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ABSTRACT 
We construct and examine the prototype of a deep learning-based ground-motion model (GMM) that 
is both fully data driven and nonergodic. We formulate ground-motion modeling as an image pro-
cessing task, in which a specific type of neural network, the U-Net, relates continuous, horizontal 
maps of earthquake predictive parameters to sparse observations of a ground-motion intensity 
measure (IM). The processing of map-shaped data allows the natural incorporation of absolute earth-
quake source and observation site coordinates, and is, therefore, well suited to include site-, source-
, and path-specific amplification effects in a nonergodic GMM. Data-driven interpolation of the IM 
between observation points is an inherent feature of the U-Net and requires no a priori assumptions. 
We evaluate our model using both a synthetic dataset and a subset of observations from the KiK-net 
strong motion network in the Kanto basin in Japan. We find that the U-Net model is capable of learn-
ing the magnitude–distance scaling, as well as site-, source-, and path-specific amplification effects 
from a strong motion dataset. The interpolation scheme is evaluated using a fivefold cross validation 
and is found to provide on average unbiased predictions. The magnitude–distance scaling as well as 
the site amplification of response spectral acceleration at a period of 1 s obtained for the Kanto basin 
are comparable to previous regional studies. 

 
KEY POINTS 
 We develop a fully data driven and spatially varying ground-motion model using U-Net neural 

networks. 
 Image processing techniques naturally capture source, site, and path effects in ground-motion 

prediction. 
 Our extensible framework is a step toward spatially varying ground-motion modeling without 

prior assumptions. 

 
Supplemental Material 

 
 
INTRODUCTION 
A ground-motion model (GMM) relates the prob-
ability distribution of ground-motion intensity 
caused by an earthquake to a set of predictive pa-
rameters, for example, earthquake magnitude, 
distance at which the shaking is observed, and 
observation site characteristics that influence 
the local amplification. Commonly, GMMs are 
equations that are expert designed to represent 
physical processes causing observable relations 
in strong motion data, such as decreasing 
ground-motion intensity with increasing dis-
tance from the earthquake source. The coeffi-

cients of these equations are calibrated via re-
gression analysis using observations from the 
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previous earthquakes. The choice of the equation 
design, that is, which physical aspects are re-
flected and how, depends largely on the applica-
tion purpose of the model, resulting in a vast 
number of proposed models over the last dec-
ades (Douglas, 2003). Although the amount of 
available strong motion observations and, there-
fore, also the complexity of GMMs have increased 
significantly since the early stages of ground-mo-
tion modeling (e.g. Esteva and Rosenblueth, 
1964; Trifunac, 1976), associated uncertainties 
have remained stable during the past 50 yr 
(Strasser et al., 2009; Douglas and Edwards, 
2016), indicating that the development of GMMs 
might benefit from the complementary incorpo-
ration of novel conceptual and methodological 
modeling paradigms. 

One of the new conceptual model paradigms 
in recent years is the waiving of the ergodic as-
sumption, which was previously a fundamental 
feature of GMMs. The ergodic assumption states 
that the distribution of ground-motion intensity 
values observed at a single location over time 
converges to the same distribution of values 
sampled across multiple locations (Anderson 
and Brune, 1999). This assumption was an indis-
pensable feature of GMMs in the past when 
strong motion observations were scarce. How-
ever, in recent years, the amount of ground-mo-
tion data and computational power increased to 
levels that allow for the development of more re-
gional and (partially) nonergodic models. Land-
wehr et al. (2016), for example, suggest a model 
with spatially varying coefficients for California 
that considers the absolute locations of earth-
quake source and observation sites as model pa-
rameters, leading to a significant decrease in ale-
atory uncertainty compared to the previous er-
godic models. Following Stafford (2014), a simi-
lar strategy is followed by Kotha et al. (2016, 
2020), who consider region-specific properties 
of ground motion as a random effect in a mixed-
effects regression and, consequently, provide 
partially nonergodic GMMs for Europe. Recently, 
the problem of modeling spatial correlation of 
ground-motion intensity within a nonergodic 
framework was addressed by Kuehn and Abra-
hamson (2020). 

On the methodological side, another trend has 
arisen across many fields in recent years: fully 
data-driven modeling through artificial neural 
networks (ANNs). ANNs have successfully been 
applied to ground-motion modeling in numerous 
studies. Derras et al. (2012, 2014) developed 
GMMs for shallow crustal earthquakes in Japan 
and Europe, Pozos-Estrada et al. (2014) modeled 
inslab and interplate earthquakes in Mexico, and 
Dhanya and Raghukanth (2018) derived a GMM 
from the Pacific Earthquake Engineering Re-
search Center–Next Generation Attenuation-
West2 Project database (Ancheta et al., 2014). 
The big advantage of ANNs over model-based ap-
proaches is that no a priori definition of a func-
tional form is required. Instead, ANNs autono-
mously learn the relations between predictive 
parameters and the target ground-motion inten-
sity measures (IMs) from ground-motion obser-
vations. Even though subjective decisions about 
the specific design of an ANN may have an impact 
on the results, the independence from a user-de-
fined functional form opens up entirely new op-
portunities to reveal previously unknown rela-
tions and compare the predictive power of de-
scriptive parameters objectively (e.g., Derras 
et al., 2012). Although ANNs have shown to pro-
vide excellent predictions within the data range 
that was used to train them, it is also clear that 
predictions outside this range are highly uncer-
tain due to the lack of physical constraints that 
would allow such extrapolation. This becomes 
particularly relevant regarding the persistent 
lack of strong motion observations of large 
earthquakes at short distances (e.g., Kong et al., 
2019). 

Although considerable advances in both non-
ergodic and fully data-driven ground-motion 
modeling have been made in recent years, there 
was no attempt to merge these two, so far iso-
lated, concepts within the ground-motion model-
ing community. This study aims at the assess-
ment of opportunities and limitations of a spe-
cific ANN architecture, the U-Net (Ronneberger 
et al., 2015), for the task of ground-motion mod-
eling. The U-Net is a well-established architec-
ture that bears the potential to develop GMMs 
that are both fully nonergodic and fully data-



driven. The U-Net was initially developed for im-
age processing tasks such as identifying and dif-
ferentiating individual cells within tissue speci-
mens, and has since been adopted to a vast range 
of applications, such as the prediction of the 
strength of wireless communication signals 
across maps (Levie et al., 2020), and pansharp-
ening of satellite images (Yao et al., 2018). It is 
the inherent ability to process data in the form of 
2D arrays (maps) that makes this architecture 
especially interesting for ground-motion model-
ing too, because it offers the opportunity to na-
tively operate on map data and therefore pre-
serves the actual spatial distribution of ground-
motion observations and seamlessly links it to 
other geospatial information, for example, lithol-
ogy and subsurface velocity structure. 

We present our study as follows: First, we in-
troduce the methodological adaption of the U-
Net architecture to the task of ground-motion 
prediction. Subsequently, we present a proof of 

concept using a synthetic dataset to demonstrate 
the functionality of our model. We then show an 
exemplary application of our method to a subset 
of the Kiban–Kyoshin (KiK-net) (National Re-
search Institute for Earth Science and Disaster 
Resilience, 2019) strong motion dataset in the 
Kanto basin in Japan and discuss our findings in 
comparison to local studies. 
 
