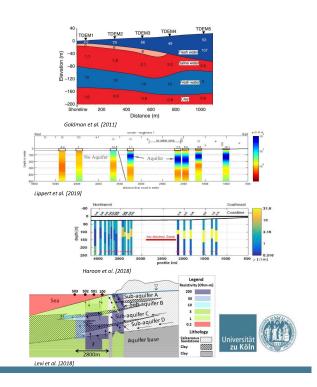


Klaus Lippert¹, Pritam Yogeshwar¹, Bülent Tezkan¹ ¹ Universität zu Köln, Institut für Geophysik und Meteorologie ² Helmoltz-Zentrum für Ozeanforschung Kiel, GEOMAR

Introduction

- Groundwater aquifers are important for the fresh-water supply, especially in dry and highly urbanized regions
 - Onshore aquifer is exploited
- CSEM methods have prooven to be applicable in groundwater exploration
- Prior studies agree that the aquifer extends offshore for some kilometers
 - Kafri & Goldman [2006]
 - Goldman et al. [2011]
 - Lippert (et al.) [2011, 2015, 2019]
 - Tezkan et al. [2012]
 - Haroon (et al.) [2016, 2018]
 - Levi et al. [2018]
- No proper 2D inversion software existed at that time



Lieber et al., Joint inversion of marine LOTEM and DED data from the Bat Yam coastal aquifer, offshore Israel

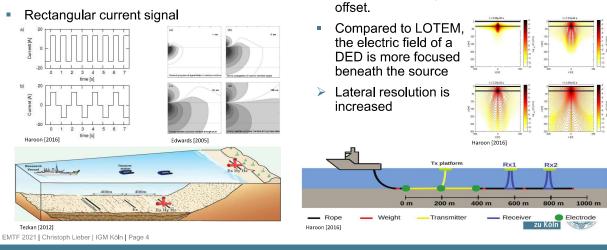
Introduction

- Groundwater aquifers are important for the fresh-water supply, especially in dry and highly urbanized regions
 - Onshore aquifer is exploited
- CSEM methods have prooven to be applicable in groundwater exploration
- Prior studies agree that the aquifer extends offshore for some kilometers
 - Kafri & Goldman [2006]
 - Goldman et al. [2011]
 - Lippert (et al.) [2011, 2015, 2019]
 - Tezkan et al. [2012]
 - Haroon (et al.) [2016, 2018]
 - Levi et al. [2018]
- No proper 2D inversion software existed at that time

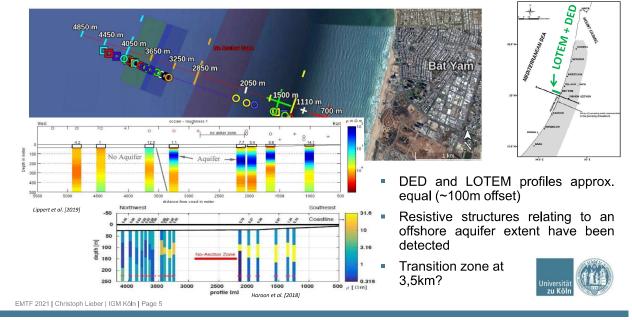
EMTF 2021 | Christoph Lieber | IGM Köln | Page 3

