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This pa.per deals with the problem of determining regional strike from a magnetotelluric impeda.nce te_nsor in the presence of ga.lvanic distortion. For a more in-depth discussion on the sources of and proposed solutions to 
near surface and galvanic distortion the reader is referred to Jiracek (1990), Groom and Ba.iley (1989,1991) a.nd Groom and Bahr (1992). Bahr (1988,1991) discussed ga.lva.nic distortion a.nd presented a classification of distortion types. He introduced the superimposition model in which the Earth is viewed a.s having a 2D regional structure but with loca.l or near 
surface galvanic distortion. Using a real frequency-independent distortion matrix to represent the ga.lvanic distortion, the measured impedance tensor takes the form 
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In a coordinate system with x north, y east, z down, and rotation defined 
as above, the strike of Z in Equation 1 is -0 east of north. In the coordinate system of the regional structure (i.e. with 0 = 0) Z has the form 

Z= (2) 
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The key feature of Z in Equation 2 is that the phases of the elements inthe left-hand column are the same, as are the phases of the elements in the 
right-hand column. To allow for cases where there is no strike angle at which the phases in each column are equa.l, Bahr (1991) extends the superimposition model to allow for a given pha.se difference 84> between. the elements of ea.ch column. Here Z takes the form

Z = R( 0) [ -CxyZyxr exp ifi4> CxxZxyr . ] ftT ( 0) (3) -CyyZyxr CyxZXYr 
exp -Z04> 

Bahr (1991, Eqn. 30) present.s an a.pproximate expression (0-30) for this 
strike which I found to be ina.ccura.te a.nd occasiona.lly undefined. A · good example of this is shown in Figure 1. I have extended Ba.hr's a.nalysis to allow for the ca.se where the magnitudes of the phase <lifferences a.re the sa.me, but their signs may differ and have 
determined a more accura.te expression for the strike angle. In this analysis, 
Z ta.kes the form
where 

A = [ e�� e±�s� ]
We wish to find the angle O'E for which the following is true 
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There ma.y be severa.l such va.lues of CXE in which ca.se I choose tha.t for which l81> I has the sma.llest va.lue. 
The phase of a complex number is given by 

_1 (8'( c)) cp(c) = tan �(c) 
and the phase difference between two complex numbers is 

We wish to find the angle O'E at which the ma.gnitude of the phase difference 
between z:;: and Z

1
�f is equal to the ma.gnitude of the phase difference between Z

1
�f a.nd z:;,:. 
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Considering the two signs separately we have 

or 
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Using the condition 

we have 

or 

cp(c) = 0 � S'(c) = 0 (assuming ?R(c) > 0) 
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These equations can be expressed as two polynomials in t = tan(aE). 
The coefficients of the polynomial derived from Equation 5 are 

where 
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To obtain the coefficients of the polynomial derived from Equation 6 
replace Qi with Q: above. 
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The solution to Equa.tion 5 is the ta.n of tha.t angle O'E a.t which the phase 
difference between the elements of the two columns of the impedance tensor 
is 8,t, . The solution to Equation 6 is that angle at which the phase differences 
are equal in ma.gnitude but differ in sign. 

I use La.guerre's numerical method (Press et al., 1986, p263) for solving 
the two polynomia.ls. Ea.ch polynomial has eight roots, some of which may 
be complex. The real roots are the tangents of several possible strike angles, 
The angle of interest is tha.t for which 184' 1 in Equation 4 has the smallest 
value. 

lf a( Z) denotes the strike of tensor Z then, the following should be true 
for any value of 0 

a(R(0)ZRT(0)) = a(Z) - 0 (7) 

To determine if this is true for O'E or a30, I constructecl a. rota.ted, distorted 
impedance tensor Z 

with 
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Figure 1: A test of the accnracy of two pha.se-dependent strike a.ngles, <xE ( o) 
and a30 (X) for a. synthetic impeda.nce tensor. The strike a.ngles were calculated 
for rotations of 0° , 5° , 10° .. . Wherever a x is a.bsent this indica.tes that a30 is 
undefined. 

Figure 1 shows the va.lues of O'E a.nd a30 for several values of 0 for the 
rotated tensor R(0)ZRT(0). lt is obvious tha.t O'E fulfills the condition in 
Equation 7 a.nd tha.t a30 ca.n be ina.ccurate by as much a.s 15° . 
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