

TECHNISCHE UNIVERSITÄT BERGAKADEMIE FREIBERG Die Ressourcenuniversitöt. Seit 1765.

2D \& 3D INVERSION OF MT DATA CONSIDERING TOPOGRAPHY

A case study based on the Chemnitz University of Technology and TU Bergakademie Freiberg FE-Toolbox
P. Semper ${ }^{1}$, T. Bertrand ${ }^{3}$, J. Blechta², R. Börner ${ }^{1}$, G. Caldwell , O. Ernst², W. Heise ${ }^{3}$, M. Scheunert ${ }^{1}$, K. Spitzer ${ }^{1}$

MOTIVATION

As part of the GEOSAX project (2017-2021) the TU Chemnitz together with the TU Bergakademie Freiberg developed an FE-Toolbox that provides blueprints for implementing forward operators and inversion routines for arbitrary geophysical EM problems. The presented work uses this toolbox to invert MT data from the Tarawera Volcanic Complex, New Zealand, that was acquired by GNS Science (2012-2017).

FORWARD PROBLEM

- MT basic equations in a bounded Lipschitz domain $\Omega \subset \mathbb{R}^{3}$:

$$
\begin{array}{cl}
\left(\nabla \times \frac{1}{\mu} \nabla \times+\iota \omega \sigma-\varepsilon \omega^{2}\right) \boldsymbol{E}=0 & \text { in } \Omega \\
\boldsymbol{E} \times \boldsymbol{n}=\boldsymbol{g}^{\boldsymbol{T E} \mid \boldsymbol{T M}} \times \boldsymbol{n} & \text { on } \delta \Omega \\
\boldsymbol{H}=\frac{1}{\imath \omega \mu_{0}} \nabla \times \boldsymbol{E} & \boldsymbol{n} \ldots \text { outer normal vector }
\end{array}
$$

$\boldsymbol{g}: \boldsymbol{E}$ excited by plane $\boldsymbol{H}=1 \frac{\mathrm{~A}}{\mathrm{~m}}$ in the air
\boldsymbol{E}-field formulation: Prevention of ill-conditioned matrices caused by large σ contrasts

$$
\begin{gathered}
\boldsymbol{A}^{\prime} \boldsymbol{u}^{\prime}=0 \\
\hline \text { Inclusion of inhomogeneous Dirichlet } \mathrm{BC} \\
\boldsymbol{A} \boldsymbol{u} \stackrel{\downarrow}{=} \boldsymbol{b}
\end{gathered}
$$

- Simulated quantity $(\boldsymbol{E}, \boldsymbol{H}): d_{i j k}:=\boldsymbol{Q}_{j k} \boldsymbol{u}_{i j}(\sigma)$ (polarization index i, frequency index j, observation index k)
- Interpolation operator $\boldsymbol{Q}_{j k}$: interpolation of FE-solution \boldsymbol{u} to \boldsymbol{E} and $\frac{1}{\omega \mu_{0}} \nabla \times \boldsymbol{E}$
- Equation solver: distributed multifrontal solver MUMPS ${ }^{\text {b }}$

JACOBIAN MATRIX

- Primal solution \boldsymbol{u} : solution of $\boldsymbol{A} \boldsymbol{u}=\boldsymbol{b}$
- Dual solution \boldsymbol{q} : solution of $\boldsymbol{A q}=\boldsymbol{Q}$
- Jacobian: linear Gateaux derivative of $d_{i j k}(\sigma)$

$$
\boldsymbol{J}_{i j k}(\sigma) \delta \sigma=-\imath \omega_{j} \mu \int_{\Omega} \delta \sigma \boldsymbol{u}_{i j} \cdot \overline{\boldsymbol{q}}_{j k}
$$