METHODOLOGY 
The U-Net neural network architecture 
(Ronneberger et al., 2015) is the key component 
of our proposed GMM. Similar to all supervised 
machine learning methods, it learns the relation 
between predictive parameters and target pa-
rameters from a large number of examples that 
are provided to train the neural network. In 
ground-motion modeling, the target parameter 
is a ground-motion IM, which can be inferred 
from predictive parameters such as the moment 
magnitude 𝑀௪ and the hypocentral distance 𝑟௛௬௣. 

Figure 1. The U-Net architecture used throughout this study. The predictive parameters for a single earthquake are provided to the U-Net 
as input in the form of a stack of maps. The input is processed through the encoder and decoder branches of the U-Net, until eventually the 
mean 𝑦ො  and variance 𝜎ො௘,௡

ଶ  estimators of the intensity measure (IM) are provided as output. In the training phase, the output is evaluated 
against sparse measurements y of the IM that are available for this specific earthquake. Bold black numbers indicate the number of fea-
tures at the respective locations within the U-Net. Red numbers indicate the resolution of the features. The depicted configuration of the 
input corresponds to the setup used for training with data from the Kanto basin (see the Application to the Kanto basin section). The 
latitude, longitude, and depth of the event hypocenter are denoted as late, lone, 𝑑ℎ𝑦𝑝  respectively, 𝑀𝑤 denotes the moment magnitude, 𝑥𝑠

and 𝑦
𝑠
 denote the coordinates of each pixel in the input layer, 𝑟ℎ𝑦𝑝 is the hypocentral distance, and 𝑧௕௘ௗ௥௢௖௞ denotes the depth to seismic 

bedrock. A more detailed explanation of this figure is provided in the Appendix. This figure is based on figure 1 in Ronneberger et al. (2015).
 



For a more detailed overview on neural net-
works, we refer to the review of Lecun et al. 
(2015). 

The U-Net architecture is of particular interest 
for the task of ground-motion modeling, because 
it is designed to process data that comes in the 
shape of 2D numerical arrays, that is, maps. Rep-
resenting ground-motion data as maps naturally 
preserves the absolute locations of observations 
and their relative position to each other—infor-
mation that is required to develop a fully non-
ergodic GMM. Apart from its technical suitability, 
the U-Net has already been approved in a similar 
application—the pathloss prediction of wireless 
telecommunication signals (Levie et al., 2020). 

The functionality of a U-Net operating as a 
GMM is depicted in Figure 1. The predictive pa-
rameters for a single earthquake event represent 
the input features to the U-Net and are provided 
in the form of a stack of maps covering a prede-
fined area. The input is then processed through 
all the layers of the U-Net until eventually two 
output maps are generated. Repeated convolu-
tion of the input maps with filter masks is the 
main operation within the U-Net, causing bound-
ary value loss. The output maps are, therefore, 
slightly smaller than the input maps and cover a 
smaller region. Consequently, we distinguish be-
tween the U-Net input area and output area (the 
latter being the actual area of interest for which 
IM predictions are obtained) from here on. More 
details on this circumstance and a more detailed 
description of the implemented U-Net architec-
ture are given in the Appendix. 

If the U-Net is in an untrained state, outputs 
are just randomly generated maps, because the 
U-Net just consists of a number of randomly ini-
tialized coefficients and has not learned the rela-
tion between the predictive parameters and the 
target IM yet. However, we want the U-Net to 
provide estimates of the mean 𝑦ො and variance 𝜎ොଶ 
of the target IM, and therefore need to train the 
U-Net on a large training dataset that contains 
examples of event predictive parameters and 
corresponding IM observations. During training, 
the loss 𝐿௘ between the U-Net outputs and the 
observations 𝑦௘ for an event 𝑒 with 𝑁௢௕௦ observa-
tions is evaluated as the negative log likelihood 

of the normal distribution: 
 

𝐿௘ = ෍ ln 𝜎ො௘,௡
ଶ

ே೚್ೞ

௡ୀଵ

+
൫𝑦௘,௡ − 𝑦ො௘,௡൯

ଶ

𝜎ො௘,௡
ଶ

. (1)

 
The U-Net learns iteratively how to relate the 

input predictive parameters to the IM observa-
tions, that is, the loss is iteratively minimized 
through the gradient descent method Adam 
(Kingma and Ba, 2015), with the gradient effi-
ciently implemented by backpropagation (Ru-
melhart et al., 1986). By the choice of the loss 
function and the optimization routine, training of 
the U-Net is equivalent to nonlinear least-
squares regression, as it is commonly used in the 
most mixed-effects models. After each epoch of 
training, that is, one episode of training during 
which the U-Net sees all data examples in the 
training set, its ability to generalize to previously 
unseen events in a second dataset, the validation 
set, is evaluated. After a number of epochs, the 
loss on the validation dataset does not decrease 
any further, so the training is assumed to be com-
plete, and the U-Net can henceforth be used as a 
GMM. The exact technical configuration of the 
training procedure followed throughout this 
study is given in the supplemental material S1, 
available to this article. 

Although the observations 𝑦 are point-wise 
measurements, the U-Net predictions 𝑦ො and 𝜎ොଶ 
are continuous maps. This means first that the 
loss function is only evaluated at those locations 
where actual observations are available, and sec-
ond that the U-Net automatically interpolates the 
learned attenuation relation from the observa-
tion locations across the U-Net output area. The 
quality of this interpolation is examined in more 
detail in the following sections. 

A clean separation between training and vali-
dation data could be achieved by splitting a 
strong motion dataset strictly according to both 
events and sites with seismic stations. However, 
huge portions of the dataset would be lost, be-
cause records of “training events” on “validation 
stations” and vice versa would be discarded. To 
address this issue, we developed the following 
training strategy: 



1. The data are separated into training and vali-
dation events. 

2. Stations (sites where seismic stations are lo-
cated) are randomly grouped into a number 
Nchu of “chunks.” 

3. One U-Net is trained per station chunk, using 
the respective station chunk and validation 
events for validation and all other station 
chunks and training events for training. 

4. Training of each U-Net is conducted 𝑁௜௡௜௧ 
times to sample the variability that is caused 
by the random initialization of coefficients in 
the U-Net prior to training. 
 
The final predictions for the mean and vari-

ance of the target IM (𝑌෠௘ and Σ෠௘
ଶ, respectively) for 

the event e are subsequently obtained via en-
semble averaging the mean and variance predic-

tions of the separate U-Nets (𝑦ො௘
௜௝and 𝜎ො௘

௜௝మ

, respec-
tively). The ensemble prediction is then a mix-
ture distribution, the mean and variance of 
which are obtained based on the law of total ex-
pectation and the law of total variance, respec-
tively (Blitzstein and Hwang, 2014): 
 

𝑌෠௘ =
1

𝑁௎
෍ ෍ 𝑦ො௘

௜௝

ே೔೙೔೟

௝ୀଵ

ே೎೓ೠ

௜ୀଵ

, (2)

 

Σ෠௘
ଶ =

1

𝑁௎
෍ ෍ [𝜎ො௘

௜௝మ

ே೔೙೔೟

௝ୀଵ

+ 𝑦ො௘
௜௝మ

]

ே೎೓ೠ

௜ୀଵ

− Y෡௘
ଶ, (3)

 
in which 𝑁௎ = 𝑁௖௛௨𝑁௜௡௜௧  equals the total number 
of U-Nets. We note that the suggested procedure 
is not a classic example for the separation of 
training and validation data. However, we con-
sider this adoption to the particular challenges of 
strong motion datasets an appropriate compro-
mise between methodological accuracy and opti-
mal data usage. 
 
