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Abstract

We report a new improvement in self-organized maps for geological interpretation
of geophysical data. By using a multi-geophysical dataset recorded in the mining area
of Thuringia, Germany, we show the results of replacing the typical feature analysis
by a principal component analysis. By performing a transformation of the dataset ac-
cording to a few of the principal components, we obtain a more detailed representation
of the local geology than previous works. Results also show a significant improvement
in processing time, while also minimizing influence of user´s interpretation.

1 Introduction

New available technologies in geosciences allows us nowadays to perform multi-geophysical
measurements in large areas, with levels of resolution not previously possible. This achieve-
ment brings as consequence the great challenge of performing a geological interpretation
based on very large amount of data, usually with a limited amount of time. Luckily, current
technology also brings new tools to help us with the task. In this work we describe recent
developments in project DESMEX-II, related to application of the self-organized maps
for geological interpretation. These results are then applied in a multi-feature dataset
registered in a mining area located in the state of Thuringia, Germany.

2 Theory

2.1 Self-organizing maps

The self-organizing map (SOM) represents a set of high-dimensional data items as a quan-
tized two-dimensional image in an orderly fashion. Every data item is mapped into one
point in the map, where spatial distance of items reflect similarities between them. Every
single neuron in the map is connected to the data by an individual weight vector, and the
selected point (known as Best Matching Unit or BMU) is the neuron with the smallest
Euclidean distance between data and each individual cell.
Once a BMU is selected, an optimization process activates a modification of weight values
in the neuron. This process also triggers activation of the neighboring neurons, where
the amplitude of changes for the neighbors is in function of the distance to the BMU.
Therefore, neurons near the BMU will have a more significant weight adaptation, while
cells located at a large distance from the BMU will have a very small weight update or
none.
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In order to evaluate the SOM results we make use of two error values named quantiza-
tion error (QE) and topographic error (TE), where QE represents an estimation of data
dispersion and TE is a measure of topology distortion.
Following Pölzbauer (2004) QE is computed by determining the normalized, average dis-
tance of the sample vectors to the cluster centroids that representes them, while TE is
calculated as the normalized distance between the best and second-best matching units.
Both errors are represented as values between 0 and 1, and is important to keep both
values in balance, as also close to zero as possible.
Data samples sharing similar properties will show in the SOM as a cluster of points with
very small distance between them. Once we obtain a map with satisfactory QE and TE
levels, the next step is to define boundaries between the clusters.

2.2 K-means clustering

K-means (Lloyd, 1957; MacQueen, 1967) is one of the most popular algorithm to define
boundaries between the SOM-clusters and is often a standard option in available SOM
algorithms. In general terms, first step is to choose the initial centroids, with the most
basic method being to choose samples from the dataset. Step two assigns each sample to
its nearest centroid. Step three creates new centroids by taking the mean value of all of
the samples assigned to each previous centroid. Difference between the old and the new
centroids are computed and the algorithm repeats these last two steps until this value is
less than a threshold (Scikit-learn developers, 2021).

2.3 Principal Component Analysis

Principal component analysis (PCA) is the new incorporation into our SOM process.
PCA finds a new set of orthogonal axes that have their origin at the data mean, rotated
so that data variance is maximized. The first principal component (PC) represents the
largest percentage of data variance, the second PC band represents the second-largest data
variance, and so on (Guo et al., 2009).

3 Schleiz dataset and project DESMEX

3.1 Schleiz dataset

In the framework of project DESMEX (Becken et al., 2020) multiple geophysical surveys
were carried out by the DESMEX Working Group in the mining area of Schleiz, located
in the state of Thuringia, Germany (Smirnova et al., 2019; Steuer et al., 2020).
The survey area is located in the Berga anticline (Figure 1), which elongates in the SW-NE
direction and is bordered by several major faults and synclines. According to the three-
dimensional geological model of Müller and Kroner (2019), the sedimentary formations in
the anticline are an overthrust unit (Ordovician Weißelster Group, Ordovician Phycodes
and Gräfenthal Group) and a Devonian unit (Devonian and Silurian and Lower Carbonif-
erous). The area was selected due to the antimony deposits near the city of Schleiz,
extracted among other minerals from 1846 until beginning of the 1950s (Dill, 1985).
A regional-scale reconnaissance survey was performed with BGR’s standard helicopter-
borne geophysical system. The resulting dataset, complemented with petrophysical and
geological information, consists of more than 200,000 samples. Features in the dataset
consists of UTM coordinates (X,Y), frequency-domain electromagnetic (1-D, resistivity
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model, 25 m depth), magnetic (apparent magnetic susceptibility, analytical signal, to-
tal magnetic field anomaly) and radiometric data (Uranium, Thorium, Potassium, Total
count). Gravimetry (vertical and horizontal gradients) from LIAG (2010) is also included.

Figure 1: General workflow for the SOM analysis of the Schleiz data: survey dataset is
applied as input data for SOM analysis, defining several clusters which, by comparing
by geographical position, are expected to represent the different geological structures
in the area. Modified from Steuer et al. (2020).

3.2 Workflow of SOM analysis for geological interpretation

We use the SOM analysis with the goal of performing a geological interpretation directly
from the dataset. In order to do this, we follow the general workflow shown in Figure 2.
The recorded dataset works as input data for the SOM algorithm, which uses the K-means
algorithm to define the limits between clusters. User must provide in advance a number of
clusters for K-means calculations. Since our goal is geological interpretation, the number
of observed rock types in the area should be the preferred quantity of clusters, but usually
this value is reduced when the dataset does not possess enough information to discriminate
between all of rock types (resolution in data). Finally, by using the geographical position of
each sample we obtain a cluster-representation that hopefully resembles the local geology.
This result is not unique and is dependent of the personal interpretation of the user.
However, in our experience an overall accurate representation of the geology is usually
achievable.
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Figure 2: Geology of the Schleiz survey area in Thuringia, Germany. Blue line represents
the regional survey area covered in project DESMEX-II from Steuer et al. (2020).