$\overline{\boldsymbol{q}}$ complex conjugate of \boldsymbol{q}

[^0]INVERSE PROBLEM

- Regularized Gauss-Newton method ${ }^{\text {w }}$ with $\boldsymbol{m}=f(\boldsymbol{\sigma})($ e.g. $\boldsymbol{m}=\log (\boldsymbol{\sigma}))$: $\Phi=\min _{\Delta m}\left(\sum_{k}\left|\boldsymbol{W} J^{k}(\boldsymbol{m}) \Delta \boldsymbol{m}-\left(b^{k}-g^{k}(\boldsymbol{m})\right)\right|^{2}+\beta \int_{\Omega}\left|\nabla\left(\Delta \boldsymbol{m}-\left(\boldsymbol{m}^{r e f}-\boldsymbol{m}\right)\right)\right|^{2}\right)$ $m=m_{0}+\Delta m$
- Solution ${ }^{\text {d }}$ of each Gauss-Newton step:

Euler-Lagrange \& mixed weak formulation (Raviart-Thomas and discontinuous Lagrange elements)	
$\left[\begin{array}{cc}-\boldsymbol{M} & D^{T} \\ \boldsymbol{D} & \frac{1}{\beta} J^{T} W^{T} W \boldsymbol{J}\end{array}\right]\left[\begin{array}{c}\zeta \\ \Delta m\end{array}\right]=$	Solve using the direct method (see below) or iteratively
- $\mathrm{U}=\frac{1}{\sqrt{\beta}}\left[\begin{array}{ll}0 & W\end{array}\right] \& C^{-1}$ by - Application of Woodbury fo $\left(C+\boldsymbol{U}^{T} \boldsymbol{U}\right)^{-1}=\boldsymbol{C}$ - Solve via backward substitu	$\begin{aligned} & \text { sition of } \mathrm{C}=\left[\begin{array}{cc} -\boldsymbol{M} & \boldsymbol{D}^{T} \\ \boldsymbol{D} & 0 \end{array}\right] \\ & \left.{ }^{-1} \boldsymbol{U}^{T}\right)^{-1} \boldsymbol{U C} \boldsymbol{C}^{-1} \end{aligned}$
J ... Jacobian matrix D ... divergence on $H(\operatorname{div}, \Omega)$ $\zeta=-\nabla(\Delta m) \ldots \text { flux }$ $\boldsymbol{m}^{\text {ref }}$... reference model	parameter, $H(\operatorname{div}, \Omega)$ rameter and

2D MODEL: COPROD 2S1

- 2D synthetic modelf
- (Figure 2b)
- Observations: Impedance \boldsymbol{Z}, Tipper \boldsymbol{T}

- 61 sites; 11 periods: $[2,10000]$ s
- Data weighting: mean value over all points for one frequency and for one component
- Additional balancing between \boldsymbol{T} and \boldsymbol{Z} in \boldsymbol{g}

Figure 2b: Coprod 251 synthetic model Figure 2c: Inversion result

- Seven well resolved conductive bodies
- Block in 40 km depth and conductive substratum recognizable
- Background: 1000 to $2000 \Omega m$
- Residual norm $<1 \cdot 10^{-3}$, but fit for long periods is worse than for shorter periods

TARAWERA

- 3D model of Tarawera Volcanic Complex
- Observations: Impedance \boldsymbol{Z}
- 68 sites; 16 periods $[0.012,341] \mathrm{s}$
- Subsequent inversion of frequency bands
(using previous result as starting model)
- Data weighting: same as for Coprod_2S1

- Resistive young rhyolite at surface (blue) and greywacke (green) well resolved - Older conductive ignimbrite ($2-3 \mathrm{~km}$ depth) and conductive body in 10 km depth partially resolved
- Effects at stations and bad fit of low periods due to coarse grid and oversmoothing of model at depth

[^0]: - Note: Additional transformation of $d_{i j k} \rightarrow g^{k}$ and $\boldsymbol{J}_{i j k}$ (chain rule) to obtain Z, T, ρ_{a}, ϕ and its derivatives

