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On the role of floodplain storage and hydrodynamic interactions in flood risk 
estimation
Mostafa Farrag a, Fabio Brill a, Nguyen Viet Dung a, Nivedita Sairam a, Kai Schröter a, Heidi Kreibich a, 
Bruno Merz a,b, Karin M. de Bruijn c and Sergiy Vorogushyn a

aSection of Hydrology, GFZ German Research Centre for Geosciences, Potsdam, Germany; bInstitute for Environmental Sciences and Geography, 
University of Potsdam, Potsdam, Germany; cDepartment of Flood Risk Management, Deltares, Delft, The Netherlands

ABSTRACT
Hydrodynamic interactions, i.e. the floodplain storage effects caused by inundations upstream on flood 
wave propagation, inundation areas, and flood damage downstream, are important but often ignored in 
large-scale flood risk assessments. Although new methods considering these effects sometimes emerge, 
they are often limited to a small or meso scale. In this study, we investigate the role of hydrodynamic 
interactions and floodplain storage on flood hazard and risk in the German part of the Rhine basin. To do 
so, we compare a new continuous 1D routing scheme within a flood risk model chain to the piece-wise 
routing scheme, which largely neglects floodplain storage. The results show that floodplain storage is 
significant, lowers water levels and discharges, and reduces risks by over 50%. Therefore, for accurate risk 
assessments, a system approach must be adopted, and floodplain storage and hydrodynamic interac
tions must carefully be considered.
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1 Introduction

Large-scale flood risk assessments are needed for national 
policy developments, disaster management planning, and the 
insurance industry (de Moel et al. 2015). However, studies 
presenting large-scale flood risk assessments are still rare and 
suffer from data and methodological limitations regarding the 
realistic representation of hydrodynamic interactions 
(Vorogushyn et al. 2018).

With hydrodynamic interactions, we understand changes 
in discharge, water levels, and, consequently, hazard and risk 
downstream of the river network due to inundation and water 
storage in the upstream reaches. Hence, the term includes 
lateral interactions between the river channel and the flood
plains and longitudinal interactions between upstream and 
downstream locations. Concrete examples are the discharge- 
reducing effects of flooding due to the overflow of embank
ments or breaches and detention areas. Such interactions are 
complex and depend on several factors, including floodplain 
topography, the presence of dikes, and their failures. 
Floodplain topography determines the amount of stored 
water and thus flood wave attenuation. Dike failures result in 
flooding of protected floodplains which, in turn, affects flood 
hazards of areas downstream.

A common approach for large-scale flood mapping and 
risk assessment is based on the estimation of peak discharge 
values associated with certain return periods at gauge loca
tions, which are subsequently used as boundary conditions 
for hydrodynamic simulations. The results of these local 
simulations are mosaicked into a large-scale picture (“mosaic 
approach”). Some approaches use uniform return periods to 

estimate peak flows for entire countries (Bradbrook et al. 
2005, Merz et al. 2008) or even continents (Alfieri et al. 
2014). The assumption of a uniform return period, if used 
for risk assessments of larger areas, contravenes the basic 
spatial dependence structure of floods and leads to an over
estimation of flood damage for high return periods 
(Vorogushyn et al. 2018, Metin et al. 2020, Nguyen et al. 
2020). The expected annual damage is, however, not neces
sarily affected by the homogeneous return period assumption 
(Metin et al. 2020). Recently, several studies used multivariate 
extreme value models for estimating peak discharges (Keef 
et al. 2009, Lamb et al. 2010, Ward et al. 2013, Jongman et al. 
2014, Wyncoll and Gouldby 2015, Quinn et al. 2019, Winter 
et al. 2019). These approaches generate patterns of spatially 
dependent peak flows at multiple gauges with heterogeneous 
return periods.

To use peak flows (with homogeneous or heterogeneous 
return periods) for unsteady hydrodynamic simulations, 
assumptions about the flow hydrographs are needed, e.g. typi
cal hydrograph shapes scaled to the predefined peak magni
tude. Hydrodynamic simulations are then carried out for 
individual reaches, i.e. piece-wise, whereas a new boundary 
condition is assigned at the next downstream gauge (e.g. Alfieri 
et al. 2016, Falter et al. 2016, Quinn et al. 2019). This approach 
is valid only for a single river reach. In a larger river network, it 
results in inconsistent, non-mass conservative sets of flood 
hydrographs, inundation areas, and risk estimates (Curran 
et al. 2020). Reach-wise or piece-wise routing is still common 
for many large-scale risk assessment studies (Alfieri et al. 2016, 
Quinn et al. 2019).
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Flood hazard and risk assessment approaches considering 
hydrodynamic interactions have emerged in recent years and 
deploy continuous hydrodynamic simulations along a single 
river reach or in a larger river network. These approaches 
account for floodplain storage effects caused by inundation 
considering or disregarding dike failures. Apel et al. (2004) 
and Vorogushyn et al. (2010, 2012) indicated the effect of 
hydrodynamic interactions on flood hazard and risk at the 
Lower Rhine and a small reach of the Elbe River, respectively, 
due to dike failures. Apel et al. (2009), for instance, showed 
that the design flood at the German–Dutch border is signifi
cantly reduced when dike breaches are stochastically consid
ered, compared to the gauge-based extreme value statistics, 
which does not fully account for hydrodynamic interactions. 
Van Mierlo et al. (2007) indicated the effect of hydrodynamic 
interactions for a dike ring in the Rhine-Meuse delta. de Bruijn 
et al. (2014) compared scenarios with and without hydrody
namic interactions for the entire Rhine-Meuse delta in terms 
of the number of simulated dike breaches and resulting esti
mates of flood fatalities. They showed that the estimated 
annual probability of life loss is more than doubled in the 
scenario without considering dike failures. Curran et al. 
(2019) continued their work and improved the method by 
better representing floodplain flows. Recently, Ciullo et al. 
(2019) demonstrated how hydrodynamic interactions result
ing from dike breaches in the IJssel River in the Netherlands 
affect the optimal dike height in a cost–benefit framework. 
They concluded that disregarding the dike failures’ mutual 
dependence results in sub-optimal design height and increased 
overall costs. Dupuits et al. (2019) came to the same conclusion 
using a similar setting applied for a case study in a small region 
in the Netherlands. These approaches, however, have used one 
or very few locations to define the boundary conditions for 
hydrodynamic models, and do not consider the upstream part 
of the catchment with several tributaries and rainfall distribu
tion issues. Hydrodynamic interactions are expected to gain 
importance with increasing spatial scale and numbers of tri
butaries and in lowland rivers with large floodplain storage 
capacities (Vorogushyn et al. 2018). Hence, there is a need to 
consider hydrodynamic interactions for large-scale risk 
assessments.

Although the role of the floodplain in attenuating floods in 
large-scale basins is generally understood (Yamazaki et al. 
2011, 2012, De Paiva et al. 2013) the implications for flood 
risk are not well investigated. Fleischmann et al. (2019) have 
investigated the role of the floodplains in large-scale catch
ments using the MGB inline coupled hydrological–hydrody
namic model. They concluded that the absence of right 
floodplain representation in the model would lead to an 
expressive discharge overestimation with higher peaks and 
faster recession limbs. A continuous simulation approach 
represents an alternative way to estimate flood hazard and 
risk for large-scale basins compared to the mosaic approach. 
It is based on a model chain covering the whole flood hazard/ 
risk process cascade from heterogeneous patterns of precipi
tations to runoff generation in the catchments and river 
discharge down to inundation and damage. This approach, 
termed “Derived Flood Risk Analysis” (Falter et al. 2015), 
extends the “Derived Flood Frequency Approach based on 

continuous simulation” (e.g. Blazkova and Beven 2004) often 
used for flood design estimation. Hence, depending on the 
goal, the model chain can be truncated and can focus on 
discharge or flood frequency estimation (Haberlandt and 
Radtke 2014, Hegnauer et al. 2014), inundation area estima
tion (Grimaldi et al. 2013) or flood damage and risk assess
ment (Falter et al. 2015, 2016). The model chain is driven 
with observed or synthetic climate data, e.g. provided by 
a stochastic weather generator. The rainfall-runoff modelling 
provides flow hydrographs at specific locations, which are 
used as boundary conditions for hydrodynamic flood simula
tions. Contrary to the gauge-based multisite models, this 
approach delivers spatially consistent, mass-conservative, 
and time-continuous flow hydrographs at multiple locations 
(depending on the structure and resolution of the hydrologi
cal models). These continuous flow hydrographs are used as 
upstream and lateral boundary conditions for continuous 
hydrodynamic simulations considering hydrodynamic 
interactions.