PROOF OF CONCEPT WITH SYNTHETIC DATA 
Before we apply the U-Net methodology to de-
rive a fully nonergodic GMM from real data, we 
demonstrate its abilities to: 
• Learn the relationship between an IM and 

predictive parameters (such as 𝑀௪  and 𝑟௛௬௣). 
• Learn site-, source-, and path-specific ampli-

fication from site and event coordinates. 
• Perform reasonable interpolation between 

observation sites. 
 

We will present the case of a synthetic dataset 
including measurements of an IM that depends 
on hypocentral distance, magnitude, and site-
specific amplification. Similar studies for da-
tasets containing source- and path-specific am-
plification are conducted alike and are provided 
in the supplemental material S2. 

Figure 2. Data generation setup for the synthetic experiments. (a) The geometric setup of the area of interest and the locations of randomly
sampled stations. (b) The spatial distribution of the synthetic earthquake catalog with respect to the area of interest. 
 



Dataset generation 
According to the input and output resolutions of 
the U-Net architecture (see the Appendix), we 
define two regular grids of sites for the U-Net in-
put area (572 × 572 pixels) and the U-Net output 
area (388 × 388 pixels). We choose a grid spacing 
of 500 m, resulting in extents of 286 and 194 km2 
for the input and output areas, respectively (Fig. 
2a). We then randomly define 𝑁ௌ = 100 sites 
from the output area as observation locations 
with seismic stations. We simulate 𝑁௘ = 1000 
events with uniformly distributed moment mag-
nitudes 5.0 ≤ 𝑀௪ ≤ 6.5. The spatial distribution 
of events with respect to the U-Net input and out-
put areas is presented in Figure 2b. 

We use the GMM by Zhao, Zhou, et al. (2016; 
hereafter, Zhao16ASC) as the basis to simulate 
values of the natural logarithm of the accelera-
tion response spectrum at period 𝑇 = 1 s 
(ln(SA(𝑇 = 1 s))) for all pairs of events and sites 
on the regular grid within the U-Net output area. 
Thereby, we only consider the scalings with 𝑀௪ 
and 𝑟௛௬௣, and keep all other predictive parame-
ters required by Zhao16ASC fixed. The synthetic 
dataset of ground-motion observations u follows 
from 
 

𝑢 = 𝑢ത൫𝑀௪, 𝑟௛௬௣൯ + 𝛿ௌଶௌೞ
+ 𝜀. (4)

 
Here, 𝑢ത  describes the mean prediction of 
Zhao16ASC, 𝛿ௌଶௌೞ

 is a predefined site-specific 
amplification function, and 𝜀 is a zero-mean 

Gaussian with a standard deviation of 0.1 that ac-
counts for aleatory uncertainty. The term 𝛿ௌଶௌೞ

 is 
defined as the portion of the site-specific ampli-
fication that is not captured by predictive param-
eters such as the shear-wave velocity of the up-
per 30 m of the Earth’s crust (𝑉ௌଷ଴) and can only 
be obtained from repeated measurements at a 
site (Al Atik et al., 2010). To model 𝛿ௌଶௌೞ

, we first 
initialize an uncorrelated Gaussian random field 
and subsequently smooth it with an anisotropic 
Gaussian kernel with zero mean and covariance: 
 

𝐶 = ቆ
𝜎ா

ଶ 0

0 𝜎ே
ଶቇ, (5)

 
in which the standard deviations 𝜎ா  and 𝜎ே scale 
the correlation in east–west and north–south di-
rections, respectively. The resulting 𝛿ௌଶௌ field is 
rescaled to a standard deviation of 0.2 and pre-
sented in Figure 3. The choice of a Gaussian ker-
nel function agrees with various semivariogram 
analysis studies that investigate correlation of 
ground-motion features (e.g., Jayaram and Baker, 
2009; Loth and Baker, 2013; Markhvida et al., 
2018). The choice of values of 𝜎ா = 26 km and 
𝜎ே = 8 km agree with the findings of Sgobba et al. 
(2021), who report an isotropic range of correla-
tion (the distance at which only 5% correlation 
remain, approximately twice the standard 

Figure 3. The predefined spatially correlated random field repre-
senting exp 𝛿ௌଶௌೞ

 used in the synthetic experiments. The black tri-
angles indicate the locations of seismic stations. 
 

Figure 4. Comparison of the predefined magnitude–distance scal-
ing 𝑢ത൫𝑀௪, 𝑟௛௬௣൯ (dashed lines) and the estimated relation 
𝑈෡௕௔௦௜௖൫𝑀௪, 𝑟௛௬௣൯ (solid lines). The lines are derived via binning and 
averaging ln(SA(𝑇 = 1 s)) predefined and predicted values for the 
validation events according to 𝑟௛௬௣ and 𝑀௪ . For this comparison, 
the entire maps of 𝑈෡௕௔௦௜௖  and corresponding 𝑢ത  values are used. 
 



deviation) of 25 km for 𝛿ௌଶௌ . Although radial isot-
ropy, that is, 𝜎ா = 𝜎ே, is commonly assumed in 
ground-motion modeling for reasons of model 
simplicity, we choose anisotropic 𝛿ௌଶௌ, because it 
is more realistic and to test whether the U-Net 
can capture such features. 

The final dataset does not contain all simu-
lated IM values on the regular grid. Instead, 25 
observations are randomly selected from the 
100 station locations. The synthetic dataset, 
therefore, consists of 25,000 records from 1000 
events recorded at 100 stations. 
 
U-Net training (synthetic) 
We generally follow the training procedure de-
scribed in the Methodology section. The syn-
thetic dataset is randomly split into 𝑁௘

௧௥ =  800 
training and 𝑁௘

௩௔௟ =  200 validation events. The 
100 stations are separated into 𝑁௖௛௨ = 5 chunks, 
and we consider 𝑁௜௡௜௧ = 5 different random ini-
tializations per chunk. The derived GMM: 
 

𝑈෡ = 𝑓൫𝑀௪, 𝑟௛௬௣, ln൫𝑟௛௬௣൯, 𝑥௦, 𝑦௦൯, (6)
 
is an ensemble of 5 chunks × 5 initializations = 25 
U-Nets. Parameters 𝑥௦ and 𝑦௦ denote coordinates 
of each grid point in the U-Net input area. We em-
phasize that we use no predictive parameter re-
lated to 𝛿ௌଶௌೞ

, which can subsequently only be 
learned as a function of 𝑥௦ and 𝑦௦. 
 

