & Fischer, G., 1985. A comparison of analytical and numerical
results for a two dimensional control model in electromagnetic induction. 1. B-polarization calcula­
tions, Geophys. J. R. astr. Soc., 82(2) , 263-277.

[23) Weaver, J. T., Le Quang, B. V. & Fischer, G., 1986. A comparison of analytical and numerical 
results for a two dimensional control model in electromagnetic induction. 1. E-polarization calcula-
tions, Geophys. J. R. astr. Soc., 87, 917-948. 

37 

r 



Appendix 

FD schemes and coefficients 

FD scheme and coefficients Cf,.E (top half-box) and Cf,.H (bottom half-box) 

for the E-mode at the grid node (j, k) 
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4iwµo j,k 

1 

j 

QljJk J, 

1 · xE , U 
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RE - (h(Y) + h(Y) )/(2h(z) ) 
J,k - J J+l k+l 1 

V.Ek = -(P!3k + QEk + R-~k + SEk) J, J, J, J, J, ' 



FD scheme and coefficients CJ!E (top half-box) and CJ!H (bottom half-box) 

for the H-mode at the grid node (j, k) 
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