Continuously coupled rainfall-runoff and hydrodynamic 
simulations are state-of-the-art (e.g. Biancamaria et al. 2009, 
De Paiva et al. 2013, Hegnauer et al. 2014), but they are so far 
rarely deployed for large-scale flood risk assessments due to 
their complexity and computational constraints. Winsemius 
et al. (2013) used a global hydrological model coupled to 
a kinematic wave-routing scheme with simplified inundation 
approximation for past damage reanalysis. Two-dimensional 
(2D) hydrodynamic models are particularly computationally 
demanding when it comes to the long-term simulation of 
multiple scenarios needed for risk assessments. To our knowl
edge, there exists no large-scale risk analysis based on 
a continuous hydrological–hydrodynamic simulation driven 
by a long-term weather generator.

In the present study, we analyse the effect of hydrody
namic interactions on flood hazard and risk assessment for 
the Rhine basin (185 260 km2). In particular, we focus on 
the importance of these interactions with increasing basin 
scale by comparing (1) flood flows, (2) overtopping 
volumes, (3) inundation patterns, and (4) damage to resi
dential, commercial, and agricultural sectors. The compar
ison is made between assessments with and without 
consideration of floodplain storage and interactions at dif
ferent locations upstream and downstream of the basin by 
comparing two model chains: one based on a sub-basin- 
wise river routing and a fully continuous hydrodynamic 
approach. Indeed, there are several studies focussing on 
modelling floodplain flow, but they do not quantify the 
effect on flood risk. The contribution of our study is to 
address how this interaction results in redistribution not 
only of the hazard part (similar to previous studies) but also 
the estimated damage and risk.

The paper is organized as follows. Section 2 provides 
a detailed description of the RFM model chain using a piece- 
wise routing and a newly implemented continuous routing. 
The model set-up for the Rhine case study, input data for each 
component of the RFM model chain, and the design of the 
computational experiments are detailed in Section 3, followed 
by a discussion of the results and conclusions in sections 4 and 
5, respectively. The cross-section data derivation and extensive 
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model validation, including a comparison of simulated max
imum annual discharge/water levels against observations, are 
presented in detail in the Appendix.

2 Methods

For the analysis of hydrodynamic interactions, we use the 
Regional Flood Model (RFM; Falter et al. 2015, 2016), repre
senting a model chain for time-continuous, spatially consistent 
simulation of flood processes from atmospheric input to flood 
damage and risk. It consists of several components, including 
the multisite, multivariate regional weather generator (RWG; 
Hundecha et al. 2009, Nguyen et al. 2021), the SWIM rainfall- 
runoff model (Krysanova et al. 1998), a one-dimensional (1D) 
river routing model based on diffusive wave approximation 

coupled to a 2D raster-based hinterland inundation model 
(Falter et al. 2015, 2016), and the FLEMO flood loss estimation 
model (Thieken et al. 2008, Kreibich et al. 2010; Fig. 1).

2.1 Regional weather generator

The multisite, multivariate RWG is a stochastic model that 
generates daily time series of precipitation at multiple loca
tions. Based on the state of the generated precipitation (dry/ 
wet), the RWG then generates non-precipitation variables such 
as temperature (minimum, average, and maximum), relative 
humidity, and solar radiation. RWG was introduced by 
Hundecha et al. (2009) and was recently comprehensively 
evaluated by Nguyen et al. (2021). RWG assumes that extreme 
precipitation events have different stochastic behaviour 

Figure 1. RFM modelling framework: components, input data requirements, and spatial discretization.
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compared to the normal precipitation regime. Hence, it uses 
a mixed distribution, i.e. a gamma distribution for bulk pre
cipitation and a more heavy-tailed generalized Pareto distribu
tion for extreme precipitation. The spatial and temporal 
dependence is represented by a first-order multivariate auto
regressive model considering the spatial covariance structure.

The distribution of the full range of precipitation (including 
zero precipitation) is formulated by combining the mixed 
distribution and the frequency of non-zero precipitation. For 
relative humidity and the temperature variables, the normal 
distribution is used. For solar radiation, the square-root trans
formed data are fitted to the normal distribution due to its 
relatively strong right skewness. RWG is parameterized on 
a monthly basis to account for seasonality.

2.2 Rainfall-runoff model (SWIM)

The hydrological model SWIM (Soil and Water Integrated 
Model; Krysanova et al. 1998) is a conceptual semi-distributed 
rainfall-runoff model for mesoscale catchments. SWIM com
putes average daily runoff at sub-basin spatial discretization. 
Each sub-basin is further sub-divided into hydrological 
response units or hydrotopes, where soil type, land use, and 
average water table depth are assumed to be homogeneous. 
Runoff is calculated for each hydrotope and then aggregated 
on a sub-basin scale. SWIM is driven by daily precipitation, 
maximum and minimum air temperature, relative humidity, 
and solar radiation. SWIM relies on the water balance equation 
considering snow, precipitation, evapotranspiration, percola
tion, surface and subsurface runoff, recharge, and capillary 
rise. The model applies the SCS curve number method for 
surface runoff volume estimation. For the routing between sub- 
basins, the Muskingum routing approach is used (Cunge 1969).

2.3 Regional Inundation Model

The Regional Inundation Model (RIM) consists of a 1D hydro
dynamic routing model coupled with a 2D hinterland inunda
tion model. The 1D hydrodynamic model solves the diffusive 
wave approximation of the shallow water equations (SWEs) 
(Equations 1 and 2), where the first two terms (local and 
advective acceleration) are neglected in the momentum equa
tion (Equation 1): 

@Q
@t
þ
@

@x
Q2

A

� �

þ gA
@h
@x
� gA So � Sf

� �
¼ 0 (1) 

@Q
@x
þ
@A
@t
¼ 0 (2) 

where Q is the discharge (m3 s−1), A is the cross-section area 
(m2), g is the gravitational acceleration (m s−2), So is the bed 
slope (m−1), Sf is the friction slope (m−1), x is the distance (m), 
and t is the time (s).

An explicit finite difference scheme is used to solve the 
equations with adaptive time steps following the Courant- 
Friedrichs-Lewy criterion to secure numerical model stability. 
However, numerical instabilities may occur due to a sudden 
increase in the value of the wetted perimeter (P) with 

a minimal increase in water depth. Such instabilities may 
happen when the water level exceeds the bankfull area, and 
overbank flow occurs. Fread (1976) and Smith (1978) solved 
this problem by dividing the system into two separate convey
ing systems, i.e. a compound channel. We adopted this solu
tion following Equation (3): 

@Qbf

@x
þ
@Abf

@t
þ
@QOverbank

@x
þ
@AOverbank

@t
¼ 0 (3) 

where Qbf is the discharge conveyed within the channel (m3 

s−1), Abf is the bankfull (m2) area, and QOverbank is the discharge 
(m3 s−1) conveyed through Aoverbank, the overbank area (m2).

The deployed solution of the SWEs uses water depth as an 
upstream boundary condition. Therefore, the flow hydrograph 
resulting from summing up all the upstream flow (lateral and 
upstream river branch) is converted into the water depth using 
Manning’s equation for the first cross-section in each sub- 
basin. To establish a stage–discharge relationship, the bed 
slope and hence cross-section bankfull depth are calibrated.

The 1D model uses simplified cross-section data that con
sist of two components: overbank river geometry and bankfull 
area. The cross-sections represent the river geometry between 
left and right dike crests or elevated banks. The overbank 
geometry is represented by the trapezoidal shape described 
by six points. Model discretization and derivation of cross- 
sections are detailed in the Appendix.

In this study, we use two implementations of the 1D hydro
dynamic model to quantify the effect of hydrodynamic inter
actions. In the original model version (RIM1.0), a piece-wise 
routing of overbank flow was implemented (Falter et al. 2015, 
2016) (see Appendix, Fig. A2(a)). The bankfull depth is not 
explicitly represented in the cross-sections (see Appendix, 
Fig. A3). Discharge corresponding to the bankfull depth is 
subtracted at the upstream node of each sub-basin, where 
runoff from the SWIM model is assigned as a boundary con
dition. Hence, floodplain storage effects due to dike overtop
ping and inundation, i.e. hydrodynamic interactions, are 
considered only within single sub-basins and are not propa
gated across the sub-basin boundaries.