Evaluation of U-Net predictions (synthetic) 
In a first step, we need to verify that our GMM has 
learned the fundamental scaling relations of 𝑢 
with 𝑀௪  and 𝑟௛௬௣ . Because of the abstract repre-
sentation of information inside the U-Net, we 
cannot disaggregate the individual scalings with 
the separate parameters. However, the learned 
scaling 𝑈෡௕௔௦௜௖  of 𝑢 with 𝑀௪ and 𝑟௛௬  can be ap-
proximated by: 
 

𝑈෡௕௔௦௜௖൫𝑀௪, 𝑟௛௬௣൯ = 𝑈෡ − 𝛿መௌଶௌೞ
 (7)

 
in which 𝛿መௌଶௌೞ

 is the approximated site amplifica-
tion 
 

𝛿መௌଶௌೞ
=

1

𝑁௘
௩௔௟ ෍ 𝑈෡௘

ே೐
ೡೌ೗

௘ୀଵ

− 𝑢ത௘. (8)

 
In Figure 4, we present the comparison between 
the predefined relationship 𝑢ത൫𝑀௪, 𝑟௛௬௣൯ and the 

estimated relationship 𝑈෡௕௔௦௜௖൫𝑀௪, 𝑟௛௬ ൯ approxi-
mated from predictions for validation events. We 
observe an overall good agreement indicating 
that the attenuation relation has been learned 
successfully. 

In a second step, we compare the estimated 
site amplification 𝛿መௌଶௌೞ

 to the predefined 𝛿ௌଶௌೞ
 to 

assess whether the site amplification was 
learned successfully at the station locations and 

Figure 5. (a) Estimated site amplification map 𝛿መௌଶௌೞ
 and (b) distributions of residuals 𝛿ௌଶௌೞ

 − 𝛿መௌଶௌೞ
 with respect to the predefined site 

amplification. Solid and dashed vertical lines in (b) indicate distribution means and standard deviations (std), respectively. From the visual 
comparison of (a) to Figure 3 and the distribution of residuals in (b) one can see that the site amplification is accurately retrieved at 
station locations. Predictions in interpolated areas are less accurate, but seem reasonable from visual inspection and appear to be unbi-
ased. 
 



interpolated with acceptable precision across 
the U-Net output area. Visual inspection of the 
learned site effect 𝛿መௌଶௌೞ

 (Fig. 5a) and comparison 
to the predefined site effect (Fig. 3) indicate a 
high similarity. 

From the distribution of residuals between 
the predefined and the estimated site amplifica-
tion depicted in Figure 5b, one can see that at 
those locations where observations were made, 
the learned site amplification closely resembles 
the predefined one, whereas the estimations are 
less precise, though unbiased, in interpolated ar-
eas. For comparison purposes, we also extract 
the predefined 𝛿ௌଶௌೞ

 at station locations and per-
form bicubic spline interpolation to reconstruct 
the site amplification field. The standard devia-
tion between this reproduction and the prede-
fined field amounts to 0.11, very similar to the 
value of 0.12 that is obtained from the U-Net re-
production 𝛿መௌଶௌೞ

.We note that although the spa-
tial anisotropy introduced during generation of 
𝛿ௌଶௌೞ

 clearly emerges also in the interpolated site 

amplification 𝛿መௌଶௌೞ
, no advantage over the bicu-

bic spline interpolation can be stated in terms of 
misfit to the predefined 𝛿ௌଶௌೞ

. 
Similar studies concerning the recovery of 

source-location-specific variations 𝛿௅ଶ௅೗
 and 

path-specific amplification 𝛿௉ଶ௉ೞ೗
 have been con-

ducted successfully and are presented in the sup-
plemental material S2. In summary, we conclude 
that the proposed U-Net methodology is capable 
of extracting and interpolating the scaling of an 
IM with magnitude and distance, as well as site-, 

source-, and path-specific amplification from a 
strong motion dataset. 
 
APPLICATION TO THE KANTO BASIN 
In this section, we present an exemplary applica-
tion of our U-Net GMM to the Kanto basin area, 
Japan. We will first describe the used dataset and 
the U-Net training procedure, followed by the 
discussion of an example prediction and a more 
general evaluation of the model performance on 
the entire dataset. 
 
Kanto basin dataset 
We chose the Kanto basin as our study area due 
to its high seismic activity and high station den-
sity of the regional KiK-net strong motion net-
work. Operating for over 20 yr, KiK-net provides 
a substantial strong motion dataset necessary to 
constrain the U-Net methodology. We use the 
strong motion database by Bahrampouri et al. 
(2021) and select a subset of records from the 
Kanto basin, in total 46,191 records of 𝑁௘ = 2864 
events (Fig. 6) recorded at 65 stations (Fig. 7). 
Thereby, we use records from events of all tec-
tonic region types. The average interstation dis-
tance of the selected KiK-net stations is about 94 

Figure 6. (a) Training and (b) validation events selected from the 
Bahrampouri et al. (2021) database. The magenta square indicates 
the U-Net input area. 
 

Figure 7. Station coverage of the KiK-net network in the Kanto ba-
sin. Triangles indicate the locations of seismic stations. The color 
indicates the number of available strong motion records for 
ln(SA(T=1 s)) in the Bahrampouri et al. (2021) database. 



km, with almost 20% of the interstation dis-
tances being less than 50 km. We select the geo-
metric mean of the two horizontal components 
of ln(SA(𝑇 = 1 s)) as our target IM due to its wide 
application in probabilistic seismic hazard anal-
ysis. The distribution of the records with respect 
to 𝑀௪ and 𝑟௛௬  is presented in Figure 8. The loca-
tions of the U-Net input (572 × 572 pixels) and 
output (388 × 388 pixels) areas in the Kanto ba-
sin are presented in Figure 7. The corresponding 
regular grids have a spacing of 500 m and encom-
pass regions of 286 km2 and 194 km2, respec-
tively. 

We use a collection of nine predictive param-
eters: 𝑀௪, 𝑟௛௬௣ , ln 𝑟௛௬௣ , event longitude lone, 
event latitude late, hypocentral depth 𝑑௛௬௣, coor-
dinates of each grid point 𝑥௦ , and 𝑦௦ , and the 
depth to seismic bedrock 𝑧௕௘ௗ௥௢௖௞ (compare Fig. 
1). We expect the U-Net to learn site amplifica-
tion as a function of 𝑥௦ , 𝑦௦ , and 𝑧௕௘ௗ௥௢௖௞ , source-
location-specific variability from lone and late, 
and path-specific amplification from 𝑥௦ , 𝑦௦ , 𝑙𝑜𝑛௘ , 
and 𝑙𝑎𝑡௘ . The 𝑧௕௘ௗ௥௢௖௞  data were downloaded 
from the J-SHIS map webservice (see Data and 
Resources). 

U-Net training (Kanto basin) 
We generally follow the training procedure de-
scribed in the Methodology section. We split the 
dataset by events, in which events before the 
year 2015 are used for training and after for val-
idation. The 65 stations are divided into 𝑁௖௛௨ =

5 chunks, and we consider 𝑁௜௡௜௧ = 10 different 
random initializations per chunk. The arrange-
ment of stations into chunks is illustrated in the 
supplemental material S3. 

We derive 5 chunks × 10 initializations = 50 U-
Net estimators: 
 
𝑦ො௜௝ = 𝑓൫𝑀௪, 𝑟௛௬௣, ln൫𝑟௛௬௣൯ , 𝑙𝑜𝑛௘, 𝑙𝑎𝑡௘, 𝑑௛௬௣, 𝑥௦, 𝑦௦, 𝑧௕௘ௗ௥௢௖௞൯

𝑖 ∈ {1,2, … 5}

𝑖 ∈ {1,2, … 10}
. (9)

 
We perform ensemble averaging over all 50 U-
Nets 𝑦ො௜௝  according to equations (2) and (3) to de-
rive the full ensemble estimator 𝑌෠  (compare Fig. 
9) as our final GMM for the Kanto basin. Because 
𝑌෠  is trained on data from all stations in the Kanto 
basin, it is not suited for evaluation of the quality 
of interpolated values. Therefore, we also derive 
partial ensemble estimators Υ෡௜, which only aver-
age over those respective 10 U-Nets that share 
the same 𝑖th station chunk for validation. 

