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1 Motivation

Hundreds of thousands of unexploded ordnance (UXO) are still remaining in the subsurface
worldwide and pose a high potential hazard. Thus, the urgent need to ensure a safe
recovery of such objects requires an improved strategy for analyzing �eld data acquired by
magnetic survey methods. To achieve more accurate localization of UXO, we aim to apply
a deep learning framework to recognize their speci�c magnetic anomaly pattern at the
Earth's surface. Using an image segmentation approach, the model is trained to separate
a potential target signal from di�erent background �elds. Here, we present the generation
and processing of training data, the applied network architecture, and preliminary results
to prove the concept.

2 Numerical Simulation and Data Engineering

Applying a deep learning framework to correctly interpret magnetic data requires a vast
amount of training samples. Due to a lack of real survey data, our segmentation approach
is based on synthetic data. The simulation and preparation of adequate training scenarios
has been performed using Matlab, and is based on the simulation routine described in
Gödickmeier (2020).
Initially, various datasets with 10000 samples were generated randomly. Taking into ac-
count the ambiguity and complexity of magnetic �eld data, every map has been compiled
using a certain number of individual simulated �eld anomalies with di�erent spatial loca-
tion properties. For this purpose, the simple model of a homogeneously magnetized sphere
was assumed as an elementary unit, representing a possible target object. According to
Blakely (1996), the magnetic anomaly of a single spherical object was calculated in terms
of the magnetic �ux density B(P ) at an observation point P outside the sphere. B is a
function of the distance r between the spherical center and P , the dipole moment m, and
the relative magnetic permeability µ0 and reads:

B(P ) =
µ0m

4πr3
[3(m̂ · r̂)r̂− m̂] with m = V ·M =

4π

3
a3 ·M. (1)

m̂ and r̂ are unit vectors in the direction of the dipole axis and the location vector,
respectively. The dipole moment of the sphere can be derived from a dipole located in the
center of the sphere, where V describes its volume, a its radius, and M the magnetization.
Modifying the spatial properties of the simulated objects, such as depth z = [0, 15]m and
dipole orientation (φ, θ, ψ) ∈ R3= [0, 360] ◦ in terms of the Euler angles, leads to a complex
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measurement scenario. A variation of the dipole orientation has been applied to imprint
remanence on the otherwise only induced simulated magnetization. Using predetermined
step sizes of ∆x=∆y=0.5m for observation points (x-direction) and pro�le spacing (y-
direction) over a computational domain of (x, y) ∈ Ω= [-100, 100]m, a spatially highly
resolved, square �eld of 4 ha is produced (see Fig. 1 left). Depending on the geomagnetic
latitude, which is kept constant for all case studies, an exemplary magnetic map repre-
senting the assumed investigation area is obtained. In our study, the represented magnetic
situation corresponds to the one in Freiberg with a total magnetic intensity (TMI) of about
49400 nT, an inclination of approx. 67 ◦, and a declination of approx. 4 ◦. It turns out
that the network has to be re-trained for di�erent geomagnetic locations which limits the
transferability of this method.

Fig. 1: Example of the simulated TMI data (left) and the labled data (right) of a multi-
dipole scenario with 15 anomalies (ground truth)

Subsequently, the simulated samples were transferred into a 400× 400 pixel image, de-
pending on the prede�ned step size in the x- and y-directions and the model domain.
Further preparation includes compressing the 2D images to optimize the computational
performance of the network. Since the original TMI values are assigned to each pixel,
compressing the input information is realized by color coding where a data type transfor-
mation from double (64 bit) to unsigned integer uint8 with RGB-channels (each 8 bit)
was performed. This leads to the �nal input feature map.
In semantic segmentation, we are dealing with supervised learning where each pixel is
classi�ed as either a background pixel or a pixel of the target class. Thus, labeling the
training data appends contextual information and is essential to instruct the model what
it actually should learn. This is done by creating a mask with labeled features (magnetic
anomalies), which produces the so-called ground truth, for each sample (Fig. 1 right).
It contains two channels for a two-class-segmentation, one represents the anomaly and
the inverted one the background class. The labels denote the anomaly position by black
circles whose centers correlate to the actual dipole coordinates and whose radii correlate
to a potential position accuracy. Afterwards, input image and mask are supplied to the
learning algorithm which has been implemented in Python. Training and evaluation is
performed using the Keras API for Tensor�ow.
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3 Network Architecture and Model Training

To analyze the generated data, based on the U-Net architecture of Ronneberger et al.
(2015), we apply this special deep convolutional neural network (CNN) to geomagnetic
data for image segmentation. Our network architecture is presented in Fig. 2, following an
encoder-decoder concept by using a large number of multi-channel feature maps denoted
by the di�erent boxes, and multiple operations denoted by the box colors and connecting
arrows.