Further, a continuous routing approach (RIM2.0) is imple
mented (see Appendix, Fig. A2(b)), which is based on the full 
cross-section geometry, i.e. rectangular bankfull area and tra
pezoidal overbank geometry (see Appendix, Fig. A3). The flow 
is continuously routed through the entire river network. In this 
way, storage effects due to dike overtopping and floodplain 
inundation on downstream flow hydrographs can be explicitly 
accounted for. RIM2.0 uses the same computational engine as 
RIM1.0 based on the explicit solution of the diffusive wave 
equation. The derivation of cross-sections for both RIM1.0 and 
RIM2.0 models is detailed in the Appendix.

The 2D hinterland inundation model is deployed when 
water levels in the river channel overtop dike crests. The out
flow into the hinterland is calculated with the broad crested 
weir equation and provided as a boundary condition for the 
inundation model. The connection between 1D and 2D mod
els is one-way, where no return flow from the 2D model to the 
1D channel is currently accounted for. As soon as the water 
level in the river channel drops below the crest level, no further 
overtopping flow is simulated. The 2D hinterland inundation 
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model solves Equations (1) and (2) in two dimensions with 
a neglected advection acceleration term. The 2D model 
domain is discretized into a regular grid to compute fluxes 
q per unit width in both directions, x and y and update water 
depths h in each raster cell (i, j). The explicit solution for 
q proposed by Bates et al. (2010) reads: 

qtþΔt ¼
qt � ghflowΔtSf

1þ ghflowΔtn2
qtj j=hflow

10
3

� � (4) 

Δhi;j

Δt
¼

qi� 1;j
x � qi;j

x þ qi� 1;j
y � qi;j

y

Δx
(5) 

Δtmax ¼ α
Δx
ffiffiffiffiffiffiffiffiffiffiffi
ghflow

p (6) 

where n is Manning’s roughness (m−1/3 s), hflow is the flow 
depth between cells (m), and Δt is the time step (s). Then 
water depth is calculated based on the continuity equation 
(Equation 5). An adaptive time step (Equation 6) is used to 

Figure 2. Rhine basin upstream of Rees with the river network used in the 1D RIM model component. Labelled gauges were used for calibration and validation of the 
1D hydrodynamic model.
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improve the stability of the numerical scheme, where the value 
of parameter α ranges from 0.2 to 0.7, as suggested by Bates 
et al. (2010).

The 2D hydrodynamic code using an explicit finite- 
difference scheme is implemented in the CUDA Fortran envir
onment to enable simulations on highly parallelized NIVIDIA 
graphics processing units (GPUs) (Falter et al. 2016).

For each flood event where dike overtopping and hinterland 
inundation occur, two grids are produced: maximum water 
depth and inundation duration. The extracted grids are used as 
input for the flood loss model. The season of the event is also 
recorded since it is required for the agricultural loss calcula
tion. To limit the 2D computational time, water depths are set 
to zero 10 days after the last overtopping day of a dike. It is 
expected that the maximum depths and extent relevant for 
damage estimation have been reached within this period.

2.4 Flood damage and risk estimation

2.4.1 Flood damage models
The loss estimation component of the model chain is based 
on the FLEMO models for private and commercial sectors 
and an agricultural loss model. These models are developed 
from empirical damage data of German river floods and 
were validated in previous modelling studies (Thieken 
et al. 2008, Kreibich et al. 2010, Kuhlmann 2010, Seifert 
et al. 2010, Klaus et al. 2016). For the private and commer
cial sectors, damage functions to estimate relative losses to 
buildings and content are based on water depth, 
discretized into six levels (<0.21, 0.21–0.6, 0.61–1, 1.01–1.5, 
>1.5 m). The private-sector model, FLEMOps, additionally 
distinguishes three building types (single-family, semi- 
detached, multifamily) and two building quality levels 
(low/medium quality, high quality) (Thieken et al. 2008). 
The commercial-sector model FLEMOcs considers addition
ally four subsectors (producing industry, trade, corporate 
services, public and private services) and three company 
size classes according to the number of employees (1–10, 
11–100, >100) (Kreibich et al. 2010). For the agricultural 
sector, the relative damage functions are based on four 
inundation duration classes (1–3, 4–7, 8–11, >11 days), the 
month of the flood, and seven crop types (canola, maize, 
potatoes, sugar beet, barley, rye, wheat) (Kuhlmann 2010, 
Klaus et al. 2016). The damage models use the inundation 
results produced by RIM to perform spatial intersection with 
the exposed assets and apply the FLEMO damage functions 
specific to each sector, implemented via table joins on 
a PostgreSQL database.

2.4.2 Exposure estimation
Residential building asset values for Germany are estimated 
according to the approach of (Kleist et al. 2006), who based 
their estimates on official statistical data, i.e. a total living 
area for three classes of residential buildings per district 
provided by the Federal Statistical Office of Germany and 
the standard construction costs per square metre gross floor 
space published by the German Federal Ministry of 
Transport, Building and Urban Development. The asset 
values are disaggregated based on the ATKIS land cover 

data, according to Wünsch et al. (2009). Based on Paprotny 
et al. (2020a), residential content values are derived from 
the building values by dividing them by 5.09 (ratio between 
the household building and content values in Germany at 
the 2018 price level). Commercial building and content 
values are estimated according to Paprotny et al. (2020b) 
using Eurostat data (e.g. distribution of company sectors 
per NUTS3 region, gross value added for the NUTS3 region 
by economic activity, fixed assets by the economic activity) 
and disaggregation to ATKIS land cover.

The agricultural exposure, i.e. revenues, is estimated by 
multiplying the yield by the sales price (Kuhlmann 2010, 
Klaus et al. 2016). The revenue (in € per hectare) of 
a particular crop in a region, averaged over five years (to 
equalize strong annual fluctuations), is determined with the 
use of an agricultural statistics database. Regional differentia
tion considers 38 districts in Germany.

2.4.3 Risk metrics
The occurrence exceedance probability (OEP) is used as 
a risk metric. OEP is the probability that the maximum 
loss from a single event in a given year exceeds a certain 
amount. OEP is calculated by ranking the most severe loss 
event per simulated year and counting the number of years 
in the entire time series, in which the loss of a given event 
is exceeded. These damage-exceedance probabilities are 
plotted in a flood loss curve. The expected annual damage 
(EAD) equally distributes the risk over the time series and 
is computed as the area under the OEP curve (e.g. Merz 
et al. 2009). The value at risk (VAR) gives the expected 
damage for a specific exceedance probability, while the tail- 
value at risk (TVAR) is defined as the average expected 
damage above the threshold used for VAR. We provide 
these measures based on the 100-year event, which corre
sponds to a simulated 0.99 probability of non-exceedance 
in a given year.

3 Set-up of the regional flood model for the Rhine 
basin

3.1 Study area

The Rhine River is one of the largest rivers in Europe, with 
a total length of 1233 km and a total catchment area of 185 
260 km2 (Fig. 2). It originates in the Swiss Alps and flows 
through Germany, France, and the Netherlands. Most of 
Luxembourg and some parts of Austria and Belgium drain 
into the Rhine River. Major tributaries include Neckar, Main, 
Moselle, Lahn, Sieg, Lippe, and Ruhr. About 58 million inha
bitants live in the river basin, with 10.5 million of them in 
flood-prone areas (ICPR 2013). The basin topography ranges 
from high alpine regions with elevations up to 2500 m asl to 
lowland floodplains of the Lower Rhine. Major floods in the 
upstream parts of the basin are caused by snowmelt combined 
with rain-on-snow, whereas the Middle and Lower Rhine 
floods are dominated by long-lasting frontal rainfalls in winter 
and early spring. The average discharge at the Lobith gauge at 
the border between Germany and the Netherlands is 2200 m3/ 
s, and the maximum observed discharge was 12 600 m3/s in 
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1926 (Pinter et al. 2006). In the past, flood management in the 
densely populated floodplains was focused on dike reinforce
ment, with a design discharge corresponding to return periods 
between 1/200 to 1/500 in Germany and 1/1250 to 1/2000 in 
the Netherlands (Ministerie van Verkeer en Waterstaat 2006, 
Te Linde et al. 2011). Consequently, floods may occur in the 
German parts of the basin, while the Dutch Rhine reaches will 
likely receive significantly reduced flood flows due to hydro
dynamic interactions (Apel et al. 2009).

3.2 Weather generator set-up

The RWG is set up for a large region embracing all of Germany 
and parts of the neighbouring countries, and covering five 
major river basins: Ems, Weser, Upper Danube, Elbe, and the 
Rhine. The set-up is based on daily climate observations for the 
period 1950–2003. The dataset contains six variables (precipi
tation; minimum, average, and maximum temperature; rela
tive humidity; and solar radiation) at 528 locations, of which 
465 are climate stations (Österle et al. 2016) and 63 are grid 
points for the French part of the Rhine basin from the E-OBS 
gridded dataset (Haylock et al. 2008). In this study, we use the 
RWG to generate 1000 years of synthetic time series for the six 
mentioned variables, which are then used to drive the SWIM 
hydrological model.