Figure 8. Distribution of all KiK-net records from the Kanto basin according to (a,b) 𝑀௪ and 𝑟௛௬  available in the Bahrampouri et al. 
(2021) database. The entire dataset is split into a set of (c) training events and (d) validation events. Although all available records were 
used for either training or validation, we assume that predictions from the ground-motion model (GMM) derived in this study for 𝑀௪ , 𝑟௛௬௣

combinations with less than 10 records in the training set are not reliable. The white polygon in (c) indicates our suggested range for
application. The magenta polygon indicates the range for which comparison to conventional GMMs is presented in the Discussion section.
 



Evaluation of U-Net predictions (Kanto basin) 
In Figure 10, we present an example prediction 
of our full ensemble estimator for an event from 
the validation set. A comparison between the 
mean prediction 𝑌෠  and the available observa-
tions 𝑦 for this event is shown in Figure 10a. 
From visual inspection, we notice an overall sat-
isfying agreement. The corresponding predicted 
standard deviation Σ෠ is given in Figure 10b. One 
should recall that Σ෠ depends on the same set of 
input variables as the mean prediction Y෡ and is 

therefore a spatially varying and event specific 
quantity. One can identify the general trend that 
Σ෠ is small in regions where station density is high 
and spatial variability in the mean prediction is 
low. This distribution indicates that the individ-
ual U-Net estimators 𝑦ො௜௝ learn the same scatter of 
observations at station locations but interpolate 
slightly differently due to their random initializa-
tion of coefficients. Consequently, Σ෠ can, at least, 
be interpreted as a comprehensible measure for 
the relative confidence of the GMM in its predic-
tion. More examples and comparisons to the pre-
dictions of the ergodic GMMs of Zhao, Zhou, et al. 
(2016), Zhao, Liang, et al. (2016), Zhao, Jiang, 

Figure 9. Schematic representation of ensemble averaging of mean 
predictions. The full ensemble estimator 𝑌෠  is derived via averaging 
over all individual U-Net estimators 𝑦ො௜௝ . Partial ensemble estima-
tors 𝛶෠௜  are derived via averaging over those subsets of U-Nets that 
share the same station validation chunk. Partial ensemble estima-
tors are required to evaluate predictions in interpolated regions of 
the area of interest. Ensemble averaging of individual standard de-
viation estimators 𝜎ො௜௝ into partial ensembles 𝜍̂௜  and the full ensem-
ble 𝛴෠ is performed accordingly. 
 

Figure 11. Full ensemble mean predictions 𝑌෠  versus observations 
𝑦 of ln(SA(𝑇 = 1 s)) for all records from validation events. 
 

Figure 10. Example prediction of our GMM for a magnitude 5.2 validation event at longitude 140.98° and latitude 13.86°. The plotted 
raster data and the circles in (a) show the mean prediction 𝑌෠ , in which the circles represent the values at exactly those locations, where 
observations y (triangles) are available. The root mean square error (𝑟𝑚𝑠𝑒) amounts to 0.41 in natural log units. The raster data in (b) 
shows the predicted standard deviation Σ෠. The white triangles indicate the locations of all stations in the dataset, including those that have 
no record for this specific event. 



et al. (2016) are available in the supplemental 
material S4. The comparison of predictions Y෡ 
with observations y from validation events is il-
lustrated in Figure 11 and is quantified using the 
root mean square error (𝑟𝑚𝑠𝑒 = 0.48 in natural 
log units). The use of the negative log-likelihood 
loss function given in equation (1) provides that 
Σ෠ should be a proxy for the scatter in observa-
tions at station locations. To verify the success of 
this strategy, we first calculate residuals be-
tween observations from validation events and 
the corresponding mean predictions of our full 
ensemble GMM. We then standardize these re-
siduals by dividing each individual residual by its 
predicted standard deviation: 
 

∆෨௡=
𝑦௡ − 𝑌෠௡

Σ෠௡

𝑛 ∈ ൛1, … , 𝑁௢௕௦,௩௔௟ൟ, (10)

 
in which 𝑁௢௕௦,௩௔௟ denotes the number of observa-
tions from validation events. If Σ෠ accurately de-
scribed the scatter in observations, then the 
standardized residuals ∆෨௡ should be standard 
normally distributed. 

The actual distribution of ∆෨௡ , together with 
the targeted standard normal probability density 
function (PDF), is depicted in Figure 12. We no-
tice that the actual standard deviation of 0.85 is 
≈15% smaller than the targeted value of 1. Be-
cause Σ෠௡ represents the denominator in equation 
(10), this indicates an overestimation of the un-
certainty in predictions at station locations. 

In addition to the performance at station loca-
tions, we also verify the model’s ability to inter-
polate between stations. For this purpose, we use 
the partial ensemble estimators Υ෡௜ , for which the 
𝑖th station chunk was used for validation only 
and can thus be used to evaluate interpolated 
predictions. Each of the five Υ෡௜ can be evaluated 
in four different categories: (1) training events 
recorded on training stations, (2) validation 

TABLE 1 
Average Root Mean Square Errors ± 1 Standard Devi-
ation between Observations y and Predictions of the 
Five Partial Ensemble Estimators 𝚼෡ 𝒊 

Configuration Rmse 

Training stations/training events 0.428 ± 0.005 

Training stations/training events 0.454 ± 0.003 

Validation stations/training events 0.809 ± 0.082 

Validation stations/training events 0.821 ± 0.110 

Figure 13. Standardized residuals 𝛬ሚ௡
௜  with respect to partial ensemble estimators 𝛶෠௜  at (a) training station locations for training events, 

(b) training stations for validation events, (c) validation stations for training events, and (d) validation stations for validation events. Solid 
and dashed vertical lines indicate the empirical mean and standard deviation (std) of standardized residuals 𝛬ሚ௡

௜ , respectively. 

Figure 12. Comparison of the distribution of standardized residu-
als ∆෨௡  with the targeted standard Gaussian. Solid and dashed ver-
tical lines indicate the empirical mean and standard deviation (std) 
of standardized residuals ∆෨௡, respectively. 
 



events recorded on training stations, (3) training 
events recorded on validation stations, and (4) 
validation events recorded on validation sta-
tions. The 𝑟𝑚𝑠𝑒s between observations and pre-
dictions averaged over the five Υ෡௜ are presented 
in Table 1. As expected, the smallest 𝑟𝑚𝑠𝑒 is ob-
tained for those observations that were used 
during training. A similar value is obtained for 
records from validation events observed at train-
ing stations, indicating successful generalization 
to events outside the training dataset. The 𝑟𝑚𝑠𝑒 
increases significantly for validation stations, be-
cause these predictions include the additional er-
ror due to interpolation. The 𝑟𝑚𝑠𝑒 at interpo-
lated sites obtained from Υ෡௜  can be interpreted as 
an upper bound estimate of the corresponding 
𝑟𝑚𝑠𝑒 of the full ensemble estimator Y෡, because it 
is trained using all stations and is, therefore, 

better constrained due to the higher station den-
sity. 

