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Abstract
Deep hydrothermal Mo, W, and base metal mineralization at the Sweet Home mine (Detroit City portal) formed in response 
to magmatic activity during the Oligocene. Microthermometric data of fluid inclusions trapped in greisen quartz and fluorite 
suggest that the early-stage mineralization at the Sweet Home mine precipitated from low- to medium-salinity (1.5–11.5 wt% 
equiv. NaCl),  CO2-bearing fluids at temperatures between 360 and 415 °C and at depths of at least 3.5 km. Stable isotope and 
noble gas isotope data indicate that greisen formation and base metal mineralization at the Sweet Home mine was related 
to fluids of different origins. Early magmatic fluids were the principal source for mantle-derived volatiles  (CO2,  H2S/SO2, 
noble gases), which subsequently mixed with significant amounts of heated meteoric water. Mixing of magmatic fluids with 
meteoric water is constrained by δ2Hw–δ18Ow relationships of fluid inclusions. The deep hydrothermal mineralization at the 
Sweet Home mine shows features similar to deep hydrothermal vein mineralization at Climax-type Mo deposits or on their 
periphery. This suggests that fluid migration and the deposition of ore and gangue minerals in the Sweet Home mine was 
triggered by a deep-seated magmatic intrusion. The findings of this study are in good agreement with the results of previous 
fluid inclusion studies of the mineralization of the Sweet Home mine and from Climax-type Mo porphyry deposits in the 
Colorado Mineral Belt.

Keywords Hydrothermal veins · Fluid inclusion geochemistry · Fluid mixing · Ore deposition · Colorado mineral belt · 
Molybdenum mineralization

Introduction

The Colorado Mineral Belt (CMB) hosts a number of eco-
nomic molybdenum porphyry deposits, such as the world-
class Climax and Urad-Henderson deposits (Fig. 1). The 
formation of Climax-type Mo deposits in the CMB is related 
to the emplacement of highly evolved calc-alkaline granitic 
and subvolcanic rhyolite porphyry melts (e.g., Wallace 1995; 

Ludington and Plumlee 2009; Audétat and Li 2017), which 
are part of bimodal magmatism related to crustal extension 
during the Mid- to Late Cenozoic (e.g., Lipman and Mehnert 
1975; Westra and Keith 1981; White et al. 1981; Bookstrom 
et al. 1988; Carten et al. 1993; Keith et al. 1993; Russell and 
Snelson 1994; Ludington and Plumlee 2009; Audétat 2010; 
Audétat et al. 2011; Mercer et al. 2015).

Climax-type deposits have high Mo and little Cu 
enrichment. The ore is concentrated in ore shells that 
consist of stockwork vein and greisen molybdenite–fluo-
rite–quartz–pyrite–topaz–sericite mineralization accom-
panied by intense host rock alteration (e.g., Audétat and 
Li 2017 and references therein; ESM Fig. 1). The main 
Mo mineralization occurs at the flanks and apical parts of 
small porphyry stocks. Multiple intrusions lead to different 
overlapping ore shells and individual Climax-type depos-
its (Wallace et al. 1968; Mutschler et al. 1981; White et al. 
1981; Bookstrom 1989; Carten et al. 1993; Wallace 1995; 
Ludington and Plumlee 2009). Peripheral base metal and 
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rhodochrosite vein mineralization extends from porphyritic 
rocks into crystalline country rocks and postdates the Mo 
mineralization (e.g., Bookstrom 1989; Seedorff and Einaudi 
2004a). Molybdenum mineralization is assumed to have 
formed from magmatic fluids that were expelled from the 
parental magma at temperatures of 710–750 °C and pres-
sures of 2000–3000 bar, as evidenced by studies of melt 
inclusions (Lowenstern 1994; Audétat 2015; Mercer et al. 
2015). Besides Mo, the melts are enriched in W, Pb, Zn, Cu, 
Bi, Ag, and Mn, as well as in the volatile components  H2O, 
 CO2, F, and Cl (Lowenstern 1994; Audétat 2015; Mercer 
et al. 2015).

The change of mineralization style from early 
quartz–molybdenite stockwork veins to later tungsten-
bearing greisen as well as silver- and base metal–bearing 
assemblages in ore shells and distal veins above the Mo 
porphyry ore shells likely resulted from simple cooling 

of the magmatic-hydrothermal fluid (Wallace et al. 1978; 
Mutschler et al. 1981; Westra and Keith 1981; White et al. 
1981; Stein and Hannah 1985; Stein 1988; Bookstrom 
1989; Keith et al. 1993; Wallace 1995; Seedorff and Einaudi 
2004a; 2004b; Ludington and Plumlee 2009; Audétat 2010; 
Mercer et al. 2015). A magmatic origin has also been sug-
gested for sulfur, but it is unclear whether sulfur was derived 
by mantle degassing (e.g., Wallace 1995; Mercer et al. 2015) 
or directly from the rhyolitic melts (Stein and Hannah 1985; 
Lowenstern 1994; Audétat 2015).

In contrast, mixing of magmatic and meteoric fluids was 
suggested for the formation of Climax-type mineralization, 
based on fluid inclusion studies (Hall et al. 1974; Bloom 
1981; Smith 1983; Rowe 2012). Fluid mixing models were 
also proposed for the formation of distal vein mineraliza-
tion related to Climax-type porphyry intrusions (Bartos 
et al. 2007). Lüders et al. (2009) studied the polymetallic 
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Fig. 1  Location of the Sweet Home mine and major Mo deposits in the Colorado mineral belt. Modified after Tweto and Sims (1963) and White 
et al. (1981)
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vein–type mineralization of the Sweet Home mine (SHM) 
in Alma, Colorado (Fig. 2). The authors proposed that 
the mineralization represents the peripheral hydrother-
mal endmember of a Climax-type porphyry system above 
an inferred granite cupola (Lüders et al. 2009). Based on 
fluid inclusions and stable and radiogenic isotope data, they 
concluded that mineralization at the SHM was formed by 
mixing of a small proportion of ascending magmatic flu-
ids with larger amounts of externally derived fluids, which 
interacted intensively with the country rocks (Lüders et al. 
2009).

The vein-type mineralization at the Detroit City por-
tal (DCP) of the SHM studied here is located approxi-
mately 60 m above the uppermost SHM workings that 
were accessible via the Sweet Home portal. The DCP 
is thus the vertical extension of the SHM (Fig. 3). The 
SHM was formerly operated as the most productive 
part of a Ag-base metal vein swarm in the Alma min-
ing district, which extends to the NE through the Red 
Amphitheater and into Mt. Bross, and to the SW across 
the Buckskin Creek (ESM Fig. 2). Some features of poly-
metallic vein-type mineralization at the SHM are similar 
to those of peripheral veins at the Climax Mo deposit, 

which is located ~ 8 km to the NW, and of the far dis-
tal Urad-Henderson Mo deposit (Fig. 1). The similari-
ties include (i) the age of mineralization between 26.0 
and 24.8 Ma (Misantoni et al. 1998; Barbá et al. 2005; 
Romer and Lüders 2006), (ii) the presence of Tertiary 
porphyry rhyolite dikes and molybdenite-bearing pegma-
tites (Misantoni et al. 1998), and (iii) the occurrence of a 
pebble dike (7.5 m thick), which contains rounded clasts 
of Precambrian rocks in a matrix of quartz, fluorite, and 
pyrite (Bookstrom 1989). Recent observations of geologi-
cal features at the SHM support a genetic relationship to 
a Climax-type Mo porphyry system. In the past years of 
mining, several greisen veins were exposed at the DCP, 
which are commonly reported from ore shells in the api-
cal parts of underlying porphyry stocks of Climax-type 
Mo deposits (ESM Fig. 1). Recent tunneling at the DCP 
crosscut a major fault known as the Contact Structure 
(D. Misantoni, pers. commun.), which separates Precam-
brian biotite-rich metamorphic rocks (Xb; gneiss, schist) 
from granitic rocks (Xgn; e.g., granite gneiss, pegmatite, 
migmatite). Outcrops along this structure expose molyb-
denum-bearing mineralization in the form of molyb-
denite–quartz–fluorite–pyrite veins and fault gouge.
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Fig. 2  Geological map of the Mosquito range (Colorado) showing the 
location of the Sweet Home mine, the Climax Mo deposit, and other 
historical mining locations. 1 = North London mine, 2 = South Lon-
don mine, 3 = American mine, 4 = Dolly Varden mine, 5 = Paris mine, 

6 = Phillips mine, 7 = Hock Hocking mine, 8 = Richards Placer (Mis-
antoni et al. 1998). Strike and dip directions are shown in the detailed 
geologic maps of the Climax (McCalpin et al. 2012) and Alma quad-
rangles (Widmann et al. 2004)
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This study aimed to decipher the evolution of the mag-
matic-hydrothermal system of the SHM in the Alma dis-
trict and to test a possible relationship of the mineraliza-
tion to a hypothesized deeper-seated porphyry intrusion, 
as proposed by Lüders et al. (2009). The minerals from 
the main sulfide-stage and late-stage mineralization have 
already been characterized (Lüders et al. 2009); therefore, 
this study focuses on samples from the Contact Struc-
ture and the early-stage (greisen) mineralization. We 
conducted fluid inclusion microthermometry and laser 
Raman analyses as well as analyses of fluid inclusion 
water and gases  (CO2 and noble gases). In addition, stable 
C, O, and S isotope analyses of carbonates and sulfides 
were performed.