3.3 SWIM model set-up and calibration

In this study, the Rhine catchment is divided into 936 sub- 
basins based on the digital elevation data provided by the 
Federal Agency for Cartography and Geodesy in Germany 
(BKG). Soil and land-use data are derived from the soil map 
for Germany (BÜK 1000 N2.3), obtained from Bundesanstalt 
für Geowissenschaften und Rohstoffe (BGR); from the 
European Soil Database map, obtained from the European 
Commission’s Land Management and Natural Hazards unit; 
and from the CORINE (COoRdinated INformation on the 
Environment) land-cover map. SWIM is driven by meteoro
logical data, either observations or RWG-generated data. 
These sub-basins are grouped into eight sub-regions (see 
Appendix, Fig. A1): Upper Rhine, Nahe, Neckar, Mosel, 
Lahn, Sieg, Lippe, and Main & Rhine. Nine parameters are 
automatically calibrated for each sub-region using the SCE- 
UA optimization algorithm (Duan et al. 1994) (Appendix).

3.4 Set-up and calibration of the RIM 1D model

RIM 1D (both RIM1.0 and RIM2.0) is set up for the river 
network represented in Fig. 2. The network includes the 
main channel starting at the Iffezheim weir and major tribu
taries with a catchment area of at least 500 km2. Overbank 
cross-section geometry is derived from the 10 × 10 m digital 
elevation model (DEM), with a vertical accuracy of ± 0.5–2 m, 
provided by BKG.

For the RIM2.0 model, the bankfull depth dBF is initially 
estimated using the power-law relationships calibrated on 
more than 1200 surveyed cross-sections provided by the 
Federal Institute of Hydrology (BfG) for the Rhine, Mosel, 
and Necker rivers (Appendix). However, given the uncertainty 

related to these estimates and the uncertainties of the DEM, we 
calibrate the estimated bankfull depth in the RIM2.0 model by 
varying dBF in the range ± 0.5 m to maximize NSEm 
(Equation 7) for the simulated discharge and water level within 
the calibration period. Bankfull depth calibration was also 
previously applied by Neal et al. (2012) and Wood et al. 
(2016). Additionally, the slope used to compute the stage– 
discharge relation to convert the inflow for each sub-basin 
into the water level is adjusted in the calibration process to 
maintain the water balance. The model is manually calibrated 
based on the period 1996–2003, and the validation is carried 
out for the whole period between 1 January 1950 and 
30 December 1995. Several metrics are considered to assess 
the performance of the RIM model by comparing the simu
lated hydrograph by RIM and SWIM models with observed 
flows at 34 gauging stations and observed water levels at 19 
gauges (Fig. 2).

The dike heights represented in the edge points of the cross- 
section are estimated initially from the 10 × 10 m DEM but are 
likely to be underestimated due to smoothing effects. Dikes are 
designed for a specific return period flood (Te Ministerie van 
Verkeer en Waterstaat 2006, Te Linde et al. 2011). Since no 
consistent large-scale information on the dike heights is pre
sently available, a regionalized 200-year return period flow in 
combination with Manning’s equation was used to estimate the 
elevation of the dikes along the Rhine main channel, while 
a return period of 100 years was used for other tributaries, 
according to Te Linde et al. (2011). This step is carried out after 
the model is calibrated. The estimated dike elevation is com
pared with the dike levels extracted from the DEM. The higher 
of the two values is finally taken as a dike crest elevation.

The performance of the model in the calibration and vali
dation periods is evaluated based on the modified Nash- 
Sutcliffe efficiency NSEm (Equation 7), which 
emphasizes peak flows: 

NSEm ¼ 1 �
P

tQobs Qobs � Qsimð Þ
2

P
tQobs Qobs � Qavgð Þ

2 (7) 

where Qobs is the observed discharge at time t, Qsim is the 
simulated discharge, and Qavg is the mean of observed dis
charges. Model performance regarding water levels is assessed 
by mean absolute error (MAE) and mean bias error (MBE), 
which provide values in metres and thus better guidance on 
model performance than NSEm.

3.5 Set-up of the RIM 2D model

The RIM 2D hydrodynamic model is set up on the resampled 
DEM with a resolution of 100 × 100 m for the areas behind 
dikes. Floodplains between the dikes or elevated banks are 
masked in the DEM and are not used for 2D computations. 
This significantly reduces the computational load. A uniform 
Manning’s roughness value of 0.03 is assigned to each raster 
cell, as suggested by Falter et al. (2013), and is not calibrated. 
The major flood characteristics at this scale are found to be not 
very sensitive to the floodplain roughness but rather deter
mined by the 1D–2D model interface, and dike heights, i.e. 
how much water enters the 2D model domain from the 1D 
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model (Bates et al. 2010). Furthermore, no inundation due to 
dike overtopping occurred in the Rhine basin over the past 
simulated period, which would allow model calibration.

3.6 Design of computational experiments

To investigate the effect of the hydrodynamic interactions, the 
RIM2.0 results based on continuous routing are compared to 
those of RIM1.0. Daily synthetic meteorological data of 
1000 years from the regional weather generator are used to 
drive the SWIM model to generate a set of events exceeding the 
dike design level. To account for the fact that hydrodynamic 
models require calibration, which may compensate for the 
methodological difference between the models, the calibration 
of the two models is done using the same procedure to make 
the comparison meaningful and to ensure that the differences 
between the results of the two models are due to the new 
conceptual changes. To analyse the effect of hydrodynamic 
interactions, we compare simulated discharge along the river 
network. Comparison of overtopping volume resulting in 
inundation areas and damages elucidates the effect of interac
tions on hazard and risk. We trace the effects along the channel 
profile and investigate the role of spatial scale on the effect of 
hydrodynamic interactions.

4 Results and discussion

4.1 Performance of SWIM, RIM1.0, and RIM2.0 flood 
routing

In this section, the performance of the hydrological model 
SWIM and both hydrodynamic models (RIM1.0 and 
RIM2.0) is presented and discussed. SWIM and RIM2.0 are 

evaluated in terms of the simulated discharge time series for 
the period 1950–2003, excluding the calibration period (1996– 
2003). Further, the simulation of water level hydrographs for 
RIM2.0 is evaluated. RIM1.0 output cannot be directly com
pared to SWIM and RIM2.0 output since it routes only over
bank flow (flow exceeding bankfull depth) and thus does not 
produce continuous hydrographs. For this reason, the perfor
mance of RIM1.0 is checked visually at the gauge locations, 
and the ability to reproduce peak flows and water levels is 
assessed.

Figure 3(a) shows the performance of SWIM over the entire 
catchment in terms of the NSEm values. SWIM performance is 
overall very good, with values ranging from about 0.9 at the 
Schermbeck gauge (Lower Rhine) down to 0.51 at the 
Dhrontalsperre gauge on the Mosel River. The latter is likely 
influenced by the reservoir operation. Further, the perfor
mance of RIM2.0 is compared to observed discharge (Fig. 3 
(b)). Generally, RIM2.0 has a good performance all over the 
catchment compared to observed hydrographs with NSEm 
values ranging from 0.39 to 0.84. However, the performance 
of RIM2.0 deteriorates compared to SWIM in the downstream 
parts. We attribute this to the representation of the bankfull 
depth in the lowland parts of the catchment. Furthermore, 
floodplains between dikes at the Lower Rhine become much 
wider compared to upstream parts and are less well repre
sented by the 1D simplified cross-sections. Further improve
ments in the representation of the cross-section geometry of 
the downstream reaches are required in the future.

In the Mosel River (Fig. 2), RIM2.0 performs comparably 
poorly to SWIM, with NSEm around 0.5, as RIM2.0 is not 
intended to compensate for errors of preceding modules in 
the model chain. This is likely a consequence of substantial 
errors in the precipitation input in the French part of the basin, 

Figure 3. Performance of (a) SWIM and (b) RIM2.0 (NSEm values) with respect to observed discharges.
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where coarse-resolution gridded data had to be used. In the 
Ruhr tributary (Fig. 2) the performance of SWIM is acceptable, 
with NSEm between 0.6 and 0.8, whereas RIM2.0 drops below 
0.55, likely due to misestimation of river conveyance in this 
heavily trained reach.