In a final step, we evaluate the precision of the 
predicted standard deviations 𝜍̂௜ from the partial 
ensemble estimators. As for the full ensemble es-
timator, we calculate standardized residuals be-
tween all observations from both training and 
validation events with respect to all partial en-
semble estimators: 
 

Λ෩௡ =
𝑌௡ − Υ෡௡

ςො௡
௜

𝑛 ∈ {1, … , 𝑁௢௕௦}, (11)

 
in which 𝑁௢௕௦  denotes the number of observa-
tions. The comparison of the distribution of Λ෩௡ to 
the targeted standard normal PDF is depicted in 
Figure 13. From Figure 13a,b, we conclude that 
the predictive uncertainty at the training sta-
tions closely resembles the data scatter and, 
therefore, represents a reliable uncertainty 
measure. At interpolated sites, Λ෩௡ is zero cen-
tered and well described by a normal distribu-
tion (Fig. 13c,d). However, we observe that the 
standard deviation of Λ෩௡ is over 40% larger than 
the targeted value of 1, indicating a significant 
underestimation of the predicted standard devi-
ation. This means that although the relative ten-
dency to assign larger uncertainties to less con-
straint estimates is given, predictive uncertainty 
at interpolated sites is quantitatively only a 
lower bound uncertainty estimate. The precision 
in Figure 13b is actually higher than the one ob-
tained for the full ensemble estimator presented 
in Figure 12. This is due to the fact that when av-

eraging over all 50 U-Nets at a 
specific station site, those 10 
U-Nets for which this site was 
in the validation chunk con-
tribute less well-calibrated 
predictions. 
 
DISCUSSION 
Comparison to ergodic 
GMMs 
Because the presented U-Net 
methodology is a fully data-
driven approach without any 
physical constraints on the 

Figure 14. The raster data and the circles show the mean IM pre-
diction of the Zhao, Liang, et al. (2016) GMM for the same event 
presented in Figure 10. The circles represent the values at exactly 
those locations, where observations (triangles) are available. The 
𝑟𝑚𝑠𝑒 amounts to 0.65 in natural log units. 
 

Figure 15. Direct comparison between our model (yellow point cloud), the Zhao16 GMM 
(red lines), and observations (black crosses) for the event introduced in Figures 10 and 14. 
Because of the continuous site parameters used in our model, corresponding predictions ap-
pear as a point cloud, contrary to the four lines that represent predictions of the Zhao16 
GMM for four different site classes. Gray lines indicate the affiliation of observations with
corresponding Zhao16 predictions (large red markers) and 𝑌෠  predictions (large yellow 
markers). 



model design, we want to validate that the fun-
damental functionality of our full ensemble esti-
mator 𝑌෠  is comparable to conventional GMMs. 
We compare our prediction for the example 
event presented in Figure 10, as well as the over-
all learned magnitude and distance scalings to 
the ergodic GMMs for Japan developed by Zhao, 
Zhou, et al. (2016), Zhao, Liang, et al. (2016), 
Zhao, Jiang, et al. (2016) (hereafter, Zhao16 
GMMs). We emphasize that the purpose of these 
comparisons is not to identify superiority of one 
model over the other. Instead, we want to 
demonstrate that the basic functionality of our 
model is comparable to a conventional GMM that 
is derived from a well-established and mature 
methodology. A detailed, quantitative compari-
son would be inappropriate for a number of 

reasons: first of all, there is no 
standardized procedure to 
compare nonergodic to er-
godic GMMs, because they 
make fundamentally different 
assumptions on the distribu-
tion of ground-motion data. 
Furthermore, our model is 
trained on data from the Kanto 
basin only, whereas the 
Zhao16 models are calibrated 
using data from entire Japan. 
Another aspect is that in this 
study we do not exhaust the 
full power of the Zhao16 mod-
els, because we disregard its 
volcanic path terms and al-
ways use 𝑟௛௬௣ instead of the 
suggested rupture plane dis-
tance 𝑟௥௨௣, if 3D rupture mod-
els are available. Finally, we 
derive the site classes that are 
required as site parameters 
for the Zhao16 models indi-
rectly via conversion of the 
𝑉ௌଷ଴ map accessed via the J-
SHIS web map service (see 
Data and Resources), accord-
ing to Zhao et al. (2015). How-
ever, we consider this use of 
Zhao16 models appropriate 
for the qualitative comparison 

that we attempt. 
The prediction of the Zhao16 GMM for the 

event presented in Figure 10 is given in Figure 
14. In comparison to the prediction 𝑌෠  derived in 
this study (Fig. 10a), we note that the range of IM 
values and the large-scale attenuation with dis-
tance are similar. However, we also note that 𝑌෠  
adapts better to the small-scale spatial variations 
in the observations of the IM for this specific 
event. The direct comparison between 𝑌෠  and the 
Zhao16 GMM is presented in Figure 15. Although 
our model appears as a point cloud and the 
Zhao16 model as discrete lines, due to the use of 
continuous and discrete site parameters, respec-
tively, we note that the attenuation with distance 
of both models are comparable, with our model 

Figure 16. Comparison between the GMM developed in this study (solid lines), observations 
from the Bahrampouri et al. (2021) database (dots), and Zhao16 GMMs (dashed lines), for 
(a) active shallow crust events, (b) upper mantle events, (c) subduction interface events, and 
(d) subduction intraslab events. The dots depicting the data and the curves depicting our 
model are derived from averaging suitable records and predictions of ln SA(𝑇 = 1 s) along 
𝑀௪  and 𝑟௛௬௣ bins for both training and validation events. 
 



providing a closer fit to the observations. 
In a next step, we compare the average magni-

tude–distance scaling learned by our model to 
that of the actual observations and Zhao16 
GMMs. Because the individual scalings between 
input and target parameters cannot be disaggre-
gated for a neural network, we need to approxi-
mate them from predictions. Only events and 
records within the data range that is valid for 
comparison in terms of magnitude, distance, and 
depth to top of rupture (𝑧௧௢௥) are selected for 
comparison. The suitable data range in terms of 
magnitude and distance is given in Figure 8c. Ac-
cording to Zhao, Zhou, et al. (2016), Zhao, Liang, 
et al. (2016), Zhao, Jiang, et al. (2016), limits of 
𝑧௧௢௥ < 25 km for active shallow crust, 𝑧௧௢௥ > 25 
km for upper mantle, 𝑧௧௢௥ < 50 km for subduc-
tion interface, and 𝑧௧௢௥ < 200 km for subduction 
intraslab events are selected. We average predic-
tions of the selected training and validation 
events per tectonic region type along magni-
tude–distance bins. The results are depicted in 
Figure 16. Because the accuracy of this proce-
dure depends highly on the number of predic-
tions within a bin, we only consider bins with 
more than 500 predicted values. Predictions of 
our model in water covered areas are excluded. 
The dots representing the observations are de-
rived accordingly, using the same bins. For the 
Zhao16 predictions, we use average magnitude 