Geological setting

Regional geology

The Colorado Mineral Belt (CMB) extends ~ 400  km 
throughout the present state of Colorado (Fig. 1). It com-
prises several magmatic intrusions of different age and 
composition that were emplaced during various tectonic 
events. The first of these (75–43 Ma) was during the Lar-
amide orogeny and characterized by episodic emplace-
ments of monzonites and granodiorites (Bookstrom 1989). 
The second event occurred towards the end of Laramide 
compression (43–37 Ma), where flat slab rollback led to 
intrusions of quartz monzonites and created pathways 

Fig. 3  a Simplified geological 
map of the Detroit City portal 
(by courtesy of D. Misantoni). 
Sample suites marked in yellow 
contain minerals of the early 
stage; sample suites in pink 
contain minerals from the main 
sulfide stage. Molybdenite 
occurs at the crosscut of the 
main vein with the Contact 
Structure. Sample fields show-
ing more than one number 
identify different samples from 
the same locality. MV = main 
vein, WCV = watercourse vein, 
BMV = blue mud vein, TV = tet-
rahedrite vein, PV = pyrite vein. 
b Projection onto cross-section 
of the Sweet Home mine with 
the former SHP workings at the 
bottom and the DCP workings 
above with horizontal view 
at the main vein stopes. It is 
noteworthy that the Contact 
Structure is only intersected by 
the DCP workings (by courtesy 
of S. Bourque)
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for fluid migration (Chapin 2012 and references therein). 
This episode is characterized by Zn–Pb–Ag–Au sulfide 
replacement ores at Leadville (Figs.  1, and 2) and by 
Gilman and Sherman-type Ag–Pb–Zn–Ba ores in karst 
zones in Leadville limestones (Behre 1953; Johansing 
et al. 1990; Thompson and Arehart 1990). After a short 
period of tectonic inactivity, the Rio Grande Rift sys-
tem started to develop at ca. 33 Ma (Fig. 1), which was 
accompanied by the third period of intrusive magmatism 
(until ~ 25  Ma), involving both highly evolved silica-
rich magmas and minor mafic alkaline magmas (Book-
strom 1981, 1989; Bookstrom et al. 1988; Shannon et al. 
2004; Ludington and Plumlee 2009). The reactivation 
of older fault zones and structural lineaments facilitated 
the ascent of these bimodal magmas and the migration 
of fluids, enabling the formation of Climax-type Mo por-
phyry deposits (Lipman and Mehnert 1975; Westra and 
Keith 1981; White et al. 1981; Bookstrom et al. 1988; 
Bookstrom 1989; Geissman et  al. 1992; Carten et  al. 
1993; Keith et al. 1993; Wallace and Bookstrom 1993; 
Russell and Snelson 1994; Shannon et al. 2004; Markey 
et al. 2007; Ludington and Plumlee 2009; Audétat 2010; 
Audétat et al. 2011; Mercer et al. 2015) and peripheral 
Au ± Ag ± Mo ± base metal lodes (Bookstrom 1989; Wal-
lace and Bookstrom 1993; Misantoni et al. 1998; Barbá 
et al. 2005; Romer and Lüders 2006). The upper parts 
of the porphyry Mo orebodies exhibit phyllic alteration 
assemblages of quartz–pyrite–sericite accompanied by 
greisen quartz–pyrite–topaz–huebnerite-bearing veinlets 
(e.g., White et al. 1981; Bookstrom 1989). Late periph-
eral veins contain Ag–Pb–Zn–polymetallic sulfides in a 
gangue of quartz, fluorite, rhodochrosite, calcite, and/or 
barite (Bookstrom 1989). In both the Climax and Urad-
Henderson areas, Precambrian molybdenum- and tung-
sten-rich pegmatites, granites, and schists occur (Tweto 
1960; Theobald et al. 1983; Wallace 1995), which may 
be possible metal sources for younger ore mineralization.

Local geology

Detailed geological descriptions of the Alma district 
and the Sweet Home mine (SHM) are provided by Mis-
antoni et al. (1998), Widmann et al. (2004), and Bartos 
et al. (2007) and are briefly summarized here. Geological 
features, mineralization types, and mining locations are 
shown in Fig. 2. The Alma mining district hosts differ-
ent types of ore deposits of former economic interest: (i) 
Au-bearing polymetallic veins in the London sub-district; 
(ii) placer gold in glacial, colluvial, and alluvial gravels; 
and (iii) Ag-bearing polymetallic veins that were mined 
at the SHM (Misantoni et al. 1998). The SHM was the 
most productive silver mine among several ones located 
along a NE–SW to E–W-trending swarm of veins with 

Pb–Zn–Cu–Ag–W mineralization (ESM Fig. 2). Besides 
the aforementioned mineralization types, the Alma 
mining district also hosts minor molybdenum-bearing 
quartz(± fluorite ± pyrite) veins. Bookstrom et al. (1987; 
1988) related the latter to the last pulse of hydrothermal 
fluids from the underlying Alma Batholith at ca. 26 Ma, 
which may have occurred coevally with the final stage of 
ore deposition at Climax.

Five main veins are recognized at the SHM, namely, the 
Main, the Tetrahedrite, the Watercourse, the Blaine, and the 
Blue Mud veins (Misantoni et al. 1998). The locations of these 
veins in the Detroit City portal are shown in Fig. 3a, along with 
recently exposed Pyrite veins (D. Misantoni, pers. commun.). 
The vertical extension of the mine workings is shown in Fig. 3b. 
The veins are hosted by Precambrian biotite schist (Fig. 4a), 
granitic gneisses, and granodiorite. These Precambrian units 
were intruded by Tertiary quartz–monzonite and monzonite 
porphyries and molybdenite–bearing quartz–orthoclase peg-
matites of possibly Tertiary age (Misantoni et al. 1998).

The rock units were altered and mineralized during mul-
tiple events of fluid migration. Propylitic (epidote–chlo-
rite–hematite–pyrite) alteration is ubiquitous, although not 
directly related to vein mineralization at the SHM. Local 
potassic alteration of gneisses occurs in the form of plagio-
clase replacement by K-feldspar, and replacement of coarse 
metamorphic biotite by fine biotite flakes in the central part 
of the tetrahedrite vein from the former SHM workings 
(Bartos et al. 2007). There are rare showings of 1–2-cm-
wide pinkish K-feldspar veinlets in the same area, which 
are intersected by base metal sulfide–rhodochrosite veins 
(Barbá et al. 2005). Phyllic (quartz–pyrite–sericite) and gre-
isen alteration of the host rock are related to emplacement 
of early-stage greisen veins, pyrite ± huebnerite ± sphaler-
ite veins with quartz and fluorite gangue, and muscovite/
sericite or quartz–pyrite–sericite veins (Misantoni et al. 
1998; Bartos et al. 2007; Figs. 4b, and 5). Whereas fluorite 
of the early stage shows strong zonation under hot cathode 
cathodoluminescence (CL), milky and euhedral quartz do 
not show CL colors (Fig. 4c). This early-stage vein minerali-
zation locally also contains black sphalerite and huebnerite, 
the latter yielding a U–Pb age of 25.7 ± 0.3 Ma (Romer and 
Lüders 2006). The early-stage mineralization also locally 
contains isolated, thin, quartz–pyrite–molybdenite veins 
(Fig. 4d, e) and molybdenite coatings on fractures, which 
exclusively occur at the crosscut of the main vein with the 
Contact Structure (Figs. 3a, 4a). The phyllic and greisen 
alteration was rarely observed in the former SHM work-
ings, but is abundant in the DCP (Fig. 4b). This is due to the 
orientation of the Contact Structure, which intersects just a 
small part of the Sweet Home portal (SHP) but larger parts 
of the DCP workings (Fig. 3b).

Tectonic movements along N-S and NE-trending faults ena-
bled the opening of void spaces and the migration of ore fluids, 
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resulting in precipitation of base metal sulfides and gemmy 
rhodochrosite during the main sulfide stage. Subsequently, rho-
dochrosite and fluorite precipitated in the late stage, the latter 
predominantly along NE-trending veins (Misantoni et al. 1998; 
Fig. 5). The main sulfide stage is characterized by galena, chal-
copyrite, sphalerite, bornite, and sulfosalts (tetrahedrite/ten-
nantite) with quartz, gemmy, and murky rhodochrosite and 
minor purple fluorite as gangue minerals (Fig. 5). The late-
stage mineralization is made up of pinkish rhodochrosite, pur-
ple fluorite, calcite, barite, and apatite (Fig. 5). Late-stage apa-
tite yielded a U–Pb age of 24.8 ± 0.5 Ma (Romer and Lüders 
2006). Some of the main sulfide-stage and late-stage veins are 
superimposed on the early-stage veins.

The emplacement of intrusive rocks in the area of the 
SHM was structurally controlled (Misantoni et al. 1998). 

Three major structural trends are present: (i) an early 
NW–SE to E–W fault and fracture trend that is parallel 
to foliation and banding in the Precambrian gneiss, (ii) a 
NE–SW fault trend that contains the majority of the produc-
tive veins, and (iii) a late, N–S-trending fault and fracture 
zone. All three trends contain porphyry intrusions that are 
hydrothermally altered and mineralized. Several other tec-
tonic features were observed since the opening of the DCP 
in 2017. The most important one is a NW–SE-trending and 
SW-dipping fault, known as the Contact Structure (D. Mis-
antoni, pers. commun.). This fault is likely Precambrian in 
age, and it forms the contact between Precambrian gneiss to 
the NE and biotite schist to the SW (Fig. 3a, b). The Con-
tact Structure in the DCP was intruded by a white porphyry 
dike with similar mineralogical features (e.g., alteration 

Fig. 4  a Underground outcrop 
showing the crosscut of the 
main vein (MV) and the Contact 
Structure. The offset of the 
Precambrian rocks (Xb) is indi-
cated by the displaced (white 
rhyolite) sills. b Sample from 
a pyrite vein showing greisen 
assemblages: pyrite, quartz, 
fluorite, and sericite (sample 6, 
see Fig. 3a for location). c CL 
image showing fluorite in blue 
CL colors and strong zona-
tion. Note that fluid inclusions 
are hosted within the zonation 
layers and do not crosscut grain 
boundaries. Muscovite (Ms) 
and quartz (Qtz) are present 
but do not show CL colors. d 
Sample 14: Molybdenite vein in 
a greisen assemblage of pyrite, 
quartz, and fluorite hosted by 
altered granite gneiss from the 
Contact Structure area. The yel-
low box refers to enlargement 
in Fig. 4 d. e Photomicrograph 
showing molybdenite aggre-
gates (Mo) replacing pyrite and 
quartz (Qtz) crystals (sample 
14). f White porphyry sample 
from the Contact Structure area
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style, pyramidal quartz phenocrysts, Fig. 4f) as the porphyry 
stocks found at Climax. Most of the molybdenite-bearing 
samples found at the DCP so far were retrieved from out-
crops along the Contact Structure (Fig. 3a).

Samples and analytical methods

Sampling and petrography

The samples studied here originate from the DCP (Fig. 3a, 
b) and were collected to represent early-stage mineralization 
consisting mostly of milky quartz, fluorite, muscovite, and 
pyrite, locally also huebnerite and/or sphalerite. Some early-
stage assemblages contain molybdenite vein fillings, which 
have not been reported from the former Sweet Home work-
ings at all. A detailed description of the samples is shown 
in Table 1. The ESM Table 1 provides an overview of the 
methods used, which are briefly described below.