The inspection of the hydrographs for selected flood events, 
including a major flood in 1993, reveals a very similar perfor
mance of RIM1.0 and RIM2.0 at gauges Steinbach, Lauffen, 
Leun, and Chochem, while SWIM and RIM1.0 slightly better 
match the observed peak flows compared to RIM2.0 at 
Cologne and Duesseldorf (see Appendix, Fig. A6). All three 
models show comparable performance in relation to annual 
maximum observed flows at most of the selected gauges (see 
Appendix, Fig. A7). However, RIM2.0 overestimates some 
high-flow peaks at Lauffen gauge in the Neckar basin and 
underestimates high-flow peaks in the Lower Rhine. The latter 
is likely due to an underestimation of bankfull depth, which 
results in more water conveyed above bankfull depth and 
stronger attenuated peaks.

For water level hydrographs, MAE ranges between 0.83 m 
at Cologne gauge to values below 0.2 m in the Main and 
Neckar tributaries (Fig. 4), while the MBE ranges between 
0.33 m (overestimation) at Lauffen to 0.63 m (underestima
tion) at Cologne.

Further, we evaluate the performance of RIM1.0 and 
RIM2.0 with regards to water level simulation at selected 
gauges in the period December 1993–March 1994, including 
a major winter flood (see Appendix, Fig. A8), and compare the 
simulated water levels to observations for annual maximum 
events (Appendix Fig. A9). RIM2.0 outperforms RIM1.0 in the 
upstream parts of the Rhine basin and the tributaries. Both 
models underestimate observed maximum water levels of 
high-flow events at the Lower Rhine, whereas at Cologne, 

RIM2.0 underestimation is more severe than that of RIM1.0. 
A more detailed performance evaluation of all models is pro
vided in the Appendix.

Overall, the models perform reasonably well considering 
the scale of the basin, the limited information about the cross- 
section geometry and the degree of anthropogenic influences 
on river geometry and flow conveyance. The performance of 
large-scale hydrodynamic models for river networks with 
uncertain bathymetry reported in the literature is comparable 
to that achieved in our study. For instance, for the Amazon 
River and its tributaries, De Paiva et al. (2013) achieved com
parable discharge simulation performance with a combined 
Muskingum-Cunge model and a full St Venant hydrodynamic 
model, with NSE values mostly between 0.6 and 0.9 but also 
dropping to 0.2–0.6 for some reaches. Most of the reaches 
exhibited a bias in the simulated water depths between 3 and 
15 m, larger by far than in our study which was in the range of 
+0.35 to −0.65 m.

4.2 Impact of hydrodynamic interactions on flood hazard

In this section, we analyse the impact of hydrodynamic inter
actions, which result from inundation and storage effects in the 
river network, on flood hazard characteristics. First, we com
pare the overtopping volume over the dike crests and total 
inundation area in the Rhine basin and present only the results 
for the first 100 years of the 1000-year simulation period for 
the sake of brevity (Fig. 5). The tendency is similar for the 
remainder of the period. Both models show the same major 
events. RIM1.0 simulates a large number of small events with 
small inundation areas. In contrast, RIM2.0 simulates over
topping and inundation for only five events in the selected 100- 
year period. Taking into account the protection level of dikes 

Figure 4. Performance of RIM2.0 against observed water level in the validation period. MAE and MBE are calculated as measured minus modelled values. Negative MBE 
indicates overestimation, and positive MBE indicates underestimation.
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in the Rhine basin, the overtopping frequency of RIM2.0 
appears much more realistic, suggesting that the representa
tion of cross-section geometry, dike height, and water levels is 
closer to reality in RIM2.0. For the simulated major flood 
events, the overtopping flow and inundation areas from 
RIM1.0 are considerably larger than simulated by RIM2.0 
(Fig. 5).

Figure 6 compares inundation areas for the most severe 
event, Nov-X084, i.e. the event with the highest overtopping 
volume and inundation area (Fig. 5). The inundation areas 
tend to occur in the same river reaches; however, RIM1.0 
inundations are larger compared to those of RIM2.0. We 
observe this behaviour for all major events in Fig. 5. Not only 
inundation areas but also inundation depths are overestimated 

Figure 6. Comparison of the inundation extent and depth histogram from RIM1.0 and RIM2.0 during the strongest event (Nov-X084) in the first 100-year simulation 
period. Inundation depths shown for RIM1.0 and RIM2.0 at (a) Trier, (b) Leverkusen, and (c) Mainz/Wiesbaden for the Nov-X084 event.

Figure 5. (a) Overtopping volume and (b) inundation area simulated by RIM1.0 and RIM2.0 for a 100-year synthetic simulation period. Years in synthetic simulations are 
denoted with “X.”
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by RIM1.0, as shown in the histograms of inundation depth for 
the regions around Trier (Mosel), Leverkusen (Rhine), and 
Mainz/Wiesbaden (Main).

These results suggest that the hydrodynamic interactions, 
which are insufficiently represented in RIM1.0, considerably 
reduce water levels downstream. This is further illustrated by 
analysing the longitudinal profiles of maximum water level 
and overtopping volume for the Moselle River and the Rhine 
during the Nov X084 and April X068 events (Fig. 7). The 
profiles start at the upstream node in the Moselle River and 
continue along the Middle and Lower Rhine. We select this 
course since inundation mainly occurs along these tributaries 
in these two events.

Figure 7 shows that the difference in maximum water levels 
between RIM1.0 and RIM2.0 fluctuates around zero at the 
upstream part of Mosel and is controlled by overtopping in 
both models. The maximum difference happens upstream of 
the confluence with the Rhine River at Trier (see Fig. 2), which 
results in the highest overtopping (spatially during both 
events), and consequently the greatest difference in inundation 

depth and extent (Fig. 6) between the two models. The over
topping frequency and volume are noticeably higher in RIM1.0 
at the downstream reaches compared to RIM2.0 for both 
events. The maximum water levels in RIM1.0 are much less 
sensitive to overtopping compared to RIM2.0. In consequence, 
RIM1.0 produces a higher overtopping volume along the 
entire reach. We explain this pattern by the hydrodynamic 
interactions. RIM1.0 considers hydrodynamic interactions 
only within individual sub-basins, i.e. dike overtopping and 
inundation cause discharge and water level reductions only 
within the sub-basin where they occur. This storage effect is 
not translated to the sub-basin downstream. The discharge 
boundary condition in the subsequent sub-basin is updated 
using SWIM output, which is not aware of the overtoppings 
upstream. Hence, the total floodwater volume in the river 
system is overestimated, causing stronger overtopping and 
larger inundation areas in RIM1.0.

To some extent, this effect also occurs in the mosaic 
flood mapping approach, in which upstream boundary 
conditions of piece-wise hydrodynamic models are updated 

Figure 7. Longitudinal profile of the maximum water level (left y-axis), the difference in maximum water level between RIM1.0 and RIM2.0 (right y-axis), and the 
overtopping locations represented by points of different sizes corresponding to the overtopping volume in million m3. The profile corresponds to events Nov X084 and 
April X068 from the Moselle River to Rees at the outlet of the Rhine catchment. Confluences of major tributaries such as Saar, Rhine, Sieg, Ruhr, and Lippe are indicated 
with vertical dashed lines.
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from the local regionalized flood frequency curves (e.g. 
Quinn et al. 2019). There may be cases where the stream
flow observations comprise events with upstream inunda
tions and, thus, downstream flow reductions, which then 
may leave a trace in the flood frequency curve. However, 
given the length of measured discharge series and the rarity 
of dike overtopping and inundations along embanked riv
ers, the degree to which the effect of hydrodynamic inter
actions is contained in the results of the extreme value 
statistics is limited.

4.3 Impact of hydrodynamic interactions on damage and 
risk

In this section, we investigate how decisive hydrodynamic inter
actions are for flood damage and risk estimates. For this, we 
integrate the risk from all flood events simulated in the 1000-year 
period of synthetic simulations. The comparison of estimated 
economic risk from the two models (Fig. 8) indicates that the 
chain, including RIM2.0, generally simulates less damage. This 
corresponds to the overall smaller inundation areas and depths 
discussed in the previous section. We attribute this difference in 

Figure 8. Risk per economic sector derived from both model chains; the VAR and TVAR and the EAD values are displayed for the two models, in blue (RIM1.0) and red 
(RIM2.0), respectively. The agriculture loss is given in € millions, in contrast to other sectors.
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particular to the effect of hydrodynamic interactions. We analyse 
the overall simulated damages and flood risk in the Rhine basin 
and discuss the results in view of previous studies.