and rake values obtained per tectonic region 
type and magnitude bin and 𝑉ௌଷ଴ = 410 m/s, 
which corresponds to site class SCII (hard soil) 
according to Zhao et al. (2015). More details on 
the configuration of the Zhao16 models are given 
in the supplemental material S5. For active shal-
low crust events, predictions of our model, 
Zhao16, and observations provide a consistent 
picture (Fig. 16a). Although magnitude scalings 
are similar between our model and Zhao16 for 
upper mantle events, distance scalings signifi-
cantly differ (Fig. 16b). However, our model is 
closer to the observations than Zhao16, indicat-
ing that our model has learned a Kanto basin spe-
cific distance scaling that differs from the aver-
age Japanese one. For subduction interface 
events, scalings are slightly different between 
Zhao16 and our model (Fig. 16c). However, com-
pared to the observations, our model provides 
reasonable results. An overall good agreement of 
the two models and observations can be stated 
for subduction intraslab events (Fig. 16d). We 
emphasize at this stage that the predictions of 
our model adapt to the tectonic region type of an 
event, although it was not used as a predictive 
parameter during training. We, therefore, con-
clude that the U-Net extracted the relevant infor-
mation from the location of the event hypocen-
ters. This feature is fundamentally different from 
common GMMs that rely on the accurate classifi-
cation of events into tectonic region types. Based 
on the presented comparison, we conclude that 
our U-Net-based GMM provides predictions in 

Figure 18. Performance of our model and Zhao16 models on the 
fraction of observations from validation events suitable for com-
parison (compare Fig. 8). 
 

Figure 17. Estimated site amplification of SA(𝑇 = 1 s) in the Kanto 
basin approximated from averaged mean predictions 𝑌෠ . 
 



terms of magnitude and distance comparable to 
Zhao16 - a set of models based on a well-estab-
lished and mature methodology. 

In a final comparison, we evaluate the perfor-
mance of our model and the Zhao16 models on 
those observations from validation events that 
are within the validity range of both the models 
(Fig. 17). The fact that the misfit of our model and 
Zhao16 are of the same order of magnitude indi-
cate that the U-Net methodology is capable of 
providing reasonable GMMs. 
 
Evaluation of learned site amplification 
Our proof of concept demonstrated that our 
model is capable of providing fully nonergodic 
GMMs, including site-specific, as well as source-
location and path-specific amplification. Alt-
hough the latter two are difficult to evaluate on 
real data, because we cannot disaggregate the 
scaling relations within a neural network, we can 

approximate the average learned site amplifica-
tion from the absolute site coordinates 𝑥௦ , and 𝑦௦ , 
and 𝑧௕௘ௗ௥௢௖௞  by averaging predictions. 

In a first step, we train another GMM 𝐹෠ identi-
cally to 𝑌෠  but without using 𝑥௦, 𝑦௦, and 𝑧௕௘ௗ௥௢௖௞  as 
predictive parameters. We then approximate the 
site amplification 𝐴𝑚ෝ𝑝௦ learned by 𝑌෠  with 
 

ln 𝐴𝑚ෝ𝑝௦ =
1

𝑁௘
෍ 𝑌෠௘ − 𝐹෠௘

ே೐

ଵ

. (12)

 
The resulting site amplification map is de-

picted in Figure 18. We compare this map to the 
depth to bedrock map used for training, the com-
monly used site parameter 𝑉ௌଷ଴, and site amplifi-
cation of pseudospectral velocity at a period of 1 
s (PSV(𝑇 = 1 s)) derived by Nakano and Kawase 
(2021) (Fig. 19). The 𝑉ௌଷ଴ map was downloaded 
from the J-SHIS map webservice (see Data and 

Figure 19. Maps of (a) bedrock depth, (b) 𝑉ௌଷ଴ , and (c) site amplification of pseudospectral velocity at a period of 1 s (PSV(𝑇 = 1 s)) 
estimated from Nakano and Kawase (2021). The respective correlations with the approximated site amplification 𝐴𝑚ෝ 𝑝௦SA(𝑇 = 1 s)) are 
depicted in (d–f), quantified using the Spearman’s 𝜌 correlation coefficient. The bold and thin black lines in (d–f) represent the average 
and ± 1 standard deviation for the respective data bins. 
 



Resources). The degrees of correlation are quan-
tified using Spearman’s 𝜌 correlation coefficient. 

From the correlation of 𝐴𝑚ෝ𝑝௦  with the depth 
to bedrock map (compare Fig. 19a,d), one can see 
that the model successfully learned a relation be-
tween depth to bedrock and the target IM. Be-
cause the outline where 𝐴𝑚ෝ𝑝௦ = 1 systemati-
cally follows the outline of the Kanto basin (com-
pare Fig. 19a), we conclude that this relation is 
successfully transferred from the observation lo-
cations across the Kanto basin. Furthermore, one 
can see small-scale anomalies around seismic 
station locations, indicating that the U-Net 
learned a site-specific amplification from the ab-
solute locations of observations. 

The approximated site amplification 𝐴𝑚ෝ𝑝௦  
shows moderate correlation with the commonly 
used site parameter 𝑉ௌଷ଴ (Fig. 19b,e) and the site 
amplification of PSV(𝑇 = 1 s) (Fig. 19c,f). 

Good agreement between 𝐴𝑚ෝ𝑝௦ and amplifi-
cation of PSV(𝑇 = 1 s) can be stated at KiK-net 
sites in the central and eastern parts of the Kanto 
basin (compare Fig. 18). However, major differ-
ences are observable west of the Kanto basin, 
where the PSV(𝑇 = 1 s) map consistently shows 
deamplifcation, and our map shows a more vari-
able picture. Reasons for this difference might be 
the different data selection of Nakano and Ka-
wase (2021). Furthermore, they used not only 
the KiK-net, but also K-net and Japan Meterolog-
ical Agency (JMA) strong motion networks, and 
therefore provide a more detailed map. Using the 
same data density in our model might provide a 
more insightful comparison but is beyond the 
scope of this study. 
 
Concerning practical application 
All calculations related to this study were per-
formed on a desktop computer with an Intel(R) 
Core(TM) i9-7980XE CPU (977 GFLOPS), 128 GB 
of RAM, and an NVIDIA RTX2080Ti GPU (13.45 
TFLOPS). With this setup, training of a single U-
Net takes approximately 1.5 hr. It means that the 
presented work can be transferred to other da-
tasets and areas of interest with reasonable ef-
fort. 

The major shortcoming of the U-Net GMM 
methodology at the current stage is its limited 

applicability to near source ground motion of 
large-magnitude events due to the lack of corre-
sponding observations. Although all GMMs suffer 
from this problem, physical a priori information 
can be incorporated in equation-based GMMs to 
overcome this issue. An analog stabilization for 
the U-Net method could be the augmentation of 
strong motion datasets with predictions from er-
godic GMMs. With such a strategy, the U-Net 
method would provide the same predictions as 
ergodic GMMs at the respective data ranges and 
provide nonergodic predictions where more ob-
servations are available. A similar solution is im-
plemented for example by Landwehr et al. 
(2016), whose model converges toward an er-
godic backbone model in regions where station 
density is low. 

Unlike other commonly used interpolation ap-
proaches, such as Gaussian Process Regression 
(as used in Landwehr et al., 2016), the U-Net 
methodology provides data-driven spatial inter-
polation without the need to define the type and 
parameters of an interpolation kernel function. 
Although this functionality is convenient and 
grants some degree of freedom of subjective de-
cisions by the modeler, it is yet an open question 
how its performance compares against conven-
tional interpolation techniques. 