Doubly-polished thick sections of ore and gangue miner-
als were prepared at the Institute of Geosciences, University 
of Potsdam (Germany), for transmitted and reflected light 
microscopy, fluid inclusion (FI) microthermometry, and 
laser Raman spectroscopy. Following the recommendation 
by Lüders and Ziemann (1999), the thickness of pyrite sec-
tions for microscopic observations in near infrafred (IR) 
light was 90 µm. All other thick sections have a thickness of 
ca. 180 µm. Moreover, representative samples were selected 
for CL petrography. The hot-cathode optical CL system was 

operated at 14 keV and 0.10–0.20 mA. Exposure times were 
varied to capture zonation and differences in luminescence.

Microthermometry

Fluid inclusions in transparent minerals (quartz, fluorite, 
sphalerite, huebnerite) were measured by conventional 
microthermometry using a FLUID INC-adapted U.S.G.S. 
gas-flow heating/freezing system mounted on an Olympus 
BX50 microscope with a long-distance × 40 objective with 
coverslip correction. Fluid inclusions in pyrite were meas-
ured using a Linkam THMS 600 heating/freezing system on 
an Olympus BHSM-IR microscope with a 50 × IR objective 
and a QCam infrared InGaAs camera, which allows observa-
tion in the wavelength range between λ = 800 and 1800 nm at 
low IR light intensity (Lüders 2017). Some samples of hueb-
nerite and sphalerite, which showed highly variable trans-
mittance, were studied either in transmitted light or in near 
IR light. Both approaches using a Linkam and a U.S.G.S. 
system are operated at the German Research Centre for Geo-
sciences (Potsdam, Germany).

The Linkam and U.S.G.S. heating-freezing stages were 
calibrated with Synflinc synthetic inclusions (Sterner and 
Bodnar 1984). The measurement precision is ± 0.1 °C for 
ice melting temperatures (Tm) and ± 1 °C for homogenization 
temperatures. Salinity in equivalent weight percent NaCl 
(wt% equiv. NaCl) was calculated from low-temperature 
phase changes using the  HokieFlincs_H2O-NaCl spreadsheet 
(Bodnar 1993; Steele-MacInnis et al. 2012). The salinity of 

Fig. 5  Simplified paragenetic 
scheme of the mineralization at 
the Sweet Home mine
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Table 1  Sample origin and description

1 Sample locations are shown in Fig. 5a
2 Vertical extension of the mine workings are shown in Fig. 5b
3 Relative timing of mineralization stages and mineral assemblages are displayed in Fig. 7
4 Qtz quartz, Ms muscovite, Py pyrite, Hub hubnerite, Fl fluorite, Sp sphalerite, Rds rhodochrosite, Tet tetrahedrite, Ttn tennantite, Gn galena, 
Ccp chalcopyrite, Mo molybdenite, Ap apatite, Xb Biotite schist, Xgn Granite gneiss

Sample 
 number1

Approximate ele-
vation (m.a.s.l.)2

Stage3 Assemblage3,4

1 3515 Early stage Qtz-Ms-Py vein with orange and green Fl in pores
2 3515 Early stage, main sulfide stage Qtz-Py-Hub-Fl overgrown by euhedral Qtz and base metal sulfides
3 3515 Early stage, main sulfide stage Disseminated Py in altered Xb, overgrown by euhedral early-stage Sp and violet Fl
4 3515 Early stage Qtz-Py-Ms-orange Fl with more orange Fl and euhedral Sp in pores
5 3515 Early stage Qtz-Fl-Ms-Py vein
6 3515 Early stage Qtz-Ms-Py-Hub vein
7 3515 Early stage, main sulfide stage Qtz-Py vein replaced by base metal sulfides
8 3515 Early stage, late stage Qtz-Py-Hub vein with minor pink Rds and late violet-Fl
9 3515 Early stage, main sulfide stage Py in a massive sulfide matrix (Tet/Ttn, Gn, Sp) with minor Qtz and murky Rds
10 3530 Early stage, main sulfide stage Py in a massive sulfide matrix (Ccp, Sp)
11 3525 Early stage, main sulfide stage Qtz-Py vein with minor Hub, Sp and main sulfide-stage base metals
12 3515 Early stage Disseminated Py in altered Xgn with Mo coating
13 3515 Early stage Disseminated Py in altered Xgn with Mo coating
14 3525 Early stage Disseminated Py in altered Xgn cut by Qtz-Fl-Py-Mo vein
15 3520 Early stage, main sulfide stage Disseminated Qtz and Py in altered Xgn bordering a massive base metal sulfide-murky Rds 

vein
16 3525 Main sulfide stage, late stage Massive base metal sulfide vein together with late violet fluorite
17 3515 Main sulfide stage, late stage Massive base metal sulfide together with late violet fluorite
18 3515 Main sulfide stage Massive base metal sulfide
19 3515 Main sulfide stage, late stage Pink Rds crystals growing on base metal sulfides
20 3520 Early stage, main sulfide stage Disseminated Qtz and Py in altered Xgn bordering a massive base metal sulfide-murky Rds 

vein
21 3525 Early stage, main sulfide stage Py in a massive sulfide matrix with minor Qtz and murky Rds
22 3515 Main sulfide stage Base metal sulfides in a gangue of murky Rds and differentially colored Fl
23 3515 Late stage Pink Rds crystals
24 3515 Late stage Pink Rds together with euhedral Qtz, Ap, and clay
25 3515 Late stage Pink Rds and minor violet Fl crystals
26 3515 Late stage Pink Rds and minor Ap crystals
27 3515 Early stage Qtz-Py-Hub vein
28 3515 Early stage Qtz-Ms-Py-Sp-Hub overgrown by euhedral Qz, base metal sulfides, and Rds
29 3515 Early stage Qtz-Py-Hub-Sp growing in open space
30 3515 Late stage Pink Rds and violet Fl crystals on Tet/Ttn
31 3515 Late stage Pink Rds crystals
32 3515 Early stage, main sulfide stage Disseminated Py in altered Xgn bordering a massive base metal sulfide-murky Rds vein
33 3515 Main sulfide stage, late stage Euhedral Qtz and pink Rds growing on massive base metal sulfides
34 3515 Late stage Rds crystals
35 3515 Early stage, main sulfide stage Remnants of early-stage Py in a vein of Qtz-base metal sulfide-violet Fl
36 3515 Late stage Pink Rds and violet Fl crystals
37 3515 Main sulfide stage, late stage Altered Xgn bordered by Qtz-base metal sulfides-pink Rds together with late violet Fl and Ap
38 3515 Main sulfide stage, late stage Pink Rds crystals growing on Tet/Ttn
39 3515 Main sulfide stage, late stage Pink Rds together with euhedral Qtz, base metals sulfides, and violet Fl
40 3515 Main sulfide stage, late stage Pink Rds growing on massive base metal sulfides
41 3525 Early stage, main sulfide stage Py in a massive sulfide matrix with minor Qtz
42 3520 Early stage, main sulfide stage Coarse-grained massive sulfide-murky Rds sample with remnants of early Qtz-Py-Sp
43 Dump Early stage Qtz-Hub vein
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 CO2-bearing inclusions was calculated via clathrate melting 
temperatures using the equations from Darling (1991) and 
Barton and Chou (1993).

Laser Raman spectroscopy

The gas contents in vapor-rich inclusions and vapor bubbles 
of aqueous two-phase fluid inclusions as well as trapped 
solid phases were analyzed using a Jobin–Yvon LabRam 
confocal laser Raman microspectrometer paired with an 
Olympus optical microscope at the German Research Cen-
tre for Geosciences (Potsdam, Germany). All measurements 
were taken with an MPlan 100 × /0.90 objective lens. The 
excitation radiation was from a 532.6 nm Nd-YAG laser (100 
mW). Silicon (520  cm−1) and diamond (1332  cm−1) were 
used for internal calibration. Raman spectra were collected 
in the spectral range between 100 and 1300  cm−1 for gas-rich 
and aqueous inclusions and between 1200 and 2950  cm−1 for 
trapped solids. Acquisition times were 2 × 30 s for gas-rich 
and aqueous inclusions and 2 × 60 s for solids.

Hydrogen and oxygen isotope analysis of fluid 
inclusions

Isotope analysis of fluid inclusion water was made on 
selected ore and gangue minerals from the early greisen 
stage, as well as from the main sulfide and late stage, at the 
Max Planck Institute for Chemistry (Mainz, Germany). Bulk 
analyses of fluid inclusion hydrogen and oxygen isotope 
ratios were performed using two different continuous-flow 
techniques designed for online analysis of mineral samples 
of up to 2 g (de Graaf et al. 2020a). One technique couples 
a mechanical crusher unit to a continuous-flow isotope ratio 
mass spectrometry (IRMS) instrument (Thermo Scientific 
Delta V). The crusher unit is maintained at a temperature of 
120 °C to achieve complete evaporation of fluid inclusion 
water upon sample crushing. The released water vapor is 
collected in a cryogenic trap that can be heated to generate 
a water pulse long enough to be analyzed. After leaving the 
cryogenic trap, the water vapor is guided to a continuous-
flow pyrolysis furnace (Thermo Scientific TC-EA), which 
produces  H2 and CO gas as a result of reaction with glassy 
carbon at 1400 °C. The  H2 and CO are subsequently intro-
duced to the IRMS instrument where a rapid magnet peak 
jump allows for analysis of both hydrogen and oxygen iso-
topes from a single water release. Isotope values of fluid 
inclusion water are reported as δ2Hw and δ18Ow ratios rela-
tive to VSMOW. Samples measured following the analytical 
protocol are typically reproducible (1σ) within 0.4‰ for 
δ18Ow and 2.0‰ for δ2Hw.

The second technique makes use of a cavity ring-down 
spectroscopy (CRDS) instrument (Picarro L2140-i) con-
nected to a crusher unit at 120 °C. The  N2 carrier gas in 

the system is continuously moisturized to create a stable 
water vapor background and eliminate memory effects in 
the analyzer. Mineral samples are crushed to liberate fluid 
inclusion water and generate a peak addition to the steady 
water background. Oxygen and hydrogen isotope values of 
the fluid inclusion water can be calculated by subtracting 
the background from the sample peak. Reproducibility of 
mineral crushes on the CRDS system is within 0.3‰ for 
δ18Ow and 1.1‰ for δ2Hw. Both the IRMS and CRDS setup 
produce accurate fluid inclusion isotope data as shown in a 
comparison experiment for these two techniques reported by 
de Graaf et al. (2020a).