Simulated absolute damage numbers for the residential, 
commercial, and agricultural sectors are in reasonable agree
ment with actual reported losses, though a direct comparison 
between single observed and simulated events is not expedi
ent. For instance, VAR, i.e. the 100-year total loss, amounts to 
1.94 billion € in RIM2.0 compared to 3.14 billion € in RIM1.0, 
while the reported loss of the 1993 event (about a 100-year 
flood at Cologne) in the German Rhine was 1.5 billion DM 
(Engel 1997), which corresponds to roughly 1.2 billion € 

today. The estimated EAD for the two model variants 
(0.16 billion € by RIM1.0 and 0.08 billion € by RIM2.0) is 
considerably lower than that estimated by Te Linde et al. 
(2011) (0.79 billion € for the German Rhine). This difference 
likely originates from the differences in the approaches used 
to compute flood hazard, asset values and different damage 
models. First, the approach of Te Linde et al. (2011) is based 
on the homogeneous assumption of an “extreme” inundation 
scenario provided by ICPR (2005) without an associated 
return period. Probabilities of inundation and losses in that 
study were retrospectively assigned using the nominal pro
tection levels in the respective parts of the Rhine reach. 

Figure 9. Risk curves derived from RIM1.0 and RIM2.0 for river basin segments at different locations across the main Rhine and the tributaries.
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Hence, EAD was estimated as summed probability-weighted 
losses corresponding to the return period of dike overtop
ping, i.e. dike design level. Damage estimations correspond
ing to a specific high return period under homogeneous 
assumptions are found to be largely overestimated (Metin 
et al. 2020). Second, the exposure values used in the 
Damage Scanner model in Te Linde et al. (2011) include 
infrastructure and other land-use types not considered in 
our approach. Damage Scanner is found to overestimate 
loss values by more than three times compared to the 
FLEMO damage model (Jongman et al. 2012). Finally, 
damage calculated by Te Linde et al. (2011) comprises 
a share of, on average, 5% indirect damage, which is not 
accounted for in our study.

The private and commercial sectors contribute equally to 
the overall financial risk in our simulation. However, the loss 
in the agricultural sector differs greatly between the two mod
els due to the difference in the inundation extent; it only 
accounts for a small fraction of the overall loss (Fig. 8). This 
result is expected for the highly industrialized Rhine catch
ment, particularly the Lower Rhine. The difference in TVAR is 
larger than the difference in VAR, indicating that the models 
show less agreement in the upper tail. We find that events 
above the 100-year return period contribute significantly to the 
difference in risk curves between the RIM1.0 and RIM2.0 
model chains. Different protection levels around 100- and 200- 
year return periods can be observed in the loss curves. A steep 
growth of the curve is visible at these thresholds, depending on 

Figure 10. Comparison of inundation area and damage between RIM1.0 and RIM2.0 for two selected events in the synthetic series. The shaded colour in the 
background refers to the maximum inundation area of both models in the left panels, and the maximum damage of both models in the right panels, for the same sub- 
area. The bars indicate the share (%) of each model from the maximum value of the sub-area, i.e. one of the two bars refers to 100% in each sub-area.
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whether damages occur along the main course with the higher 
protection standard (~200 years) or in the tributaries, where 
the protection standard is likely lower (~100 years).

OEP considers the most severe event per year. However, 
there is a possibility of having multiple flood events in 
one year, which can then be reflected in the risk curves by 
the aggregated exceedance probability (AEP). As the AEP and 
OEP values are mostly identical (not shown), which means 
that both models (RIM1.0 and RIM2.0) seldom encounter two 
major events per year, only OEP values are presented.

To analyse the impact of hydrodynamic interactions on 
flood damage and risk, we sub-divide the river network into 
different segments based on the location of major cities and 
confluences (Fig. 9). The results of both RIM1.0 and RIM2.0 are 
aggregated and used to derive the risk curves for each segment. 
At the upstream segments 1, 7, and partially 10, the risk curves 
by RIM2.0 are higher than those of the RIM1.0 curves, which 
indicates higher losses produced by RIM2.0. Farther down
stream, the risk curves converge (segments 2 and 3). At the 
lower part of the Rhine (segments 4, 5, and 6), the risk modelled 
by RIM1.0 consistently exceeds the estimations by RIM2.0. In 
these segments with extended floodplains and high exposure, 
there is a strong potential for widespread inundation and high 
losses. In segment 9, i.e. the Lippe tributary, the RIM2.0 cali
bration results with respect to discharge are poor (Fig. 3), pre
sumably due to anthropogenic effects on river geometry and 
discharge in this strongly affected reach. Moreover, water levels 
were not available for model calibration, which affects water 
level estimations. Hence, significant differences resulted 
between RIM1.0 and RIM2.0 in this reach that explain the 
resulting risk curves. The discharge contribution of this seg
ment to the main Rhine channel is on the order of a few percent, 
so the effect on the risk downstream is expected to be small.

Figure 10 compares the spatial distribution of inundation 
areas and damages for two large events (Nov-X084 and April- 
X068; see Fig. 5). The inundation areas and damages are 
aggregated for the sub-areas shown in Fig. 10. To present the 
results on a proper scale, the hydrological sub-basins of SWIM 
are aggregated to larger areas. The total damage of the Nov- 
X084 event is 7.9 billion estimated from RIM1.0 and 5.6 billion 
from RIM2.0, while the April-X068 event simulation results in 
3.2 billion and 1.0 billion for RIM1.0 and RIM2.0, respectively. 
Locating these numbers on the risk curves would result in 
return periods of 200 and 166 years for the Nov-X084 event 
simulated by RIM1.0 and RIM2.0, respectively, and 100 and 
66 years for the April-X068 event by RIM1.0 and RIM2.0, 
respectively. The shading of the sub-area indicates the absolute 
inundation area/damage. Nov-X084 event originates in the 
Neckar, Main, and Mosel tributaries, whereas the April-X068 
event strikes Main and Mosel (see Fig. 2 for orientation), and 
the Lower Rhine is affected by both floods. For both events, 
inundation areas and damage simulated by RIM1.0 are often 
similar at upstream sub-areas but clearly dominate the Lower 
Rhine compared to the RIM2.0 results. The Lower Rhine is 
hardly affected by Event 2 in the RIM2.0 model.

We attribute the difference in inundation/damage patterns 
between the two models mainly to the difference in the routing 
scheme and, consequently, to the consideration of hydrodynamic 
interactions. However, underestimation of flow and water level in 

RIM2.0 compared to RIM1.0 due to differences in cross-section 
geometry and parameterization may result in less inundation in 
RIM2.0 and thus represents a limitation for the achieved results. 
The higher sensitivity of RIM2.0 simulations to dike overtopping 
due to the consideration of hydrodynamic interactions becomes 
pronounced in the Lower Rhine, where several 
overtoppings occur during these events. Consequently, less inun
dation and damage occur during both events at the Lower Rhine, 
when hydrodynamic interactions are accounted for.

4.4 Computational time performance

Besides considering hydrodynamic interactions and a more 
plausible representation of dike overtopping events leading to 
inundation, we achieve a considerable reduction of the com
putational time with RIM2.0. The model runtime for the 1000- 
year simulation run was nearly halved (from about 60 to 
30 days on the GPU cluster – NVIDIA Tesla K80 with 24 GB 
of GDDR5 RAM). The computational load in RIM2.0 caused 
by the 1D component increased nearly 20-fold compared to 
RIM1.0. 1D routing in RIM2.0 runs continuously for all flows, 
whereas RIM1.0 routes only flow exceeding the 2-year dis
charge. This happens every second year on average. 
However, due to the lack of hydrodynamic interactions in 
RIM1.0, the overall larger inundation computations result in 
a much longer 2D computational time (see Appendix, 
Fig. A10).

5 Conclusions

In this work, we analyse the effects of hydrodynamic interac
tions on flood hazard and risk estimates. To this end, two 
versions of the 1D–2D coupled hydrodynamic diffusive wave 
models driven by a weather generator and a hydrological 
catchment model were compared – RIM2.0 considering 
hydrodynamic interactions, and RIM1.0 considering interac
tions only within individual sub-basins or river reaches, but 
not beyond sub-basin boundaries.

