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1 Motivation

Geophysical Inversion is often very time consuming and requires previous knowledge on
the geological environment of the survey area. Both of these factors could be avoided by
utilizing neural networks for geophysical inversion. Distinguishing the e�ects of anomalies
from the ones produced by a geologic background is very similar to an image segmentation
approach. This approach is very established and has been shown to work in a variety
of �elds. Image segmentation is traditionally accomplished using convolutional neural
networks. Here, we present an approach of utilizing convolutional neural networks for
the task of regression applied to DC data. Network architecture, forward modelling and
preliminary results will be discussed.

2 Architecture and Experimental Design
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Figure 1: Architecture used for training 2D inversion

Architecture for segmentation often follows an encoder/decoder scheme (see Fig. 1. During
the encoding, convolutional layers and MaxPooling layers are used to �lter out the most
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important information. This then gets transformed during the decoder step with the
use of MaxUnpooling layers. The traditional SegNet architecture (Badrinarayanan et al.,
2017) uses a varying number of pooling and unpooling layers, with a �nal Softmax layer for
segmentation. Here, this architecture is slightly modi�ed to perform regression by replacing
the Softmax layer with a Dense layer (see Fig. 1). This also mirrors the approach to an
architecture used by Vu and Jardani (2021). In the 3D case, the MaxUnpooling layer is
replaced by a combination of UpSampling3D and Concatenate layers, e�ectively turning
the network into a U-Net (Ronneberger et al., 2015). This decision was made due to the
lack of an established MaxUnpooling3D layer. All training and evaluation was performed
using the Keras API for Tensor�ow (Abadi et al., 2016).
To attain the amount of data needed for training a neural network, synthetic DC data
were generated. The synthetic forward modeling was performed using Matlab with an
in-house �nite element routine (Scheunert et al., 2021). We simulated DC measurements
along 17 Pro�les with 17 Electrodes each in a dipole-dipole con�guration. The distance
between pro�les and electrodes was 3 m. This setup was deliberately chosen to compare
results with Vu and Jardani (2021). 1-5 spherical anomalies were randomly placed below
the central pro�le. Background resistivity was set to 4000 Ωm, anomaly resistivity was
lower. An example with 3 spheres is shown in Fig. 2.

Figure 2: Mesh example for 3 spheres. Mesh is only shown on boundary surfaces.

The 17 pseudo sections were mapped onto a 32x32x16 grid with grid cells of the size 1.5m
in every spatial direction (see Fig. 3 for one pro�le). Background resistivity was assumed
for every cell not corresponding to a value from the pseudo section (again note Fig. 3).

Figure 3: Mapping of a pseudo section to a 32x16 grid.

Input ρa and ρ were �nally transformed before being supplied to the network:

ρa,in = 10(log10(ρa)− 3.5) (1)

ρin = log10(ρ) (2)
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3 Results

Figure 4: Training results for 2D data without noise. From top to bottom: Input ρa,
ground truth (ρ), predicted ρ. From left to right represents 3 di�erent cases.

Fig. 4 shows predictions for 3 di�erent cases. No noise has been applied to this data set
and data were 2D sections along the center pro�le taken from the 3D models. Prediction
of anomaly resistivities and locations are close to the ground truth. Multiple spheres are
often not recognized by the network as separate entities. The background resistivity is
generally overestimated in the predictions. The prediction contains 4 dead pixels that are
present in every case. This e�ect likely stems from over-training.

Figure 5: Training results for 2D data with noise. From top to bottom: Input ρa, ground
truth (ρ), predicted ρ. From left to right represents 3 di�erent cases.
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Results for the 3D case show similar characteristics: The anomaly shape and resistivity
is matched especially well for single, large anomalies. The background is generally over-
estimated, this time much more than in the 2D case. Resistivity and location of smaller
anomalies are matched much more poorly in the 3D case.

Figure 6: Training results for 3D data without noise. From top to bottom: Input ρa,
ground truth (ρ), predicted ρ. From left to right represents 3 di�erent cases.

4 Limitations

Figure 7: 2D evaluation of cases outside the scope of trained data. From top to bottom:
Input ρa, ground truth (ρ), predicted ρ. From left to right: homogeneous half-space,
higher background resistivity of 6000Ωm, higher resistive anomaly.

Weit et al., Convolutional Neural Networks applied to 2D and 3D DC resistivity inversion

36



The presented approach is very limited in scope. Only cases with conductive anomalies
were used for training. This means a fully learned network cannot predict cases outside
of this scenario accurately. This can be seen in Fig. 7. The ground truth of all scenarios
does not match the prediction. Cases such as homogeneous half-spaces and also bodies
could potentially be added to the training pool. However, the case of higher background
resistivity poses a particularly large problem, as training would have to be performed anew
for every di�erent geological situation.

5 Outlook

The presented approach is promising for a limited number of scenarios. However, as
seen in the previous section, there are a number of limitations. Some of these can be
overcome by more training with more varied types of data. However, the current approach
requires setting a background resistivity. This poses a major problem for applicability, as
the training would have to be redone for each new geologic situation. Without further
developments, the current approach is thus not realistically suitable for the inversion of
real world data. Di�erent data transformations (to achieve the desired input shape from
pseudo sections) could present an improvement. One possible application of this sort of
approach lies in the generation of starting models for other inversion techniques.
Generally, an approach combining knowledge about the underlying physics and neural
networks could prove most fruitful.
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