Carbon and nitrogen isotope analysis of fluid 
inclusions

The carbon isotopic composition of carbon dioxide and 
methane as well as the nitrogen isotopic composition of fluid 
inclusions hosted in fluorite and quartz was analyzed using a 
sample crusher connected via a GC-column to an elemental 
analyzer (EA)-IRMS system at the German Research Cen-
tre for Geosciences (Potsdam, Germany). The system uses 
a continuous flow of He carrier gas (purity 5.0) at a sta-
ble rate of 300 ml/min. After crushing of 0.2–0.5 g sample 
chips, the He–gas mixture passes through a molecular sieve 
where  N2,  CH4 (if present), and  CO2 are separated from each 
other. The gas species enter the oxidation column of the EA, 
where  CH4 (if present) is oxidized to  CO2 with simultane-
ous injection of  O2 at 960 °C. After passing the reduction 
column and water trap, the gas species  N2,  CO2 from  CH4 
oxidation, and original  CO2 from inclusions are separated 
in a second molecular sieve and enter the IRMS via a Con-
flo III interface. The isotopic ratios of nitrogen and carbon 
dioxide were measured online and compared to reference 
gases calibrated against IAEA-N1 for  N2 and NBS19 for 
 CO2. Reproducibility of the δ15N  (N2) and δ13C  (CO2,  CH4) 
values of fluid inclusion gases are at or below 1.1‰. For 
details, see Plessen and Lüders (2012).

Carbon and oxygen isotope analysis 
of rhodochrosite

Crushed rhodochrosite samples were analyzed for carbon 
and oxygen isotopes on a Thermo Scientific Delta V Advan-
tage mass spectrometer equipped with a Gasbench II gas 
preparation unit (Thermo Scientific) at the Department of 
Earth Sciences, Vrije Universiteit Amsterdam (Netherlands). 
Around 10 μg of sample material was placed in a He-filled 
12-ml exetainer vial for sample digestion in concentrated 
anhydrous  H3PO4 at a temperature of 45 °C. The gener-
ated  CO2–He gas mixture was transported into the Gas-
bench II in a He carrier flow. In the Gasbench II, water was 
removed through Nafion tubing, and  CO2 was analyzed in 
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the mass spectrometer after extraction of residual gases in 
a GC column. Raw data were calibrated against the calcite 
Vrije Universiteit Amsterdam-Internal Carbonate Standard 
(VICS; 1.45‰ for δ13C and -5.44‰ for δ18O). This intro-
duces no bias since rhodochrosite and calcite have a similar 
phosphoric acid fractionation factor. The isotope ratios are 
reported as δ13CRds and δ18ORds ratios relative to VPDB. The 
typical reproducibility (1σ) of routinely analyzed carbonate 
standards is better than 0.1‰ for both δ13C and δ18O.

Noble gas analysis of fluid inclusions

Noble gas analyses were performed on 0.2 to 1.0 g of hand-
picked separates of ore and gangue minerals from the early 
and main sulfide stages at the German Research Centre 
for Geosciences (Potsdam, Germany). The samples were 
loaded into an ultrahigh-vacuum spindle crusher, which was 
pumped at room temperature for 24 h to remove atmospheric 
gases adsorbed on grain surfaces. For gas extraction, the 
samples were crushed under vacuum, and the gases released 
were admitted to the preparation line. Water was frozen in 
a dry ice-cooled trap and other chemically active species 
were removed in Ti sponge and ZrAl getters. The noble 
gases were then separated from each other in a cryogenic 
adsorber, and noble gas concentrations and isotopic compo-
sitions were determined in a VG5400 noble gas mass spec-
trometer according to procedures described by Niedermann 
et al. (1997). Total analytical blanks (determined prior to 
each crushing extraction, in  cm3 STP) were (1–4) ×  10–12 
for 4He, (0.5–2.3) ×  10–12 for 20Ne, (4–14) ×  10–10 for 40Ar, 
and (3–15) ×  10–14 for both 84Kr and 132Xe, with atmospheric 
isotopic compositions.

Reliability of fluid inclusion bulk analysis

Bulk analysis of fluid inclusions extracted from minerals by 
crushing or heating inevitably provides data from all fluid 
inclusion populations (i.e., primary and secondary fluid 
inclusions) present in a sample. This is a major point of criti-
cism against the reliability of bulk crush-leach or isotope 
analysis (see Chi et al. 2021 and references therein). How-
ever, the validity of bulk analysis can be increased consid-
erably by carefully evaluating the fluid inclusion inventory 
and selecting samples that contain only one dominant fluid 
inclusion population. Plessen and Lüders (2012) tested the 
validity of fluid inclusion bulk analysis in a study using an 
online technique for carbon isotope analysis of  CO2 in fluid 
inclusions. The authors showed that variations in δ13CCO2 
values of quartz-hosted gas-rich fluid inclusion assemblages 
in previously studied quartz chips from the Ashanti gold mine 
(samples GH-172 and GH-151) gave excellent reproducibil-
ity in the range of 0.5 and 0.4‰, respectively. The same 
holds true for δ13C values of  CO2 and  CH4 and δ15N values 

of gas-rich inclusions hosted in different minerals in other 
case studies (e.g., Lüders et al. 2012; Plessen and Lüders 
2012; Lüders and Plessen 2015). The results of these studies 
show that the influence of different fluid inclusion popula-
tions can be minimized by careful sample selection. Simi-
larly, excellent reproducibility was found for online analysis 
of δ2H and δ18O of fluid inclusion water in various minerals 
from vein-type ore and fluorite from the Harz Mountains in 
Central Germany (de Graaf et al. 2020b). For this study, only 
samples that dominantly host one fluid inclusion population 
were chosen for bulk isotope analyses; thus, we are confident 
that the results represent a single fluid event.

Sulfur isotope analysis

Sulfides and sulfosalts from the early greisen and main 
sulfide stages were measured via EA-IRMS (elemental 
analyzer-isotope ratio mass spectrometer) using a Flash-
EA Isolink CN interfaced to a ThermoScientific Delta V 
Advantage mass spectrometer at the Institute for Geol-
ogy and Paleontology, University of Münster (Germany). 
Depending on the specific mineral, between 150 and 450 µg 
of hand-picked separates were homogeneously mixed with 
200–600 µg of vanadium pentoxide and weighed in a tin cap-
sule. Reference materials for sulfur isotope measurements 
were NBS-127, IAEA-S-1, IAEA-S-2, and IAEA-S-3, and 
an in-house  Ag2S standard. External reproducibility as deter-
mined through replicate analyses of reference materials was 
better than ± 0.3‰ (1σ).

Results

Fluid inclusion petrography

The classification of fluid inclusions (FIs) as primary, 
pseudosecondary, and secondary and the definition of fluid 
inclusion assemblages (FIA; coevally trapped fluid inclu-
sions along features such as crystal planes, growth zones, 
or healed microfractures) followed the criteria suggested by 
Roedder (1984) and Goldstein and Reynolds (1994).

We identified three types of fluid inclusions hosted in gangue 
and ore minerals of the early-stage mineralization: type 1—
vapor-rich aqueous carbonic, three-phase FIs in milky quartz 
and fluorite; type 2—vapor-rich, two-phase FIs in milky quartz 
and fluorite; and type 3—aqueous, two-phase FIs in milky 
quartz, fluorite, pyrite, huebnerite, and sphalerite (Table 2).

At room temperature, aqueous carbonic type 1 FIs contain 
a vapor bubble, liquid  CO2, and minor aqueous liquid (Fig. 6a, 
b). Coevally trapped FIAs of type 1, 2, and 3 inclusions were 
found in early-stage quartz and fluorite (Fig. 6a, b). Some type 
2 and 3 FIs hosted in fluorite near muscovite (coarse and/or 
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sericite) contain solid inclusions of calcite (Fig. 6c) or anhy-
drite (Fig. 6d). Additionally, fluorite hosts isolated primary 
type 1 and 3 FIs, which locally show negative crystal shapes 
(Fig. 6a). Quartz locally shows growth zones that are decorated 
with primary type 3 FIs (Fig. 6e).

Aqueous, two-phase type 3 FIs are most common in 
early-stage quartz, fluorite, and in the ore minerals sphal-
erite, huebnerite (Fig. 6f), and pyrite (Fig. 6g), where the 
inclusions occur in clusters or are arranged along trails.

Due to the great abundance of FIs in some inclusion trails 
and clusters, a classification of primary, pseudosecondary, or 
secondary is uncertain or even impossible. However, these 
trails and clusters are always found within growth zones, 
which are visible in fluorite under CL (Fig. 4c), or in individ-
ual crystals, where they do not cross grain boundaries. There-
fore, the investigated FIs may be pseudosecondary rather than 
primary, but they are unlikely to be secondary and thus are 
valid for interpretation of mineralization conditions.

Generally, type 1 and 2 FIs can mostly be classified as pri-
mary, whereas type 3 FIs may be either of primary or of sec-
ondary origin. However, secondary type 3 FIs in early-stage 
minerals are rare and commonly are arranged along trails cross-
cutting fluorite. The liquid–vapor ratios of secondary inclusions 
are considerably higher than those in primary and pseudosec-
ondary type 3 FIs (Fig. 6h); they are not included in Fig. 7.

Fluid inclusion microthermometry

Microthermometric measurements of FIs were performed on 
early-stage quartz, fluorite, huebnerite, pyrite, and sphalerite 
samples from six different locations in the DCP (1, 5, 8, 14, 
27, and 29 in Fig. 3a). The results are shown in Fig. 7 and ESM 
Table 2. In general, type 1 FIs (e.g., Fig. 6a) show homog-
enization of  CO2 followed by total homogenization to the liq-
uid phase or to the vapor phase. In contrast, type 2 FIs always 
show homogenization to vapor. It was commonly impossible to 
measure the final homogenization temperatures (Th) in vapor-
rich type 1 and 2 FIs due to decrepitation. Type 3 FIs always 
showed vapor to liquid homogenization during heating runs. 
A first melting temperature (Te) was only observed in a few 
FIs hosted in fluorite and sphalerite. The Te values for fluorite-
hosted inclusions are between − 28 and − 26 °C, lower than 
those measured in FIs hosted in sphalerite (− 25.5 to − 17.5 °C). 
Melting of clathrate was observed in type 1 FIs, whereas in 
type 2 and in most of type 3 FIs, melting of either ice or clath-
rate was observed. Both ice and clathrate melting temperatures 
could be observed only in some type 3 FIs hosted in sphalerite.