The analysis of peak water levels, overtopping volumes, 
and inundation areas and depths reveals that the piece-wise 
routing approach is largely insensitive to overtopping. 
Unconsidered hydrodynamic interactions and updated 
upstream boundary conditions at each sub-basin from the 
hydrological model largely contribute to this effect. The 
hydrological model is unaware of upstream inundations and 
provides hydrologically routed flow, including lateral input, 
as if no upstream overtopping has occurred. In this way, the 
overall mass balance is violated in the piece-wise routing 
approach and leads to larger inundation areas, depths, and 
damages. At some reaches this overestimation is, however, 
partly caused by differences in simulated discharges between 
two models resulting from calibration and uncertainties in 
cross-section geometry. We conclude that considerable risk 
overestimation can be expected when using mosaicking of 
piece-wise hydrodynamic simulations driven by hydrological 
models or extreme value statistics as an upstream boundary 
condition. This approach is still very commonly used for 
fluvial flood risk assessments.
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Even if extreme value statistics account for multisite spatial 
dependence structure, hydrodynamic interactions are only 
accounted for along the reach considered in the hydrodynamic 
model. Our results for the Rhine basin suggest that the interac
tion-aware model produces smaller inundation areas and hence 
requires half of the computational time for the 2D component 
compared to the piece-wise approach. The overall risk esti
mates, i.e. the EAD, derived by the RIM2.0 model version are 
just about half the values provided by RIM1.0. This highlights 
the practical relevance of the continuous routing considering 
hydrodynamic interactions for large-scale flood risk analysis.
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Appendix

1 Calibration of the hydrological model SWIM

SWIM has a set of nine most sensitive parameters which need to be 
estimated. Two parameters are related to the channel routing, three 
parameters pertain to snowfall and snowmelt processes, two para
meters control the subsurface flow contribution to the streamflow, 
and there is a correction parameter for potential evaporation and 
a correction parameter for saturated conductivity. SWIM is calibrated 
in two phases. In the first phase, we calibrate and validate the model for 
all sub-regions, except Main & Rhine, independently (Fig. A1). In 
the second phase, the Main & Rhine sub-region is calibrated and 
validated. It uses the input from other already calibrated sub-regions 
as tributary inflow. Observed daily streamflow at 79 selected stations is 
used to calibrate the model based on the modified Nash-Sutcliffe 
Efficiency, NSEm (Equation 7). The period between 1 January 1981 
and 31 December 1989 is used for the calibration, while the period 
between 1 January 1950 and 3 December 2003 is considered for valida
tion (excluding the calibration period).

2 Description of the RIM1.0 and RIM2.0 hydrodynamic 
model discretization and cross-section geometry

2.1 Discretization and coupling to the hydrological model 
SWIM

The discretization depends mainly on the river topography and 
SWIM model sub-basins. Each cross-section in the 1D model is 
linked to a specific SWIM sub-basin, whereby several cross- 
sections can be linked to one sub-basin. There can also be sub- 
basins that contain no cross-sections, i.e. no river channels are 
discretized within these sub-basins (Fig. A2). In the latter case, 
the flow between sub-basins is routed by SWIM using the 
Muskingum routing method. For RIM1.0, at the upstream point 
of each sub-basin, the 2-year return period discharge is first sub
tracted from the SWIM flow hydrographs (explicitly representing 
the bankfull depth), then used as a boundary condition for the RIM 
1D component. For RIM2.0 the flow hydrographs are used as 
upstream boundary conditions at the most upstream nodes of the 
discretized river network. Otherwise, the sub-basin discharge is 
distributed as lateral inflow at every time step among the cross- 
sections linked to a specific sub-basin.

2.2 River cross-section data

2.2.1 Overbank cross-section area. The 1D hydrodynamic model 
(both RIM1.0 and RIM2.0) requires river cross-section data to describe 
the river channel geometry. In our approach, the entire river channel and 

adjacent overbank areas between the dikes or elevated banks are char
acterized by the river cross-sections and represented in the 1D model 
domain. Surveyed cross-sections are often not available for large river 
networks. Furthermore, they usually do not cover the entire floodplain 
between dikes as represented in the RIM approach. Therefore, RIM relies 
on cross-sections derived from a digital elevation model (DEM). 
However, the bankfull depth, i.e. river bathymetry below the water level, 
is not represented in the DEM. The cross-sections for the RIM1.0 are 
directly extracted from the DEM. For the RIM2.0 model, we additionally 
estimate the bankfull depth using three options based on power-law 
functions that are detailed below.

First, the overbank component of the river cross-sections, including 
dike location and elevation along the river network, is derived from the 
DEM perpendicular to the flow direction, with the GIS integrated tool 
HEC-GeoRas. Additional information on dike locations and channel 
width can be taken from the digital basic landscape model (Base DLM). 
Subsequently, cross-sections were simplified into six-point cross-sections 
by retaining the cross-sectional area (Appendix, Fig. A2) using an opti
mization procedure, i.e. a point is varied vertically on each floodplain side 
until the optimized vertical location of those points corresponds to the 
minimal difference between the resulting area and original cross-section 
area (Appendix Fig. A3(a)). Typically, low-resolution DEMs do not 
resolve dike heights well and tend to underestimate them. Therefore, 
dike height derived from the DEM is further calibrated based on 
a design flow return period. The highest of both estimates is adopted as 
a crest height in the cross-sections.

2.2.2 Cross-section bankfull depth in RIM2.0. The bankfull depth 
for all cross-sections in the RIM2.0 model is derived using hydraulic 
geometry relationships (Leopold 1953). Three different approaches to 
derive bankfull depth based on the power-law functions (Equations A1– 
A4) can be used to estimate the bankfull depth at each derived cross- 
section from the DEM. The first one relates bankfull depth to the 2-year 
discharge: 

dBF ¼ aHQ2
b (A1) 

WBF ¼ cHQ2
d (A2) 

where WBF is the bankfull width (m), dBF is the mean bankfull depth(m), 
and HQ2 is the 2-year discharge (m3 s−1). Based on Rawlins (1994), flows 
corresponding to 1–2.5 years are representative of bankfull discharge for 
stable natural channels; therefore, the two-year return period discharge 
(HQ2) is calculated for all locations with observed discharge by fitting the 
Gumbel distribution to the annual maximum discharge series at the 
observational gauges. Since the value of HQ2 is required at all cross- 
section locations along the river, not only at gauges, we fit the power- 
law curve HQ2 ¼ αAβ, where A is the upstream drainage area (m2), to the 
data via regression and use this curve to estimate HQ2 at all cross-sections.

To estimate the target variable dBF, coefficients a and b need to be 
approximated. Using Manning’s equation, we obtain the bankfull depth 
(dBF). The bankfull width WBF and slope S0 are estimated from the DEM. 
Based on the estimated dBF with the very wide cross-sections, the a and 
b parameters in Equation (A1.1) are obtained by the regression analysis. 
Using Equation (A1), the bankfull depths can directly be derived.

Furthermore, the relationship between channel width and 2-year dis
charge (Equation A2) was derived through regression analysis to get the 
parameters c and d; this relationship is not used to calculate the bankfull 
width as it is extracted from the DEM for all cross-sections, therefore the 
role of the relationship in Equation (A2) is to obtain the parameters c and 
d and use them in Equations (3) and (4).

By multiplying Equations (A1) and (A2), another relationship 
based on the two predictors WBF and HQ2 can be obtained 
(Equation A3). Then the third option to derive dBF is to substitute 
HQ2 from Equations (A1) into Equation (A2), resulting in Equation 
(A4): 
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dBF ¼
ac

WBF
HQ2

bþd (A3) 

dBF ¼ a
WBF

c

� �
b=d (A4) 

The bankfull depths derived using three approaches are assessed against 
the bankfull depths of the surveyed cross-sections at about 1100 locations 
along the Rhine, Mosel, and Neckar using mean absolute error (MAE) 
and the mean bias error (MBE). Different Manning’s roughness values 
between 0.025 and 0.05 are considered to estimate the value of dBF, but the 
differences are found to be non-significant. Ultimately, the uniform value 
of n = 0.03 is used across the river network. Considering different options 
to derive bankfull depth, Equation (A5) is found to deliver the best fit, 
with an overall MAE of 1.01 m and MBE of 0.12 m (Fig. A4). It used 
measured bankfull width from the DEM as a single predictor. The error in 

the calculated bankfull depth in the Rhine main channel (MAE of 1.02 
and MBE of −0.37) differs slightly from that of the Mosel (MAE of 1.03 
and MBE of 0.46) and Neckar (MAE of 0.99 and MBE of 0.63) tributaries. 

dBF ¼ 0:6354
WBF

0:7093

� �
0:3961 (A5) 

Figure A4 shows considerable variability in the estimation of bankfull 
depth used in RIM2.0 for single cross-sections compared to observations. 
This highlights the need to calibrate the model by adapting the bankfull 
depth to match the water level and discharge hydrographs.

To analyse the effect the cross-section estimation method has on the 
calculation of bankfull capacity and thus on flow and water level, we 
compare the bankfull capacity of the cross-sections in RIM1.0 and 
RIM2.0 at the locations of the gauging stations with the estimates of the 
2-year flood based on the gauge records (Fig. A5). The bankfull discharge 

Figure A1. SWIM model set-up with eight calibration sub-regions, each sharing the same parameter values. The river network shown is the result of the catchment 
delineation and is used in SWIM. It differs from the river network used in RIM (Fig. 2).

