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SYMMETRY PROPERTIES OF ELECTROMAGNETIC TOMOGRAPHY 

INTRODUCTION 

Interest in large-scale imaging of formation conductivity has generated many studies in recent 
years. The most suitable techniques for such imaging are electrical tomography and 
electromagnetic tomography. For practical reasons, increased emphasis is being laid on the 
development of electromagnetic tomography in the frequency domain [Spies, 1992; Lee and 
Xie, 1993; Gasnier et al, 1994]. These tomography techniques are attractive for a wide range 
of purposes: environmental and engineering applications, mineral exploration, and also 
reservoir characterization. The availability of modelling and inversion software is a crucial 
factor in the development and in the applicability of such new techniques, and many studies 
have been undertaken in order to develop such capabilities. Modelling is usually performed in 
2-D model geometry with 3-D source geometry; various methods can be found in the
literature: finite element [Unsworth et al., 1993], domain integration with nonlinear
approximation [Torres-Verdin and Habashy, 1993], and use of the t-q or co-q transform [Lee
and Xie, 1993].

„ We have solved the modelling problem with a formulation based on boundary integral
equations [Straub, 1994]. We assume a two-dimensional model geometry with piecewise
homogeneous domains. From the reduced wave equation, we deduce a set ofboundary integral
equations for both electrical and magnetic fields. The model geometry is given by the contours
or boundaries in the transverse plane. Their discretization leads to polygonal contours. In our
particular version, the unknowns in the wavenumber domain are the boundary values of the
axial fields and.-tbe normal derivatives of these fields. After computation of these boundary
values, it is possible to obtain the axial and transverse fields at any point of the model.
The edges of the polygonal contours introduce angular singularities. These singularities are
treated in an accurate manner. Validation of the numerical results is an important and
sometimes neglected step in. such software development. We explain in this paper how the 
symmetry properties of the synthetic tomogram can be exploited in order to easily test the 
numerical accuracy of the code. 

DATA ACOUISITION AND DATA REPRESENTATION 

Tomography consists in making cross-well measurements. One borehole contains an 
electromagnetic source, the other borehole contains the receiver. A commonly-used source is a 
magnetic dipole, whose axis is coincident with the borehole axis. The receiver consists of a 
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three-axis magnetic sensor. Such a configuration enables the acquisition of bivariate data. The 
location of the source may vary within a given depth interval in the source borehole; in the 
same way, the receiver may vary within the same depth inteval in the receiver borehole. The 
two intervals approximately delimit a study region. Coverage of this study region is marle 
possible by collecting the data corresponding to all pairs of source and receiver points. The 
first requirement for two-dimensional imaging is the availability of bivariate data. This 
dimensionality constraint is met in such a tomography. The second requirement for the 
uniqueness of the solution is the necessity for a. complete coverage over the boundary 
surrounding the study region, as partial coverage will lirnit the spatial resolution of the image. 
Unfortunately this requirement is not met in geophysical tomography; this limitation is inherent 
in this specific geophysical application. 
For control purposes, it seems important to be able to depict the entire set of data acquired on 
a given pair of boreholes. A convenient way of doing this is to introduce the tomogram 
concept. Each measured parameter (e.g. a component of the magnetic field in the receiver 
borehole) is plotted on a plane as a function of the source position Zs and the receiver position 
Z

R
. This type of representation in the ZZ plane is called a tomogram and enables visual control 

of the entire of experimental data. lt can be applied with synthetic data as well. In the general 
case, there is no obvious relationship between the geoelectrical model and the tomogram in the 
ZZ plane. However it is interesting to observe how a given intrinsic symmetry of the 
geoelectrical model is transformed in the ZZ plane. 

SYMMETRY PROPERTIES 

We will establish here a correspondence between the symmetry of the geoelectrical model and 
the symmetry of the tomogram. Our reasoning is based on the reciprocity theorem [Harrington, 
1961]; we first recall the general form of this theorem. 
Consider two states corresponding to a given geoelectrical model and two source models. The 
Maxwell equations in the frequency domain are: 

➔ ➔  ➔ -4> ➔ ➔  ➔ -+

V X E 1 = -z H 1 - Z M; V X E II = -Z H 11 - Z MI; 
➔ ➔ ➔ 

-.. 
Vx H1 = yE1+l1 

➔ ➔ ➔ ➔• 
Vx Hll = yEu+lu 

The model is specified by the spatial distribution of the impedivity z = iffi�t and the admittivity 
➔ 

y = cr + iEffi . Each state is characterized by the distribution of magnetic sources At° and 

electrical sources 7·. These vectors it and 7· represent the volume density of the dipolar 
moment of these sources. In our application, the sources are point sources represented by 
Dirne distributions at points S 1 and S 11. In a classical development, by forming well-chosen . 
bilinear products, we obtain the equality: 

(J;.Eu )-( z fi;.Hu) = (1�;.E1 )-( z M1;.H) 
This expresses the reciprocity theorem. Each term corresponds to an integration over the 
whole space i.e. IR\ Each tem1 can be understood as the result of a measurement. The 
quantities 
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➔ ➔are measurement operators, which are applied to the electrical field E or the magnetic field H.