Fluorite associated with molybdenite in fracture-fill 
mineralization (sample 14, Fig. 7) dominantly contains 
 CO2-bearing type 3 FIs as indicated by frequently observed 
melting of clathrate and the presence of  CO2 peaks in Raman 
spectra. The salinity varies between 5.8 and 10.4 wt% equiv. 
NaCl. Values of Th for primary FIs hosted in fluorite that is Ta
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directly intergrown with molybdenite range between 320 and 
337 °C, whereas primary FIs in fluorite from the outer rim of 
the sample (i.e., distal from the molybdenite) show lower Th 
values between 271 and 299 °C (Fig. 7 and ESM Table 2).

Only one FIA was measured in fluorite of sample 1 
(Fig. 7). Type 1 FIs in this sample (Th and salinities of 
316–338 °C and 1.6 wt.% equiv. NaCl, respectively) show 

both  CO2 homogenization of the liquid to the vapor phase, as 
well as vice versa, at temperatures between 30.3 and 30.5 °C, 
which is close to the critical temperature of  CO2 (Fig. 6a).

Similar observations were made in sample 5, where nine 
FIAs in total were measured in fluorite and cogenetic quartz 
(Fig. 7). The fourth FIA in quartz of sample 5 shown in 
Fig. 7 is the only one that includes cogenetic type 1, 2, and 

Fig. 6  Photomicrographs of FIs 
hosted in early-stage greisen 
mineralization. a Trails of 
carbonic three-phase (type 1), 
vapor-rich (type 2), and aque-
ous, liquid-rich (type 3) FIs in 
fluorite showing negative crystal 
shape (sample 1). Focused type 
1 FIs show different carbonic 
homogenization behavior as the 
top right one homogenizes to 
the liquid phase at 30.8 °C and 
the bottom left one to the vapor 
phase at 31.0 °C. b A cluster of 
carbonic three-phase (type 1), 
vapor-rich (type 2), and low-
carbonic, aqueous, liquid-rich 
(type 3) FIs in milky quartz 
(sample 5). c Trail of vapor-
rich (type 2) and low-carbonic, 
aqueous, liquid-rich (type 3) 
FIs in fluorite. The focused 
FI shows an inherited calcite 
crystal (sample 5). d Low-
carbonic, aqueous, liquid-rich 
(type 3) FIs in fluorite showing 
an inherited anhydrite crystal 
(sample 14). e Quartz showing 
growth zone boundaries and 
focused low-carbonic, aqueous, 
liquid-rich (type 3) FIs (sample 
11). f Aqueous, liquid-rich type 
3 FIs in huebnerite (sample 8). 
g Infrared photomicrograph of 
a cluster of irregularly shaped 
aqueous, liquid-rich type 3 FIs 
in pyrite (sample 27). h Aque-
ous, liquid-rich type 3 FIs in 
fluorite showing high liquid-to-
vapor ratio (sample 16)
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3 FIs (the latter commonly showing clathrate melting). In 
this assemblage, Th values vary between 315 and 367 °C 
and salinities range between 4.3 and 9.6 wt% equiv. NaCl.

Sample 27 contains FIAs in cogenetic quartz and pyrite. In 
general, Th values (307–362 °C) and salinities (mainly between 
4.9 and 9.0 wt% equiv. NaCl) are similar in both minerals. The 
same holds for FIs in sample 8, where FIs in cogenetic quartz 
and huebnerite mostly show Th values between 296 and 328 °C 
and salinities between 5.1 and 11.3 wt% equiv. NaCl (Fig. 7).

The microthermometric data of FIs in sphalerite (sam-
ple 29) are more variable than those in the other minerals. 
Values of Th range between 260 and 361 °C and salinities 
vary from 4.3 to 11.0 wt% equiv. NaCl. The  CO2 contents of 
these FIs are also variable, as some show clathrate melting, 
whereas others do not. It is noteworthy that sphalerite is the 
only studied mineral where both melting of ice and clathrate 
were observed in individual FIs.

In summary, there are no systematic differences in the micro-
thermometry data between gangue minerals (fluorite and quartz) 
and associated ore minerals (pyrite, huebnerite, and sphalerite).

Laser Raman spectroscopy

CO2 was the only gas species detected in Raman spectra 
from vapor-rich type 1 and 2 FIs and in gas bubbles from 
type 3 FIs (ESM Table 2). Solid crystals of anhydrite and 
calcite were identified in some FIs. Since no melting or dis-
solution behavior was observed during heating, it is likely 
that these solids were accidentally trapped (Fig. 6c, d).

Fluid inclusion hydrogen and oxygen isotopic 
composition

The results of fluid inclusion hydrogen and oxygen isotope 
analysis are presented in Fig. 8 and ESM Table 3. With δ2Hw 
values from − 70 to − 50‰ and δ18Ow values from − 2.0 
to 7.6‰, FIs in samples of early-stage pyrite plot into or 

slightly to the left of the primary magmatic water box (Tay-
lor 1974). Fluid inclusions in early-stage fluorites show 
more variable δ2Hw and δ18Ow values than those hosted 
in early-stage pyrite, but they plot on the same trend line 
between magmatic and meteoric water (Fig. 8). Inclusions 
in early-stage quartz yields lower δ2Hw and δ18Ow values 
(from − 114.3 to − 94.8‰ and from − 13.1 to − 10.0‰, 
respectively), which plot at the end of the trend line close 
to the meteoric water line (GMWL; Craig 1961). Early-
stage huebnerite samples give remarkably low δ2Hw values 
from − 150.5 to − 133.5‰, which differ from all other stud-
ied minerals (Fig. 8).

The δ2Hw values of FIs hosted in galena (from − 115.7 
to − 86.1‰), tetrahedrite-tennantite (from − 122.0 
to − 106.0‰), and chalcopyrite (from − 99.2 to − 91.5‰) 
from the main sulfide stage are generally lower than those 
in early-stage minerals, whereas the δ18O values do not differ 
significantly. Altogether, the δ2Hw and δ18Ow data of sam-
ples from the main sulfide stage plot along a trend line that 
is approximately parallel to the early-stage mineral trend 
line (Fig. 8).

Main sulfide-stage quartz and late-stage rhodochrosite 
and fluorite consistently yield δ2Hw and δ18Ow values plot-
ting close to the meteoric water line.

It must be noted that oxygen-bearing minerals, such as 
quartz, huebnerite, and rhodochrosite, may have experienced 
a post-depositional depletion in 18O due to low-temperature 
isotope re-equilibration (e.g., Rye and O'Neil 1968; Uemura 
et al. 2020). Thus, the original δ18Ow value of these miner-
als may have been higher, and caution must be paid when 
interpreting the measured data.

δ13CCO2 of fluid inclusion gas and carbon and oxygen 
isotope ratios of rhodochrosite

The carbon isotopic composition of  CO2 from FIs in early-
stage fluorite and quartz as well as the carbon and oxygen 
isotopic compositions of rhodochrosite are shown in Fig. 9 
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and ESM Table 3. The  CO2 of FIs in early-stage fluorite 
and quartz has δ13CVPDB values between − 7.2 and − 3.3‰ 
(mean − 5.5‰).

The majority of DCP rhodochrosites and the gemmy 
rhodochrosites from the former SHP (Lüders et al. 2009) 
yielded a narrow range of δ13CVPDB values between − 8.0 
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portal of the Sweet Home mine, 
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and − 9.2‰, which are lower than the FI range (Fig. 9). 
The δ18OVSMOW values of rhodochrosites from the DCP 
and the former SHP are similar and both show a wider 
range of between 0.9 and 13.9‰.

Noble gas elemental and isotopic composition

The results of noble gas analyses of crush-released fluids 
in ore and gangue minerals from the DCP are shown in 
Fig. 10 and ESM Table 4.

Helium isotopic composition, He/Ne, and He/Ar ratio

Early-stage milky quartz samples (with 4He/36Ar from 1.2 
to 13 and 4He/20Ne from 1.7 to 9.0) and main sulfide-stage 
quartz (with 4He/36Ar = 31 and 4He/20Ne = 57) are closest to 
the atmospheric values of these ratios (Fig. 10a). All other 
samples show values up to more than three orders of mag-
nitude higher than the atmospheric value.

The 3He/4He versus 4He/20Ne plot shows that all SHM 
samples yielded a range of 3He/4He ratios between 0.43 and 
4.3 Ra, with quartz and huebnerite from the same sample 
giving the lowest values of 0.43 and ~ 0.6 Ra, respectively 
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mid-ocean ridge basalts (MORB; blue line). See text for data sources
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(Fig. 10b). The 3He/4He ratio of late purple fluorite (0.92 Ra) 
is also slightly lower than the atmospheric value. The ratios 
of other early-stage quartz (~ 1.8 Ra) and fluorite samples 
(2.16 Ra), as well as main sulfide-stage quartz (~ 2.7 Ra) and 
late-stage rhodochrosite samples (3.03 Ra), are intermediate. 
Sulfide minerals including sphalerite, galena, and tetrahe-
drite-tennantite samples yielded a narrow range (3.1–3.5 Ra) 
with a low outlier for chalcopyrite (2.3 Ra) and a high value 
for early-stage pyrite (4.3 Ra). Except for early-stage quartz 
(4He/20Ne = 1.7), all minerals yield 4He/20Ne ratios > 9 and 
up to 13,400 (huebnerite). The atmospheric He contribution 
is thus generally < 3.5%.

Figure  10c presents the ratio of 4He to excess radio-
genic 40Ar*, after correction for atmospheric argon with 
40Ar/36Ar = 298.56 (Lee et al. 2006). The 4He/40Ar* of the 
huebnerite sample (17) is at least a factor of two higher than the 
normal production ratios (resulting from U, Th, and K decay) 
of 1–3 in the crust and 2–8 in the mantle (Ozima and Igarashi 
2000). All sulfide samples, including early-stage pyrite, as well 
as early- and late-stage fluorite and rhodochrosite yielded typi-
cal crustal 4He/40Ar* ratios. In contrast, both early-stage quartz 
samples gave 4He/40Ar* ratios two orders of magnitude below 
the typical production ratio, and the main sulfide-stage quartz 
gave a ratio one order of magnitude smaller.