526 M. FARRAG ET AL.



(cut-off value) in RIM1.0 is estimated for each sub-basin based on the 
simulated flows with the SWIM hydrological model. For the purpose of 
this comparison, the bankfull discharge of RIM2.0 cross-sections is esti
mated with Manning’s equation. The basin average bankfull discharge is 
then compared to the respective gauge-based estimations. Figure A5 
shows the difference between the observations and both model estima
tions. At most locations, the bankfull discharge in the RIM2.0 model (red) 
marginally differs from the observed two-year discharge, which indicates 
a sound estimation of the bankfull depth and conveyance. Only in the 
upstream parts of the Neckar and the Nahe tributary is the bankfull 
conveyance considerably overestimated. The RIM1.0 tends to slightly 
overestimate the observed two-year discharge in the downstream part of 
the Rhine and in the main tributary.

3 Performance of SWIM, RIM1.0, and RIM2.0 flood 
routing

3.1 Performance of discharge simulation

Figure A6 presents a comparison of a few selected flood events exceeding 
2-year bankfull discharge in the observation period at six gauges (for the 
locations of gauges see Fig. 2) in the Rhine basin, including the comparison 

with RIM1.0, where the cut-off value is represented by the horizontal dotted 
blue line. These peaks belong to a major flood event which hit the Rhine 
catchment in December 1993–January 1994. These gauges are selected to 
cover the main channel and major tributaries, including potential risk hot 
spots at the Lower Rhine (Cologne, Duesseldorf). An inspection of the 
hydrographs in Fig. A6 reveals a very close performance of the two model 
versions at the Steinbach, Lauffen, and Leun and Cochem gauges, while the 
performance at Cologne and Duesseldorf slightly differs, where SWIM and 
RIM1.0 better match the observed peak flows.

The comparison of the modelled and observed hydrographs reveals 
that the performance of the RIM models with respect to observations is 
affected by the input from SWIM. For example, at gauge Leun, SWIM 
underestimates the peak flows, and this error inherently appears in the 
RIM results. In general, the comparison reveals that RIM2.0 mostly 
captures the peak magnitudes, but shows a slight shift in phase of the 
hydrographs at nearly all gauges. The peaks come earlier and appear to be 
less attenuated than in other models, and this explains the poorer perfor
mance compared to SWIM routing. The performance of RIM2.0 com
pared to observations tends to be worse compared to the performance of 
the SWIM routing. This might be due to the fact that the calibration of the 
cross-section bankfull depth changes the bed slope between cross- 
sections. This controls the water levels and, consequently, discharge 
calculations. Hence, a certain trade-off is expected in the performance 

Figure A2. Difference between the (a) piece-wise routing and (b) continuous routing approaches considered in RIM1.0 and RIM2.0, respectively. Computational nodes 
are imaginary points at which discharge and water levels are computed. The calculation at points with the notation “Flow (#)” refers to the addition of the upstream 
flow, while calculation with the notation “*#” refers to routing using the diffusive wave approximation.

Figure A3. Difference between cross-section shapes considered in the two model versions (a) RIM1.0 and (b) RIM2.0. The overbank area is represented by a six-point 
cross-section derived from the 10 × 10 m DEM for both models. In RIM1.0, the bankfull area is represented by two-year flow, while in RIM2.0, it is derived statistically 
from hydraulic geometry relationships.
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with respect to the water levels vs the discharge hydrographs. In other 
words, the performance with respect to discharge can deteriorate com
pared to SWIM in order to improve the simulation of water levels.

Figure A7 presents a comparison of the maximum annual discharges in 
the validation period modelled by RIM1.0, RIM2.0, and SWIM vs the 
observed peak flow of the corresponding flood events. It can be noticed 
that RIM1.0 does not simulate flows below the HQ2 threshold. Therefore, 
the number of peaks simulated by the RIM1.0 is roughly half the number 
of those delivered by the other two models. The points for all models are 
scattered along the 45-degree line at most of the selected gauges, which 
indicates an overall similar model performance with regards to peak 
flows. At gauge Steinbach, RIM1.0, RIM2.0, and SWIM perform very 
similarly but slightly overestimate the peaks. At Lauffen, RIM2.0 over
estimates a few high-flow peaks. At gauges Duesseldorf and Cologne, 
RIM2.0 slightly underestimates the peaks above 8000 m3/s, whereas 
RIM1.0 and SWIM show very good performance. As discussed above, 
the representation of the cross-sectional geometry in the lowland river 
reaches might be inadequate and requires further improvement in future.

3.2 Evaluation of RIM1.0 and RIM2.0 with regards to water 
levels

To benchmark the performance of RIM1.0 and RIM2.0, we analyse 
the water level simulations at six selected gauges with available water 
level observations for the major flood event in 1993 analogously to 
the analysis of discharge hydrographs (Fig. A8). RIM1.0 and RIM2.0 
are mostly consistent in the simulation of water level dynamics and 
match the peak levels similarly well (or poorly). As for discharge, 
RIM2.0 water level hydrographs are slightly shifted in time compared 
to RIM1.0 and observed hydrographs, though peak levels are mostly 
well matched. The constant water level in RIM1.0 (horizontal line) is 
the water level corresponding to the cut-off value (HQ2). At the 
Speyer gauge station, water levels simulated by RIM2.0 show that 
both high and low flows are well presented in addition to the timing 
of the flood wave, with 0.48 m MAE and −0.05 m MBE (overestima
tion). In contrast, RIM1.0 misses the event, which indicates a problem 
in RIM1.0 for estimation bankfull capacity. At the Andernach gauge, 
both models predict a slightly earlier peak compared to the observed 
data, but RIM2.0 matches the observed peak water levels much better 
than RIM1.0 At the Cologne and Rees gauges, RIM2.0 simulates 
slightly lower water levels than RIM1.0 for some peaks, whereas 
other peaks are well attained by RIM2.0 and are entirely missed by 
the RIM1.0 model. At the Cochem gauge RIM2.0 underestimates the 
peaks, with MBE of 0.19 and MAE of 0.46. The degradation of the 
water level performance at Cochem indicates a problem in the bank
full depth estimation at the cross-sections in this reach and should be 
revised in future. The Steinbach gauge in the middle of the river Main 
shows that RIM1.0 underestimates smaller events, while RIM2.0 man
ages to capture the observed peaks and delivers a good performance, 
with MBE of −0.08 m and MAE of 0.28 m.

Figure A9 presents a comparison between the water levels mod
elled by RIM1.0 and RIM2.0 for flood events corresponding to 
events with the maximum annual observed water level peaks. 
Similar to the simulated discharge by RIM1.0 and RIM2.0, the 
simulated water levels of both models have an overall similar 
model performance but are underestimated at most stations, as 
shown in Fig. A9. RIM2.0 seems to have problems replicating the 
peak water levels at Cologne. Nonetheless, the performance of the 
two models is very similar at Duesseldorf (not shown). This high
lights the effect of the cross-sections on water levels estimates and 
stresses the importance of the robust estimation of the river profile 
geometry.

3.3 Computational time performance

See Fig. A10.

Figure A4. Comparison of estimated and measured bankfull depth at the loca
tions of the surveyed cross-sections; MAE and MBE are calculated as 
measured value minus calculated value.
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Figure A5. Comparison between the two-year return period discharge derived from gauge observations (grey column), cut-off value (HQ2) in RIM1.0 (blue column), and 
estimated bankfull cross-section capacity in RIM2.0 (red column) in m3/sec. The bar height is related to the maximum value at each location. Bars at one location cannot 
be compared with those at other locations.
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Figure A6. Comparison of discharge hydrographs between RIM1.0, RIM2.0, SWIM, and observations at selected gauges. The selected dates show the highest peak of the 
time series in the observational period. The horizontal blue line represents the cut-off value (HQ2) in RIM1.0 and is not simulated.
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Figure A7. Comparison of the maximum annual modelled and observed discharge peaks in the historical period from 1950 to 2003.
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Figure A8. Comparison of water levels simulated by RIM1.0 and RIM2.0 for selected historical flood events in the period December 1993–January 1994 at six selected 
gauges.
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Figure A9. Comparison of the maximum annual modelled and observed highest water level in the historical period from 1950 to 2003.
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Figure A10. Computational time required by RIM1.0 and RIM2.0 for simulating 1000 years. The 1000-year period is divided into 10 realizations, each modelled using 
one NVIDIA Tesla K80 card.
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