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2D & 3D INVERSION OF MT DATA CONSIDERING TOPOGRAPHY

MOTIVATION
As part of the GEOSAX project (2017-2021) the TU Chemnitz together with the TU
Bergakademie Freiberg developed an FE-Toolbox that provides blueprints for
implementing forward operators and inversion routines for arbitrary geophysical
EM problems. The presented work uses this toolbox to invert MT data from the
Tarawera Volcanic Complex, New Zealand, that was acquired by GNS Science
(2012-2017).

FORWARD PROBLEM
▪ MT basic equations in a bounded Lipschitz domain Ω ⊂ ℝ3:
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▪ 𝒈: 𝑬 excited by plane 𝑯 = 1
𝐴

𝑚
in the air

▪ 𝑬-field formulation: Prevention of ill-conditioned matrices caused by large 𝜎
contrasts
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2D:
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𝑨′𝒖′ = 0
Inclusion of inhomogeneous Dirichlet BC

𝑨𝒖 = 𝒃
▪ Simulated quantity (𝑬, 𝑯): 𝑑𝑖𝑗𝑘 ≔ 𝑸𝑗𝑘 𝒖𝑖𝑗 𝜎 (polarization index 𝑖, frequency

index 𝑗, observation index 𝑘)

▪ Interpolation operator 𝑸𝑗𝑘: interpolation of FE-solution 𝒖 to 𝑬 and
1
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▪ Equation solver: distributed multifrontal solver MUMPSb

JACOBIAN MATRIX
▪ Primal solution 𝒖: solution of 𝑨𝒖 = 𝒃
▪ Dual solution 𝒒: solution of 𝑨𝒒 = 𝑸
▪ Jacobian: linear Gateaux derivative of 𝑑𝑖𝑗𝑘 𝜎

𝑱𝑖𝑗𝑘 𝜎 𝛿𝜎 = − 𝚤𝜔𝑗𝜇 න
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ഥ𝒒 complex conjugate of 𝒒

INVERSE PROBLEM
▪ Regularized Gauss-Newton methodc with 𝒎 = 𝑓 𝝈 (e.g. 𝒎 = 𝑙𝑜𝑔(𝝈)):
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▪ Solutiond of each Gauss-Newton step:

∇Φ ! = 0
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Euler-Lagrange & mixed weak formulation (Raviart-
Thomas and discontinuous Lagrange elements)

▪ 𝐔 =
1

𝛽
𝟎 𝑾𝑱 & 𝑪−1 by sparse 𝐋𝐃𝐋T decomposition of 𝐂 = −𝑴 𝑫𝑇

𝑫 𝟎
▪ Application of Woodbury formulae:

𝑪 + 𝑼𝑇𝑼 −1 = 𝑪−1 − 𝑪−1𝑼𝑇 𝑰 + 𝑼𝑪−1𝑼𝑇 −1𝑼𝑪−1

▪ Solve via backward substitution 

𝑱 … Jacobian matrix 𝛽… regularization parameter, 
𝑫 … divergence on 𝐻 𝑑𝑖𝑣, Ω 𝑴 … mass matrix on 𝐻(𝑑𝑖𝑣, Ω)
𝜻 = −∇ (𝚫𝒎) … flux 𝚫𝒎 … change in parameter and
𝒎𝑟𝑒𝑓 … reference model 𝒃 … observations

Solve using the direct method (see 
below) or iteratively

MESHING AND TOPOGRAPHY INTEGRATION
Free 3D finite element mesh generator gmsha DEM

2D mesh: local refinement around observation points (z-coordinate neglected) 

3D surface mesh: interpolation of DEM using inverse distance weighting →  raise
mesh points

3D simulation domain: intersect 3D surface with cuboid volume

Figure 1b: section of Coprod_2S1 meshFigure 1a: section of Tarawera surface mesh

Inversion domain: local  refinement in a cuboid (side length depends on 
approximated average skin depth)

▪ Note: Additional transformation of 𝑑𝑖𝑗𝑘 → 𝑔𝑘and 𝑱𝑖𝑗𝑘 (chain rule) to obtain 𝑍,

𝑇, 𝜌𝑎, 𝜙 and its derivatives

TARAWERA
▪ 3D model of Tarawera Volcanic Complex
▪ Observations: Impedance 𝒁
▪ 68 sites; 16 periods [0.012, 341] s
▪ Subsequent inversion of frequency bands

(using previous result as starting model)
▪ Data weighting: same as for Coprod_2S1

▪ Resistive young rhyolite at surface (blue) and greywacke (green) well resolved
▪ Older conductive ignimbrite (2 -3 km depth) and conductive body in 10 km

depth partially resolved
▪ Effects at stations and bad fit of low periods due to coarse grid and over-

smoothing of model at depth

Figure 3b: Inversion result, top view Figure 3c: Inversion result, section parallel to y

Figure 3a:  Data misfit

▪ 2D synthetic modelf (Figure 2b)
▪ Observations: Impedance 𝒁, Tipper 𝑻
▪ 61 sites; 11 periods: [2, 10000] s
▪ Data weighting: mean value over all points

for one frequency and for one component
▪ Additional balancing between 𝑻 and 𝒁 in 𝒈

2D MODEL: COPROD_2S1

Figure 2b: Coprod_2S1 synthetic model Figure 2c: Inversion result

▪ Seven well resolved conductive bodies
▪ Block in 40 km depth and conductive substratum recognizable
▪ Background: 1000 to 2000 Ω𝑚
▪ Residual norm < 1 ⋅ 10−3, but fit for long periods is worse than for shorter

periods

Figure 2a: 
Data misfit
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