Neon isotopic composition

Figure 10d  shows 20Ne/22Ne versus 21Ne/22Ne, including 
characteristic trajectories for MORB (Sarda et al. 1988), OIB 
(Honda et al. 1991), average crust with O/F = 752 (oxygen and 
fluorine elemental ratio) (Hünemohr 1989), the production of 
nucleogenic 22Ne in U- and Th-bearing fluorite, and the (air) 
mass fractionation line. Due to the small deviations from atmos-
pheric composition, error bars are relatively large and thus 
interpretations should be made with care. Nevertheless, early-
stage pyrite and later chalcopyrite show the highest 20Ne/22Ne 
ratios (10.14 and 10.10, respectively), with 21Ne/22Ne values 
(0.0296 and 0.0295, respectively), close to the air ratio plot-
ting on the air mass fractionation line. Most other ore minerals 
including huebnerite, sphalerite, tetrahedrite, and galena plot in 
a wide range between MORB and crustal values. The gangue 
minerals (quartz, fluorite, and rhodochrosite of all stages) tend 
to plot closer to the atmospheric 20Ne/22Ne and 21Ne/22Ne ratios 
(9.8 and 0.029, respectively) with 20Ne/22Ne ranging between 
9.8 and 9.9 and 21Ne/22Ne between 0.029 and 0.031.

Argon isotopic composition

The 40Ar/36Ar ratios are highly variable between air-like 
(296, e.g., Ozima and Podosek 2002) and a maximum value 
of 1876, indicating variable crustal or mantle contributions 
(ESM Table 4). Early-stage pyrite and main sulfide-stage 
chalcopyrite have 40Ar/36Ar ratios close to the atmospheric 

value. They are followed by higher ratios of the late-stage 
fluorite, early-stage quartz, rhodochrosite, main sulfide-stage 
quartz, and early-stage fluorite with 40Ar/36Ar ratios between 
388 and 574. Early-stage quartz from the huebnerite sam-
ple, however, yielded the highest 40Ar/36Ar ratio of 1876. 
Huebnerite, tetrahedrite-tennantite, galena, and sphalerite 
gave intermediate 40Ar/36Ar values between 574 and 1350.

Noble gas elemental abundances

Heavy noble gas elemental abundances are useful to test 
for isotopic equilibrium at the ca. 250–330 °C mineraliza-
tion temperature indicated by fluid inclusions. Elemental 
fractionation factors (Fi = (iX/36Ar)sample/(iX/36Ar)air, where 
iX = 20Ne, 84Kr or 132Xe) are compared with those for air-
saturated water calculated for temperatures from 0 to 330 °C 
(Crovetto et al. 1982; Smith and Kennedy 1983). The results 
are displayed in ESM Fig. 3, with ESM Fig. 3a showing 
early-stage mineral data and ESM Fig. 3b main sulfide- and 
late-stage mineral data. Helium isotope data are not dis-
played as they are dominated by non-atmospheric compo-
nents and would plot well above the shown range. In all 
samples, Ne abundances are too high for equilibrium at the 
mineralization temperature. On the other hand, early-stage 
quartz, pyrite, huebnerite and sphalerite, and main sulfide-
stage chalcopyrite and rhodochrosite do plot along the Kr 
equilibrium curves for 250 and 330 °C. This is also true 
for the Xe 250 °C equilibrium curve, regarding early-stage 
pyrite. Generally, however, most samples do not plot on 
heavy noble gas equilibrium curves, which may be related 
to the fact that > 100 °C fractionation curves (Crovetto et al. 
1982) only apply to freshwater and do not consider salinities. 
Nevertheless, the fractionation plots show that the heavy 
noble gases have a significant non-magmatic component.

Sulfur isotopic composition

Sulfide minerals from the DCP yielded δ34S values 
between − 3.4 and + 1.6‰ (Fig. 11, ESM Table 5). The highest 
δ34S values were measured in early-stage pyrite (0.9 to 1.6‰) 
and molybdenite (1.3 to 1.4‰). Sphalerite from the late gre-
isen stage and pyrite from the main sulfide stage gave slightly 
lower δ34S values (0.3 to 1.2‰), and the ranges for the other 
main sulfide-stage sulfides overlap between − 3.4 and + 0.2‰.

Interpretations

P–T conditions of fluid entrapment in quartz 
and fluorite from the early stage

The early-stage mineralization of the SHM formed from fluids 
with salinities up to 12 wt% equiv. NaCl in the presence of 
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 CO2. Values of Th for FIs hosted in fluorite and quartz average 
at about 320 °C. Solvi and isochores of individual carbonic 
three-phase type 1 FIs were calculated using the computer 
program “Fluid inclusions in the system  H2O-NaCl-CO2: An 
algorithm to determine composition, density and isochore” 
by Steele-MacInnis (2018). The results show that the major-
ity of these FIs were trapped at temperatures between 360 
and 415 °C and pressures between 1050 and 1750 bar (ESM 
Fig. 4). Similar P–T conditions were estimated for carbonic 
three-phase type 1 FIs from the former SHM workings and 
interpreted as a result of an originally homogeneous fluid inter-
secting the solvus during cooling or decompression (Lüders 
et al. 2009). This may be supported by the relatively nar-
row range in composition of carbonic three-phase type 1 FIs 
(Lüders et al. 2009, this study), suggesting that the P–T fluid 
pathway intersected the solvus near its crest, where the compo-
sition of the two immiscible phases did not differ significantly 
if immiscibility occurred (Bodnar et al. 1985; Diamond 1994). 
Alternatively, a fluctuating pressure regime from lithostatic to 
hydrostatic conditions or fluid entrapment from heterogene-
ous mixtures of two fluids of different origins may explain the 
phase transitions of type 1 inclusions to the liquid phase or to 
the vapor phase (Lüders et al. 2009; Fig. 6a).

Fluid inclusion hydrogen and oxygen isotopic 
composition

Variations of δ2Hw and δ18Ow in fluid hosted by different 
minerals are interpreted to reflect different mixing trends 
between a magmatic fluid and meteoric water (Fig. 8 and 
ESM Table 3). The conspicuously low δ2Hw values of 
early-stage huebnerite samples may point to an organic-
rich fluid source (Sheppard 1986). The δ2Hw and δ18Ow 
data also suggest the cessation of the magmatic fluid 
input during the late mineralization stage (i.e., pink rho-
dochrosite, purple fluorite).

δ13CCO2 of fluid inclusion gas and carbon and oxygen 
isotope ratios of rhodochrosite

The δ13CCO2 values of type 1 aqueous carbonic and type 
2 vapor-rich  CO2 FIs in early quartz and fluorite suggest 
that carbon was derived from a magmatic source (Hoefs 
2018 and references therein). The slightly lower δ13C of 
rhodochrosites compared to δ13CCO2 values of FI gas can 
be explained by temperature-dependent carbon isotope 
fractionation between  CO2 and carbonates (Hoefs 2018 and 
references therein). Whereas δ13C values of rhodochrosite 
are relatively constant, the δ18O data are more variable and 
suggest mixing of magmatic and meteoric fluids (Fig. 9).

Noble gases

While the noble gas data are complex, they indicate that 
the atmospheric helium contribution was generally less than 
3.5% (Fig. 10a, b). Neon (Fig. 10d) and argon isotopic com-
positions (ESM Table 4), however, may represent variable 
mixtures of atmospheric, crustal, and mantle components 
and are additionally affected by minor mass fractionation.

The 3He/4He ratios span a relatively broad range between 
the crustal and mantle endmembers, however mostly closer 
to the mantle field, which indicates mixing of different fluid 
sources (Fig. 10b).

Fluid inclusions hosted in huebnerite from the DCP, how-
ever, dominantly show 3He/4He and 4He/40Ar* ratios that are 
typical for, or may be explained by, crustal fluids (Fig. 10b 
and Fig. 10c, respectively). Anomalously high 4He/40Ar* 
ratios may indicate production in a high (U + Th)/K environ-
ment or fractionation of He and Ar, e.g., by melt formation, 
degassing, solution (temperature dependent), or diffusion, 
in an upper crustal reservoir (Ozima and Podosek 2002). 
Rocks enriched in uranium, such as organic-rich sedimen-
tary rocks or granites and granitic gneisses, are present in 

Fig. 11  Boxplot showing sulfur 
isotopic compositions of Detroit 
City portal (colored boxes with 
black contours) early- and main 
sulfide-stage sulfides. Sweet 
Home mine data (gray boxes) of 
Lüders et al. (2009) are shown 
for comparison
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the study area as discussed in more detail in the following 
chapter. All sulfides, including early-stage pyrite, as well as 
early- and late-stage fluorite and rhodochrosite plot in the 
range of typical crustal 4He/40Ar* ratios and thus may indi-
cate closed-system conditions with respect to noble gases 
(Ozima and Podosek 2002). The 4He/40Ar* ratios of FIs in 
quartz samples are smaller than the range of typical produc-
tion ratios, indicating He loss (Fig. 10c).

Sulfur isotopic composition

The isotopic variation of sulfur can depend on changes in 
physico-chemical conditions or mixing of sulfur from dis-
tinctly different sources (Ohmoto and Rye 1979). Assuming 
ore-formation temperatures of at least 400 °C for early-stage 
sulfides, such as molybdenite, pyrite, and sphalerite (Lüders 
et al. 2009; this study), the calculated initial δ34S values of 
the ore fluid would range within 0 and 0.9‰ and may point 
to a homogeneous (probably magmatic) sulfur source (Ohm-
oto and Rye 1979). For ore minerals of the main sulfide stage 
that precipitated at lower temperatures (ca. 300 °C; Lüders 
et al. 2009), the calculated range of δ34S values is consider-
ably larger (from 1.8 to − 3.7‰; Ohmoto and Rye 1979). 
The calculated ranges confirm the overall trend of the δ34S 
raw data (Fig. 11).