DED

Two opposite dipol transmitters each of

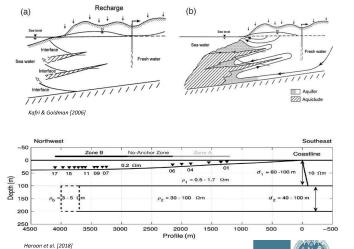

200m length towed behind a vessel + 2

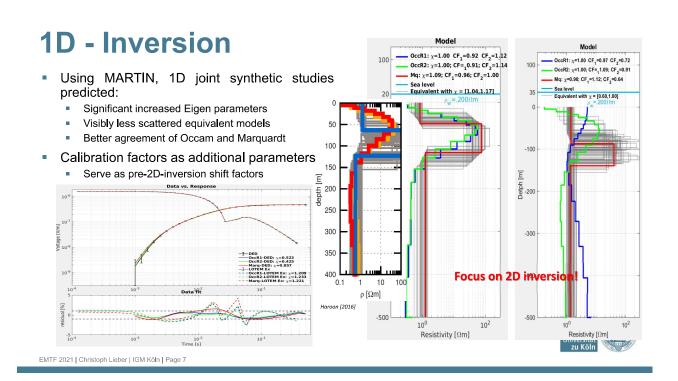
inline receiver dipols at 370 and 580m


Introduction

LOTEM

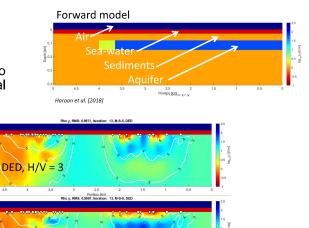
- Dipol transmitter of 400m length at the seafloor + broadside receiver dipols at 400-800m offset
- Rectangular current signal




Introduction

Motivation

- The shape of the sea-water to freshwater interface remained unclear
 - Important due to onshore exploitation
 - Depending on the scenario the aquifer might deteriorate
- A 2D inversion of the LOTEM and DED data of Lippert and Haroon remained unprocessed
 - 2D effects expected, thus 1D inversion might be improper for some data sets
- A joint inversion might improve the resolution of the aquifer, which is interesting especially around the lateral boundary
 - $\bullet \quad \text{Brackish?} \rightarrow \text{Salinization possible}$
 - Pumping rates? Sea level rise?

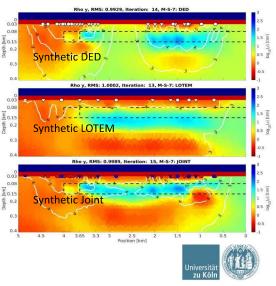


2D – Synthetic modeling

- Using MARE2DEM
- Error model: $\Delta = \frac{1}{\sqrt{t}} \Delta_{abs} + \Delta_{rel} + \Delta_{sgn}$

Position [km]

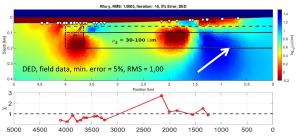
 Most important inversion parameter turns out to be the ratio between horizontal and vertical smoothing (>= 300)


LOTEM, H/V = 300

LOTEM, H/V = <mark>3</mark>

DED, H/V = 300

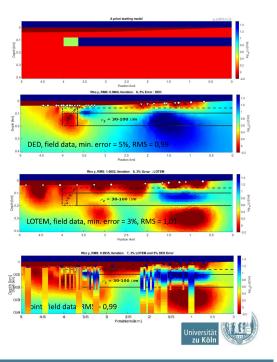
2D – Synthetic modeling


- As expected DED reproduces the lateral boundary
 Resolves the resistivity contrast between saline-, brackishand fresh-water
- LOTEM resolves the sediment layer beneath the resistor and shows a continuous aquifer across the data gap
- The Joint inversion combines the advantages of both methods
 - Sensitivity isolines underline that most of the information in the shallow to intermediate depth come from DED, while LOTEM covers the deeper structures

EMTF 2021 | Christoph Lieber | IGM Köln | Page 9

2D – Inversion

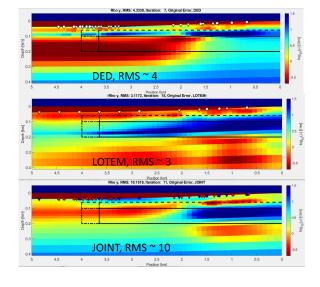
- Prior to a 2D inversion the LOTEM data was shifted by the 1D inversion CFs
- The LOTEM data was given a minimum relative error of 3%, DED was given 5% to fit the data.
- DED inversion with 1Ωm homogenous seafloor
 - Shore side aquifer might be resolved, but not its lower boundary
 - Lateral sea-water to fresh-water interaction might be interpreted as brackish transition zone
 - Highly conductive structure at 2km prohibits reasonable interpretation
 - Chi value is appreciable increased here