3.3 Feature analysis and SOM model for the Schleiz dataset

Preugschat (personal communication) performed a rigorous statistical analysis of the
dataset in order to select the features with valuable information, and discard those who
show either a high-correlation level or little information regarding the geology of the area.
This defines a reduced dataset of only five features: Uranium, Thorium, Potassium, elec-
trical resistivity and analytical signal. This selected dataset was used first to define the
optimal dimensions for the SOM, resulting in a grid of 20 x 20 neurons. This analysis also
defines that maximal resolution of the map consists of seven clusters. The SOM analysis
uses package SOM Toolbox in Matlab. The analysis of the SOM-clusters shows a good
correlation with borehole and petrophysical data, as also with visual comparison of the
geological structures in the area. Despite good results, several geological structures are
not very well represented, such as the Weißelster group in the northwest-end of the area
(Figure 3). A more detailed description of the results is found in Steuer et al. (2020).

4 New developments in DESMEX-II

4.1 SOMPY software and re-evaluation of datasets and models

First, we tested an open source software for SOM written in Python called SOMPY
(Moosavi et al., 2014), which is very similar to Matlab´s SOM Toolbox. We use most of
the same parameters of Preugschat (personal communication) and Steuer et al. (2020),
the only difference is the shape of the neurons grid (rectangular instead of hexagonal) due
to better performance in SOMPY. The dataset is the same 5-features dataset previously
described. Visual inspection of our results (Figure 5A) shows good agreement with the
model of (Steuer et al., 2020). For a second test, we repeated the same process, replacing
the 5-feature dataset of Preugschat with the original full dataset. Results (Figure 5B) for
most of the area represent poorly the geology of the area. However, a striking feature is
the clear representation of the Weißelster group, not visible in the previous model. This
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Figure 3: Comparison of the SOM-clusters with local geology, resulting from the dataset
of five selected features (Steuer et al., 2020).

result shows us that a process of feature selection, where some of the recorded parameters
are fully discarded, can provide good overall results for the final model estimation, but it
may also cause the loss of some of the information in the process.

4.2 PCA analysis of the Schleiz dataset and new model

In order to improve the model, we replace the feature-selection process by PCA. This
process divides in two stages: First, we evaluate the variance percentage for all principal
components in the original dataset (Figure 4), using the PCA function of Scikit-Learn´s
Python library (Pedregosa et al., 2011). The first three principal components represents
more than 50% of the variance, and after several trial-and-error tests we confirm that no
meaningful information is recovered by including further components.
The second step consists of performing a transformation of the original dataset. This is
possible by obtaining a representation of the dataset, using only the first three principal
components. Because of this, we obtain a new dataset with a dimensionality reduction
of approximate 75%. Repeating the SOM analysis by using the same parameters of the
previous tests and our new dataset, we obtain the model shown in Figure 5C.

4.3 Model-comparison for the Schleiz dataset

Comparison of the three models with the local geology is shown in Figure 5. After a
visual inspection, is clear that the “PCA model” provides a more accurate representation
for the geology of the whole area, including the Weißelster Group. For the “PCA model”,
a quantization error of 0.177 and a topographic error of 0.235 are observed, where the
first is the lowest error for the three models, while the second is above the “all features”
model and below the “five features” model. These results confirms that the best SOM-
based geological interpretation for the Schleiz dataset is obtained from our new PCA-SOM
process.
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Figure 4: Representation of the percentage of variance of the principal components in the
Schleiz dataset. The first three principal components represent more than 50% of
the total variance. The rest are discarded (set equal to zero) during transformation
of the dataset.

5 Discussion

There is a clear advantage in replacing the feature selection process by a PCA analysis:
is faster (no need for time-consuming feature analysis), analysis is very straightforward,
influence of user´s interpretation is minimized and a higher dimensional reduction of the
dataset (75% instead of 60%) reduces the calculation time. However, despite many tests,
including some recommended by Kohonen (2014), we were not as effective as the process
developed by Preugschat (personal communication) to define the dimensions of the SOM.
Therefore, a merge of both methods is desirable. Application of SOM for geological in-
terpretation is not a novelty (Taner et al., 2001; Bauer et al., 2012; Fraser et al., 2012;
Carneiro et al., 2012; Roden et al., 2015). However, to our knowledge this work is the first
time that application of a PCA-transformed dataset is reported, at least for this particular
goal. Examples of PCA application as a pre-processing filter can be found in the machine
learning literature (VanderPlas, 2016).

6 Conclusions

Application of a PCA analysis and transformation of the Schleiz dataset proves to be
a significant step forward, compared to previous results. A reduction in time due to
removal of the feature-selection process and a larger dimensionality reduction of the dataset
translates into a significant reduction of SOM calculations. The resulting model is a better
representation of the local geology. To our knowledge, this is the first time that such a PCA
approach for SOM analysis is applied for geological interpretation. In a future work, we
will explore the implementation of the methodology by Preugschat for map configuration.
Finally, this work also shows the power and value of open-source software alternatives.
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Figure 5: Geology of the survey area (up, left). Model A (up, right) model resulting from
SOM classification for the original dataset. Model B (down, left) is the five-features,
equivalent model reported in Steuer et al. (2020). Model C (down, right) is the
SOM model for the PCA-transformed dataset reported in this work. All models
were obtained with a map of 20 x 20 neurons, considering 7 clusters during K-means
calculations.

Cortés Arroyo et al., SOM-Analysis in Project DESMEX-II

8



References
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