Assuming a homogeneous (probably magmatic) sulfur 
source for sulfides that precipitated during the early stage 
and main sulfide stage, significant changes in fO2 and pH 
would have been required to explain the variation of δ34S 
values of sulfides during ore deposition (Ohmoto and Rye 
1979). At low fO2 and pH values, the δ34S values of sulfides 
will not show significant fractionation compared to the ini-
tial δ34S value of the fluid. In contrast, at high fO2 values, 
the δ34S values of sulfides differ significantly from the initial 
δ34S value of the ore fluid and the proportions of aqueous 
sulfate in the fluid increases (Ohmoto and Lasaga 1982). 
Given that sulfates are absent but rhodochrosite is abun-
dant in the main sulfide stage, significant changes of fO2 and 
pH may be precluded and we assume a homogeneous fluid 
source. Therefore, the decreasing δ34S values of the sulfides 
from the main sulfide stage are best explained by mixing of 
sulfur from different sources. These can be magmatic and 
sedimentary sulfur sources, the latter covering a wider range, 
especially for organic-rich sediments that may have negative 
δ34S values (Hoefs 2018 and references therein).

Discussion

The results of this study are not compatible with an exclusive 
magmatic origin of deep hydrothermal vein–type minerali-
zation for Climax-type ore deposits in the CMB as proposed 
by previous research (Wallace et al. 1978; Mutschler et al. 

1981; Westra and Keith 1981; White et al. 1981; Stein and 
Hannah 1985; Bookstrom et al. 1988; Carten et al. 1988, 
1993; Stein 1988; Keith et al. 1993; Cline and Bodnar 1994; 
Lowenstern 1994; Wallace 1995; Seedorff and Einaudi 
2004a; 2004b; Klemm et al. 2008; Ludington and Plumlee 
2009; Audétat 2010, 2015; Pettke et al. 2010; Audétat et al. 
2011; Mercer et al. 2015; Audétat and Li 2017). Instead, the 
new data reported here from FI studies and stable isotope 
analysis of FIs, sulfides, and rhodochrosite give compelling 
evidence for variable mixing proportions of magmatic flu-
ids with heated meteoric water during the evolution of the 
hydrothermal system at the DCP. This includes early-stage 
greisen and pyrite veins as well as greisen and phyllic altera-
tion assemblages (i.e., fluorite, quartz, pyrite, huebnerite, 
and sphalerite), and main sulfide stage mineral assemblages 
(i.e., base metal sulfides and rhodochrosite) as well as late-
stage mineralization (i.e., rhodochrosite and fluorite). Mix-
ing models of magmatic and meteoric water have also been 
proposed by previous FI studies of Climax-type Mo depos-
its and associated hydrothermal systems (Hall et al. 1974; 
Bloom 1981; Smith 1983; Lüders et al. 2009; Rowe 2012).

Fluid inclusion characteristics of Climax‑type Mo 
deposits

Studies of FIs in quartz and fluorite from Climax-type 
deposits (Climax, Hall et al. 1974; Questa, Bloom 1981; 
Smith 1983; Cline and Bodnar 1994; Klemm et al. 2008; 
Rowe 2012; Henderson, White et al. 1981; Seedorff and Ein-
audi 2004b) show great similarities in FI types. In general, 
four major types of FIs can be classified (Table 2). These are 
(i) carbonic three-phase, low-salinity to intermediate-salinity 
(130–400 °C, 0–10 wt% equiv. NaCl), (ii) vapor-rich, low- 
to high-salinity (300–500 °C, 0–20 wt% equiv. NaCl), (iii) 
liquid-rich, low- to high-salinity (300–500 °C, 0–25 wt% 
equiv. NaCl), and (iv) multi-phase hypersaline (180–450 °C, 
30–65 wt% equiv. NaCl) FIs. Although type 4 FIs have not 
been observed in studied minerals from the SHM (Reynolds 
1998; Lüders et al. 2009; this study), type 1 to type 3 FIs 
are analogous to those observed in other Climax-type sys-
tems and their abundance suggests a similar fluid source and 
mechanism for ore formation at Climax-type deposits and 
the SHM. Whereas type 3 FIs are hosted in minerals from 
all ore stages of Climax-type deposits, type 1, 2, and 4 FIs 
are restricted to the main stage of Mo mineralization (quartz-
molybdenite stockwork veins, magmatic-hydrothermal brec-
cias with a quartz-fluorite matrix, potassic alteration) and 
subsequent Mo mineralization (phyllic and greisen alteration 
and veins). Mo-bearing greisen veins, which are typically 
found inside intrusive porphyry complexes, also occur in 
distal deep hydrothermal veins at the DCP.

Our data show that  CO2 contents of vapor-rich, 
 CO2-bearing FIs, liquid  CO2–bearing FIs, and liquid-rich 

818 Mineralium Deposita (2022) 57:801–825



1 3

FIs may vary considerably within the same assemblage, 
whereas evidence for phase separation is lacking. Based on 
elevated Cu contents in FIs and depletion in other metals, 
Lüders et al. (2009) suggested that phase separation may 
have occurred at a greater depth beneath the actual Sweet 
Home workings. Boiling at depth would also explain the 
absence of halite-bearing type 4 FIs in minerals from vein-
type mineralization of the SHM.

Fluid mixing

The mixing of magmatic fluids with meteoric water forming 
the early-stage greisen and pyrite veins as well as greisen 
and phyllic alteration, and the main sulfide stage veins as 
well as late-stage mineralization at the SHM, is evidenced by 
well-defined trends of fluid inclusion and bulk mineral iso-
tope data. Note that all studied samples were carefully evalu-
ated for fluid inclusion petrology prior to bulk analysis to 
avoid contamination by abundant secondary inclusions (for 
details, see “Reliability of fluid inclusion bulk analysis” sec-
tion of the “Samples and analytical methods” chapter). Fluid 
inclusion water in pyrite samples from early-stage minerali-
zation plots in or close to the primary magmatic fluid box 
(Taylor 1974), while combined hydrogen and oxygen isotope 
compositions of fluid inclusions hosted in early-stage quartz 
and fluorite (locally associated with molybdenite) and later 
sulfides follow a mixing trend of magmatic fluids with mete-
oric water (Fig. 8). A similar evolution of hydrogen and oxy-
gen isotope ratios of FIs was observed at the Questa rhyolitic 
porphyry Mo deposit (New Mexico) and interpreted in terms 
of a mixing model of early magmatic fluids that were pro-
gressively diluted by meteoric water (Rowe 2012). Alterna-
tively, several alteration processes (e.g., exchange reactions, 
hydration reactions, membrane filtration) may be responsible 
for the variation of H and O isotopes (e.g., Hoefs 2018 and 
references therein). However, given the lower sensitivity of 
H isotopes to alteration processes (e.g., Hoefs 2018 and ref-
erences therein), our preferred interpretation is mixing of 
different sources for the mineralizing fluids.

The mixing of fluids from different sources is supported 
by δ13CCO2 values of FIs in quartz and fluorite from the 
early stage and slightly lower δ13C of rhodochrosites, indi-
cating a magmatic carbon source, as well as by the more 
variable δ18O data, suggesting a mixed magmatic-meteoric 
origin. A magmatic carbon source, but mixed magmatic-
meteoric oxygen source, was also proposed for calcite at 
Questa (Rowe 2012).

The sulfur isotopic composition of SHM sulfides and 
sulfosalts shows a development from homogeneous mag-
matic δ34S values in the early stage towards more variable 
δ34S values in the main sulfide stage. This trend may reflect 
a mixed magmatic-sedimentary source. There are similar 
findings from polymetallic vein mineralization found at the 

Sn-W Mole Granite, Australia (Heinrich et al. 1992; Audé-
tat et al. 2000). Lüders et al. (2009) showed that there is a 
correlation between decreasing δ34S values and increasing 
206Pb/204Pb in galena, which was explained by fluid/rock 
interaction between meteoric fluids and crustal rocks. Fur-
thermore, it is conspicuous that the sulfides with lower δ34S 
values from the main sulfide stage also yield lower δ2Hw 
values of FI water than sulfides from the early stage, which 
suggests either multiple fluid sources or (minor) variations 
in δ2Hw and δ18Ow values of the magmatic fluid endmember 
with time.

Progressive dilution of magmatic fluids enriched in vola-
tiles  (CO2,  H2S, noble gases) by increasing amounts of mete-
oric water from the early to the late stage of mineralization 
is consistent with the continuously decreasing temperatures, 
pressures,  CO2 concentrations, and variations in noble gas 
and C, O, H, and S isotope ratios. The progressive mixture 
of  CO2-poor meteoric fluids into the system may explain 
why liquid  CO2-bearing FIs exclusively occur in early-stage 
minerals and are not observed in ore and gangue minerals of 
the subsequent sulfide stage (Reynolds 1998; Lüders et al. 
2009). The absence of detectable  CO2 in FIs with progres-
sive mineralization was also reported from many Chinese 
Mo deposits (e.g., Yang et al. 2015; Zhou et al. 2015; Zhang 
et al. 2016; Xiong et al. 2018).

The magmatic input

Considering a progressive development towards lower δ34S 
values from pyrite of the early stage to younger sulfides 
of the main sulfide stage, the highest δ34S values around 
1.7‰ measured in early-stage minerals may represent the 
magmatic sulfur value (Ohmoto and Rye 1979), which was 
already concluded for other Climax-type deposits (Stein 
and Hannah 1985; Stein 1988; Rowe 2012). Due to the low 
sulfur solubility in rhyolitic melts (Wallace and Edmonds 
2011), it was proposed that the sulfur from the Henderson 
rhyolitic porphyry Mo deposit (Colorado) originated from a 
relatively small volume of underlying mantle-derived lam-
prophyre magma (Mercer et al. 2015). Over the last decades, 
bimodal magmatism with a mantle contribution was con-
sidered to be a likely source for melts associated with the 
formation of Climax-type Mo deposits during continental 
rifting (Westra and Keith 1981; Carten et al. 1993; Keith 
et al. 1993; Audétat 2010; Mercer et al. 2015).

