

2D/3D interpretation of controlledsource Radio-Magnetotelluric far field data from Alexandrovka, Russia

S. Fadavi Asghari^{1*}, M. Smirnova¹, A. Shlykov², B. Tezkan¹, A. Saraev², P. Yogeshwar¹

¹ Institute of Geophysics and Meteorology, University of Cologne; ² Institute of Earth Sciences, St. Petersburg State University *Contact: sfadavia@smail.uni-koeln.de

EMTF, Sep. 2021

Shiva Fadavi Asghari, Institute of Geophysics and Meteorology, University of Cologne

RMT

- Is a passive EM induction method
- Sources are the radio stations and/or VLF antennas (10-300 kHz)
- Skin depth is calculated as $\delta = 500 \sqrt{\frac{\rho}{f}}$
- MT assumption is valid for 1-1000 kHz and $< 1000 \Omega m$

Measurement bands	D2 (both)	D4 (both)
Frequency range (kHz)	10-100	100-1000
Sampling frequency (kHz)	312	2496

Weak points:

No strong signals far from the antennas in remote areas
Low depth of penetration

a) RMT receiver device, b) Magnetic coils

Shiva Fadavi Asghari, Institute of Geophysics and Meteorology, University of Cologne

Far-field setup, Alexandrovka, Russia

A paleo-valley in the vicinity of Alexandrovka, about 180 km away from Moscow.

Shiva Fadavi Asghari, Institute of Geophysics and Meteorology, University of Cologne

University of Cologne

Data processing

2D conductivity models: CSRMT

(Mackie, Rodi, 1997)

2D conductivity model: profile 8

Shiva Fadavi Asghari, Institute of Geophysics and Meteorology, University of Cologne

Tipper evaluation

Shiva Fadavi Asghari, Institute of Geophysics and Meteorology, University of Cologne

Shiva Fadavi Asghari, Institute of Geophysics and Meteorology, University of Cologne

3D conductivity model: RMT, profile 3

3D conductivity model: CSRMT, profile 3

Comparison with borehole results

Summary:

- Successful RMT and CSRMT measurements made in the frequency range of 1 to 1000 kHz.
- 2D Mackie inversion results, highly support the previously obtained models from the test area and its Geological characteristics.
- 3D inversion using ModEM software is accomplished successfully and are in a good agree with the 2D results.
- The aim of tensor realization of the data is achieved, however, due to the 1D nature of the area, the advantages of CSRMT could not be so much highlighted; Yet, CSRMT results indicate more details in compare with the RMT ones.

Future plans:

- As a 3D target, data acquisition in a waste-site is planned to be made in October.
- All the steps will be repeated over the new data leading to 2D/3D interpretation.