So the source distributions play the rote of sources in one state and of measurement operators 
in the other state. In our application to electromagnetic tomography, we will usually restrict 
this reciproctity theorem to magnetic dipoles and to media with constant permeability. In this 
case, we obtain the equality: 

1 ➔ ➔) 1 ➔ ➔) ➔ ➔  ➔ ➔ 
\M;.H11 = \ M1;.H, or M1.H11 (S1)=M11.HdS11) 

In. the same way we could write for the electrical dipoles: 
1➔ ➔ ) / ➔ ➔) ➔ ➔ ➔ ➔ 
\1;.E11 =,J,;.E, or J1.E,dS1)=J11.E1 (S11) 

➔ ➔ In these expressions, the vectors M and J are the dipolar moments of the sources. Due to the 
Dirac distributions, the volume integrals are transformed into quantities defined at point S, and 
S1,. 
We consider now a two-dimensional model geometry with a horizontal strike axis and a 
vertical dipolar source, for example a magnetic dipole. In the transverse plane of symmetry, 
which is of interest in our problem, the only non-zero fields are the axial electrical field and the 
transverse magnetic field. We will concentrate on the vertical magnetic field in the receiver 
borehole, because it represents the observed field. The reciprocity theorem leads to: 

M,z.H11z(S1) =M,,z.H,z(Sn) 

This property can be combined with specific symmetries of the model. There are three basic 
symmetries: a symmetry with respect to a horizontal plane, a symmetry with respect to a 
vertical median plane, and a symmetry with respect to a central point. The important point is 
that in each symmetry transformation, the set of vertical boreholes remains invariant. As shown 

. in Figures 1, 2, and 3, it is possible in each case to state an identity between one experiment 
given by a pair (S1 , M1) and another experiment given by a pair (S2,�). 

a) Symmetry with respect to a horizontal plane (Figure 1)

A 1t rotaiion and a sign reversal lead to the following relations: 
ZS1+ZS2= 2Zo 
ZM1+ZM2= 2Zo 

This expresses a symmetry with respect to the center O in the tomogram plane: the fields Hz 

and E y are symmetric, the field H x is skew-symmetric. 

b) Symmetry with respect to a vertical median line (Figure 2)

Combination of the reciprocity and a 1t rotation leads to the following relations: 
Z51=ZM2 and ZM1=Zsi 

This expresses a symmetry with respect to the first diagonal in the tomogram plane. This 
symmetry is valid only for the field Hz . 
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c) Symmetry with respect to a central point (Figure 3)

Combination of the reciprocity and a 7t rotation leads to the following relations: 
Zsi+ZM2= 2Zo 

This expresses a symmetry with respect to the second diagonal in the tomogram plane. This 
symmetry is valid only for the field Hz . 
The correspondence between the symmetries of the model and the symmetries of the 
tomogram is summarized in Table 1. 
lt is clear that the symmetries which involve the reciprocity property are valid for a field whose 
nature and direction are identical to the source. lt is important to mention that these 
symmetries are valid for the total fields and for the primary fields, and consequently also for the 
secondary fields. lt can also be recognized that a combination of the two arbitrary symmetries 
implies the third symmetry for both the model and the tomogram. These properties can 
conveniently be exploited in order to check the accuracy of numerical modelling results. 
We present in Figure 4 a model which possesses a symmetry with res.pect to a central point. lt 
contains two square conductive bodies. The transmitter frequency is 'lOkHz, so that the 
regime is situated in the resonance region. A control of the discretization of the boundaries 
(especially at the edges ofthe bodies) made it possible to obtain a symmetric tomogram for the 
field H zs, as shown in Figure 5. Less than 68 boundary elements were needed for each body 

in order to obtain the correct symmetry. This symmetry is in agreement with Table 1. lt is 
important to observe that the symmetry and convergence criteria are simultaneously met. Thus 
visual validation of the tomogram becomes a sensitive and convenient tool for the numerical 
control of modelling results. 
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SYMMETRY PROPERTIES 

FOR THE ELECTROMAGNETIC TOMOGRAPHY 

(Vcrical magnctic dipolar sourcc Mz) 

� 

ry Syrn/ Syrn/ Sym/ Centre 

R 
Horizontal plane Ve1iical plane 

+Hz, Ey
Sym/centre -Hx 0 0 

Sym/First 0 +Hz 0 

Diagonal 

Sym/Second 0 0 +Hz
Diagonal 

Table 1: Correspondence between model symmetry and tomogram symmetry 
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Figure 4: Model geometry 
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Figure 5: Tomograms for the vertical secondary magnetic field 
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