Noble gas data may be a promising tool to distinguish 
between possible fluid sources and this study presents the 
first of their kind for the CMB. Helium isotopic composi-
tions of fluid inclusions hosted in minerals from the SHM 
(Fig.  10b) support the idea that magmatic fluids had a 
substantial mantle component (except huebnerite, which 
is discussed in detail in the “Fluid-rock interaction” sec-
tion). The 3He/4He isotope ratios of FIs hosted in early-stage 
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pyrite from the DCP are 4.3 Ra. Considering binary mix-
ing between the subcontinental lithospheric mantle (6.1 Ra, 
Gautheron and Moreira 2002) and continental lithosphere 
(0.02 Ra, Graham 2002) with:

a contribution of up to ~ 70% mantle He during the early stage 
and up to ~ 50% for the main sulfide stage at the SHM can be 
estimated. The dominant mantle He contributions character-
istic for the mineralization at the SHM differ significantly, 
e.g., from mantle He contributions of 4–20% inferred for 
North American porphyry copper deposits (Kendrick et al. 
2001) and 0.2–41% for Chinese Mo porphyry deposits (e.g., 
Bangpu Mo–Cu deposit, Wang et al. 2015; Daheishan and 
Luming Mo deposits, Zeng et al. 2018; Dasuji Mo deposit, 
Chen et al. 2021). The mantle gas involved in the formation 
of the Chinese Mo porphyry deposits was assumed to have 
derived from unstable mantle flows in convergent regimes 
(Zeng et al. 2018) and from upwelling asthenospheric mantle 
in post-collisional rifts (Wang et al. 2015; Chen et al. 2021). 
The latter is similar to the CMB, which was overprinted by 
the Rio Grande rift extension beginning ca. 33 Ma (Chapin 
2012 and references therein).

Intermediate δ13C values between − 3.3 and − 7.2‰ for 
 CO2 from FIs in early-stage quartz and fluorite may support 
a significant mantle  CO2 contribution. Continental rift zones 
have repeatedly been associated with unusually carbon-rich 
mantle-derived magmas (Bailey 1987; Bailey and Macdon-
ald 1987; Bailey and Hampton 1990). A melt inclusion study 
on the Pine Grove rhyolitic porphyry Mo deposit (Utah; 
Lowenstern 1994) yielded  CO2 saturation pressures as high 
as 4300 bar, which correspond to a depth of 16 km for the 
beginning of volatile exsolution during ascent to depths of 
2–3 km (depth of porphyry emplacement). The exsolution 
of a  CO2 vapor phase from magma promotes the concentra-
tion of sulfur and noble gases (Lowenstern 2001; Scaillet 
and Pichavant 2005). Generally, such a vapor phase has low 
density (Papale and Polacci 1999).  CO2 effervescence may 
explain the heterogeneous supply of  CO2 to the early-stage 
ore-forming fluid in the SHM.

In summary, we conclude that  CO2, noble gases, and 
early-stage sulfur are derived by mantle degassing (e.g., of 
a lamprophyric intrusion at depth) rather than originating 
from the rhyolitic melts. This observation is in concordance 
with findings about the origin of S and  CO2 at the Henderson 
Mo porphyry deposit (Mercer et al. 2015). However, our 
data do not prove whether metals such as Mo, W, and base 
metals originate from magmatic fluids derived from rhyolitic 
melts or leaching of country rocks.
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Fluid‑rock interaction

Various Mo- and W-bearing lithologies have been deposited over 
the last 1700 Ma in the CMB. This includes several Precam-
brian pegmatites in the Climax area (e.g., Platte Gulch, Buck-
skin Gulch, and Quandrary Peak), the Precambrian Silver Plume 
Granite, and the metasedimentary rocks of the Idaho Springs 
Formation in the Urad-Henderson area as well as numerous 
Precambrian scheelite occurrences in calcareous hornblende-
bearing layers of metamorphic rocks across the CMB (Tweto 
1960; Zahony 1968; Wallace et al. 1978; Theobald et al. 1983).

Molybdenum in Climax-type ore deposits is likely directly 
derived from fluids that were expelled from magmas, which 
either formed by partial melting of lower or upper crustal rocks 
(Wallace et al. 1978; DePaolo 1981; Stein and Hannah 1985; 
Bookstrom et al. 1988; Stein 1988; Audétat et al. 2011; Mercer 
et al. 2015) or developed from a Mo-enriched mantle source 
(Westra and Keith 1981). Mixed mantle and crustal sources for 
the formation of Climax-type Mo deposits were also considered 
(White et al. 1981; Pettke et al. 2010). However, it has been 
shown that melt inclusions in quartz from Climax-type rhyolitic 
porphyry intrusions are Mo-poor with 5–10-ppm Mo mainly 
(Lowenstern 1994; Audétat et al. 2011; Audétat 2015; Mercer 
et al. 2015; Audétat and Li 2017), while the Mo content of the 
magmatic bulk fluid is estimated to be 100 ppm (Audétat 2015). 
Lowenstern (1994) and Audétat (2015) therefore suggested the 
exsolution of large volumes of a fluid that originated from a 
low-density fluid-rich magma and circulated through semi-
crystallized narrow stocks and apophyses underneath the ore 
bodies. The focused flow of these high fluid volumes through 
a small rock volume is assumed to be the principal trigger for 
ore formation (Audétat and Li 2017).

Another mechanism for the accumulation of metals in ore 
fluids is the leaching of metals from country rocks. Smith 
(1983) considered that ore precipitation in porphyry Mo 
deposits resulted from the cooling of ore-forming fluids by 
interaction with the country rocks. Seedorff and Einaudi 
(2004b) suggested selected leaching of metals, namely Na, 
K, and Fe, from the country rocks, whereas Mo and base 
metals are derived from the rhyolitic melts. In contrast, sig-
nificant leaching of metals (excluding Mo) from lower crus-
tal rocks by circulating hot fluids in the Alma district and of 
Early Proterozoic rocks elsewhere in the CMB was proposed 
based on radiogenic isotope compositions of ore and gangue 
minerals (Kelley et al. 1998; Lüders et al. 2009).

Alteration and leaching of crustal rocks are also evidenced 
by the presence of nitrogen in huebnerite-hosted FIs (Lüders 
et al. 2009). The authors considered that nitrogen was either 
derived from decrepitated FIs in the crystalline basement 
rocks,  NH4

+/K+ exchange reactions during fluid-rock inter-
action with feldspars and/or micas at elevated temperatures 
and subsequent mixing with oxygen-rich meteoric waters 
(Honma and Itihara 1981; Pöter et al. 2004), or thermal 
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degradation of the organic matter during diagenetic processes 
(Jia and Kerrich 1999; Mingram and Bräuer 2001). The latter 
has also been proposed for the origin of  N2 at the Logrosán 
Sn-W deposit in the Central Iberian Zone (Chicharro et al. 
2016). The extremely negative δ2Hw values of huebnerite-
hosted FIs point to a non-(exclusive) magmatic fluid origin, 
possibly indicating an organic-rich source (Fig. 8). This could 
be shales or biotite schist; the latter is the host rock of the 
mineralization at the SHM. The relatively low δ2Hw values 
(Fig. 8) and decreasing δ34S values (Fig. 11) of sulfides from 
the main sulfide stage may also reflect considerable hydrogen 
and sulfur supply from organic-rich rocks.

Fluid inclusions hosted in huebnerite from the DCP show 
3He/4He ratios that are dominated by a crustal fluid component 
(Fig. 10b). Leaching of uranium-bearing crustal rocks such as 
organic-rich sedimentary rocks or granites, which are abundant 
in the study area (Fig. 2), may provide the initial conditions for a 
higher 4He production and the elevated 4He/40Ar* ratio (Ozima 
and Podosek 2002). Organic-rich sedimentary rocks contain fixed 
immobile U(IV), in, e.g., U-oxides, sulfides, or carbonates, that 

can be efficiently leached as soluble U(VI) by circulating fluids 
under oxidizing conditions (Idiz et al. 1986; Granet et al. 2007; 
Cuney 2010). Similarly, granites and granite gneisses in the Cli-
max and Henderson areas contain U-bearing accessories, such 
as zircon, monazite, or thorite (Desborough and Sharp 1978; 
Desborough and Mihalik 1980), and may supply mobile U due 
to metamictization (e.g., Romer and Cuney 2018 and references 
therein). The fact that both host rocks are present in the study area 
also makes a combined fluid-rock interaction history possible.

Summary and conclusions

Our fluid inclusion and stable isotope studies in ore and 
gangue minerals from various mineralization stages of the 
SHM provide compelling evidence that the mineralization 
formed from magmatic fluids and meteoric water, which 
mixed to different proportions with time. The evolution of 
ore deposition at the Sweet Home mine is shown schemati-
cally in Fig. 12.
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Fig. 12  Schematic model of the formation of Sweet Home mine 
mineralization with bimodal magmatism at depth supplying both 
mantle-derived volatiles (i.e.,  CO2,  H2S, noble gases) and heat. Min-
eralization formed from magmatic fluids and meteoric water, which 
were mixed to different proportions with time. (a) Hot magmatic-
hydrothermal fluids migrated along the reactivated Precambrian Con-
tact Structure and mixed to variable proportions with meteoric water 
during ascent to the site of mineralization. Mixing caused fluid cool-

ing and dilution of the magmatic fluids, and the deposition of gre-
isen vein mineralization and phyllic alteration at temperatures above 
350  °C (Fig.  15). (b) Heat propagation with time may have led to 
large-scale convection of meteoric water and leaching of sulfur (and 
possibly metals) from the crustal rocks. Progressive mixing led to a 
meteoric-dominated ore fluid and further cooling and dilution. Sub-
sequently, polymetallic vein mineralization of the main sulfide stage 
formed at temperatures of less than 350 °C
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Early-stage Mo-bearing mineralization likely formed from 
magmatic-dominated fluids at temperatures > 400 °C. Early fluid 
migration occurred along a reactivated Precambrian Contact 
Structure during N-S-trending tectonic movements (Fig. 12a). The 
magmatic fluids were enriched in volatiles, such as  CO2,  H2S/SO2, 
and noble gases, most likely derived from mantle sources (e.g., 
lamprophyric intrusion at depth). The mixing of meteoric water 
with magmatic fluids during the early greisen stage was minor, but 
increased significantly towards the main sulfide stage (Fig. 12b). 
Fluid mixing caused decreasing temperature and dilution of mag-
matic fluids. Progressive heat-driven convection of meteoric fluids 
may have facilitated leaching of metals from crustal rocks and led 
to the formation of polymetallic vein mineralization at the SHM.

Fluid mixing of magmatic fluids with large amounts of 
meteoric water seems the most likely mechanism for the 
formation of Climax-type-related peripheral vein minerali-
zation in the CMB. The data from this study are not suffi-
cient to determine whether Climax-type Mo mineralization 
in ore shells above porphyry stocks can be attributed to a 
similar mixing model. However, our study does show that 
the combination of FI studies including noble gas and sta-
ble isotope analyses with stable isotope analysis of ore and 
gangue minerals has the potential to answer this question.

Supplementary Information The online version contains supplemen-
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