Fig. 2: U-Net architecture for semantic image segmentation

The network learns to segment images end-to-end, where a raw image is supplied to the
network and a segmentation map will be returned. This means a classi�cation of each pixel
as background or target.
By splitting a 10000-sample synthetic dataset into three parts, the network is trained
on 5000 samples and validated on 2000 samples to build a representative model for the
chosen scenario. After training, this model is able to predict yet unknown data from the
remaining 3000 samples that form the evaluation set. Afterwards, the prediction quality
of the resulting model has to be analyzed to �ne-tune the training hyperparameters and,
if necessary, the network architecture itself. At best, the �nal segmentation map, i.e. the
prediction of the model at the end of the training, should not di�er signi�cantly from the
ground truth presented before.

4 Evaluation for Exemplary Models

In the following, preliminary results of two model scenarios are discussed. Figs. 4 and
4 each present the model input, i.e., the data and the ground truth (expected output),
followed by the segmentation map (predicted output) and a mis�t plot between ground
truth and segmentation map.
In scenario 1 (Fig. 4), the investigation area contains 19 randomly placed magnetic objects
with depths of of 3, 5, 7, or 9m. The depth value is randomly assigned to an individual
object. Temporarily, all sphere radii are kept constant to 0.05m. The model was trained
for clean data and �nally evaluated for clean as well as noisy samples. In scenario 2 (Fig 4)
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the objects of scenario 1 are assigned randomly generated values from 0m (earth's surface)
to 15m (subsurface).

Fig. 3: Modeling results for scenario 1. Top panel: noise-free data sample, bottom panel:
noisy data sample. From left to right: Input sample, ground truth, segmentation
map, mis�t (black represents good �t)

Fig. 4: Modeling results for scenario 2. Top panel: noise-free data sample, bottom panel:
noisy data sample. From left to right: Input sample, ground truth, segmentation
map, mis�t (black represents good �t)

For the training process, several hyperparameters such as the number of data samples,
epochs and batch size are de�ned. Epochs represent the number of training cycles that
the learning algorithm will work through using the entire training set. They contain the
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so-called mini-batches, which are processed before the models internal parameters are
updated. The batch size de�nes a number of subsamples, used in a single iteration, for
which a gradient update is calculated.
An evaluation of the model-generating neural network and the quality of the resulting
model itself can be carried out based on several criteria. On the one hand, one could
perform a subjective evaluation, e.g., by a direct visual comparison of ground truth and
prediction using a mis�t plot as in Figs. 4 and 4. On the other hand, one could carry out
a quantitative evaluation by assessing model history in terms of loss function and model
accuracy, root-mean-square (RMS) analysis of a given number of samples evaluated, or an
estimate of prediction uncertainty. The latter may be reached by de�ning a threshold for
the calculated probability of the respective class. For this, we set a tolerance value to 0.1
so that uncertainty corresponds to the percentage of all pixels with probabilities between
0.1 and 0.9. That is, the higher the uncertainty, the less reliable the prediction because
the model was not able to accurately predict the anomaly or background class. Thus,
just a tendency for the a�ected pixels is provided. It holds for instance for blurred edges,
overlaying noise, or in connection with a displacement between the expected and actual
predicted position. However, one have to be careful because, at worst, the network can
give an absolute certainty and still makes a wrong prediction.
But these are not the only aspects to be considered. It is also of great importance on
which database a model is trained and �nally evaluated. In the presented scenarios, it is
noticeable that the anomalies of particularly deep-lying objects fall within the signal range
of the additive noise �oor and thus unwanted artifacts are generated. This signi�cantly
reduces the prediction quality (see e.g. the mis�t in Fig. 4).

5 Conclusion and Outlook

By focusing on the overlap of magnetic signals in dipole clusters, the U-Net approach
allows for a better discrimination of individual anomaly signals, which leads to a more
reliable data interpretation. Furthermore, the application of this deep learning approach
facilitates the detection of weak anomaly amplitudes in the presence of additive noise.
However, it should be taken into account that the model needs to be re-trained with both
noisy and clean data in order to cover a wider range of possible scenarios and avoid the
generation of artifacts due to an unknown error �oor. For this reason, we will extend
and combine existing datasets in further investigations. Furthermore, we will evaluate
the in�uence of variable sphere radii making the model assumption more realistic with
respect to the maximum achievable prediction accuracy of the model. Additionally, a data
transformation, which scales the input in a preprocessing step, shall be analyzed for better
recognizability.
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