2D – Inversion

- Additional information was given into the inversion process
 - The starting model contains an expected aquifer scenario
- The conductive region at 2km vanishes in the DED inversion
 - Compared to the 2D forward modeling results of Haroon [2018] (black lines) the prior made interpretation approach seems more reasonable
- LOTEM inversion resolves the shore side aquifer and its lower boundary, but seems not reliable beyond the data gap (~2,5km)
- The joint inversion provides the best representation and comparability to the 2D forward modeling results of Haroon [2018]
 - Data gap region between 2-3km remains unclear
 - Results are also consistent with 1D inversion results of Haroon [2018] and Lippert et al. [2019]

EMTF 2021 | Christoph Lieber | IGM Köln | Page 11



Conclusions & Outlook

- Modeling clearly shows the advantages of applying a joint inversion of both methods for the prevalent hydrogeology.
- LOTEM and DED 2D inversions both can resolve the expected aquifer extent at some locations of good data coverage,...
- …although for 2D inversion a priori information seems essential
- The inversion results are in good correlation with prior results
 - Compared to the 2D forward model of Haroon [2018], the most shallow predicted scenario seems to be prevalent
 - The transition zone between sea-water and fresh-water might be brackish
 - > Important information for the water supply due to possible deterioration
- We know a resistor exists at certain depth, to clarify if the lateral boundary is still reproduced in the inversion, we should include a 1D shaped resistor in the starting model
- Use quadrilateral grid for further studies
 - Should be more reliable to represent lateral structures for our bad data coverage

Outlook – Quadrilateral Mesh

EMTF 2021 | Christoph Lieber | IGM Köln | Page 13

References

- Edwards, N. (2005). Marine controlled source electromagnetics: Principles, methodologies, future commercial applications. Surveys in Geophysics, 26(6):675700
- Goldman, M., Levi, E., Tezkan, B., and Yogeshwar, P. (2011). The 2d coastal eect on marine time domain electromagnetic measurements using broadside dBz/dt of an electrical transmitter dipole. GEOPHYSICS, 76(2):F101F109
- Haroon, A. (2016). Development of Novel Time-Domain Electromagnetic Methods for Offshore Groundwater Studies: A Data Application from Bat Yam, Israel. PhD thesis, University of Cologne.
- Kafri, U. and Goldman, M. (2006). Are the lower subaquifers of the mediterranean coastal aquifer of israel blocked to seawater intrusion? results of a tdem (time domain electromagnetic). Israel Journal of Earth Sciences, 55:5568
- Levi, E., et al. (2018). Delineation of subsea freshwater extension by marine geoelectromagnetic soundings (SE mediterranean sea). Water Resources Management, 32(11):37653779
- Lippert, K. (2015). Detektion eines submarinen Aquifers vor der K
 üste Israels mittels mariner Long Offset Transient-elektromagnetischer Messung. PhD thesis, University of Cologne.
- Lippert, K. and Tezkan, B. (2020). On the exploration of a marine aquifer oshore israel by long-offset transient electromagnetics. Geophysical Prospecting, 68(3):9991015.
- Lippert, K., Tezkan, B., and Bergers, R. (2010). Detection of fresh groundwater bodies within mediterranean sub-marine aquifers using marine long oset transient electromagnetics (LOTEM). In 20th IAGA WG 1.2 Workshop on Electromagnetic Induction in the Earth, Giza, Egypt
- Tezkan, B., Lippert, K., Bergers, R., and Goldman, M. (2012). On the exploration of a marine aquifer offshore israel by long oset transient electromagnetic: A 2d conductivity model. In Extended Abstract, 21st EM Induction Workshop, Darwin, Australia.

Lieber et al., Joint inversion of marine LOTEM and DED data from the Bat Yam coastal aquifer, offshore Israel

Thank you!