Because of the open questions discussed ear-
lier, we currently do not consider our presented 
methodology sufficiently mature for immediate 
application in seismic hazard and risk studies, 
yet. However, potential future research paths to-
ward answering these questions are in sight. We 
are optimistic that U-Net-based fully data-driven 
and nonergodic GMMs can become a permanent, 
complementary element of hazard and risk stud-
ies in data-rich regions such as Japan, Taiwan, 
and California in the foreseeable future. 
 
CONCLUSIONS 
In this study, we have presented the develop-
ment of a nonergodic, fully data-driven GMM 
prototype based on the U-Net neural network ar-
chitecture. As such, the model is free of any a pri-
ori choices concerning the model design itself or 
the interpolation scheme. 

From experiments with synthetic data we 



found that the U-Net methodology is capable of 
learning observation site, earthquake location, 
and propagation path-specific amplification ef-
fects and is, thus, comparable to fully nonergodic 
approaches to ground-motion modeling. How-
ever, the U-Net’s fully data-driven, inherent in-
terpolation scheme significantly eases the use of 
such a model to predict continuous ground-mo-
tion maps, because no a priori assumption about 
the interpolation have to be made. In the syn-
thetic experiments, we demonstrated that the in-
terpolation scheme provides unbiased predic-
tions within acceptable error bounds, whereas 
from the results of the application to real data 
from the Kanto basin we can state that interpo-
lated predictions correlate with commonly used 
site parameters. However, a quantitative com-
parison to conventional interpolation methods is 
yet an open task. 

From the application of our model to real ob-
servations from the Kanto basin, we have 
learned that ground shaking of future earth-
quakes can be predicted, within acceptable er-
rorbounds, at those sites where observations 
from the previous earthquakes are available. We 
can furthermore state that the predictions of our 
model at observation sites and in interpolated 
regions agree on average with the predictions of 
equation-based, ergodic GMMs for Japan. 

However, due to data scarcity, application of 
our model in the near field is currently not ad-
vised without augmenting the used strong mo-
tion dataset in this regard. Although associated 
predictive uncertainties were found to provide 
useful information about the relative confidence 
of the model in a prediction, we noticed that the 
absolute values of uncertainties are overesti-
mated at observation sites and underestimated 
at interpolated sites, with respect to the data 
scatter. 

The fact that our model can be derived on a 
consumer-level desktop computer with a decent 
GPU allows the transfer to an arbitrary area of in-
terest with reasonable effort. 

Summarizing the main findings from this 
study, we conclude that U-Net-based GMMs pose 
a worthwhile complementary tool to the already 
large and well-established pool of GMM methods. 

In our opinion, the presented results indicate 
that U-Net-based GMMs have the potential to be-
come a permanent feature in seismic hazard and 
risk studies, complementary to conventional 
GMMs, in the foreseeable future. 
 
DATA AND RESOURCES 
The depth to seismic bedrock (V.3.2 ESRI shapefile “Sub-
surface Structure” layer 30; The Headquarters for Earth-
quake Research Promotion, 2021), as well as 𝑉ௌଷ଴ (ESRI 
shapefile “Site amplification factors,” parameter “AVS”; Fu-
jimoto and Midorikawa, 2006; Senna et al., 2013, 
2019;Wakamatsu and Matsuoka, 2013, 2020) maps for the 
kanto basin were downloaded from the J-SHIS web map 
service available at https://www.j-shis.bosai.go.jp/ 
map/?lang=en (last accessed November 2021). The Bah-
rampouri et al. (2021) strong motion flat file was down-
loaded from https://www.designsafe-ci.org/data/ 
browser/public/designsafe.storage.published/PRJ-2547 
(last accessed November 2021). We used NumPy (Harris 
et al., 2020) and SciPy (Virtanen et al., 2020). Figures were 
made with Matplotlib (Hunter, 2007) and Inkscape 
(Inkscape Project, 2020). Tensorflow (Abadi et al., 2016) 
was used for deep learning. We used QGis (QGIS Develop-
ment Team, 2021) for data preparation. Ground-motion 
models (GMMs) of Zhao, Zhou, et al. (2016), Zhao, Liang, 
et al. (2016), and Zhao, Jiang, et al. (2016) were accessed 
via Openquake (Pagani et al., 2014). The supplemental ma-
terial to this article encompasses the following content: S1, 
technical details on U-Net training; S2, documentation of 
complementary synthetic experiments; S3, a figure on the 
grouping of station chunks in the Kanto basin; S4, example 
predictions from the validation dataset and comparisons 
to Zhao16 models; and S5, technical details on the use of 
Zhao16 models. 
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APPENDIX 
A U-Net architecture 
In this appendix, we provide detailed technical 
description of the U-Net architecture depicted in 
Figure 1. 

From the original U-Net, we adapt the resolu-
tion of 572 × 572 pixels for the input features, 
which ensures even-sized features throughout 
the U-Net, a requirement for a smooth pro-
cessing pipeline. The corresponding size of the 
input maps in terms of square kilometers is de-
termined by the spacing between pixels that can 
be chosen by the user. A larger resolution of in-
put features could be chosen to either investigate 
a larger area of interest or to increase the spatial 
resolution. The practical limitation for the reso-
lution is the amount of available memory on the 
used graphics processing unit (GPU). 

The first element of the U-Net is the encoder 
branch - a sequence of alternating Conv blocks 
and Pooling blocks through which the input is 
processed (compare Fig. 1). Each Conv block en-
compasses two convolutional layers, each fol-
lowed by a tanh activation function. Features 
that are fed to a convolutional layer are con-
volved with a number of filter-masks of size (3 × 
3), in which each filter mask generates one out-
put feature. Thus, the number of features at a 
given point in the U-Net equals the number of fil-
ter-masks in the previously passed convolutional 
layer. We decided to reduce the number of filter-
masks by a factor of 2 compared to the original 
U-Net in Ronneberger et al. (2015) due to GPU 
memory limitations. Subsequent passing 
through a nonlinear activation function (in our 
case the tanh) is required to learn nonlinear re-
lations between the predictive parameters and 
the target parameter. Although the original U-
Net uses the Rectified Linear Unit (ReLU) as de-
fault activation function, we observed that using 
the tanh leads to more stable convergence during 
training in our case. The purpose of the Max pool-
ing blocks is to reduce the resolution of the fea-
tures along the encoder branch. This is achieved 
via dividing each feature into subarrays of size 2 
× 2 and picking the respective maximum values, 
thus, reducing its resolution by a factor of 2. This 
factor is adapted from the original U-Net. Along 



the encoder branch, the size of the features con-
tinuously decreases, whereas the number of fea-
tures increases. It can thus be considered a fea-
ture extractor concentrating the information 
given in the input layer into a number of low res-
olutions, highly abstract features. 

The second element of the U-Net is the de-
coder branch—a sequence of alternating upsam-
plings, skip connections, and Conv blocks. Up-
sampling operations increase the resolution of 
the features via bilinear interpolation, con-
versely with respect to the Pooling blocks in the 
encoder branch. The upsampled features are 
subsequently concatenated with the correspond-
ing features from the encoder branch, which is 
called skip connection. Via skip connection, the 
abstract features derived in the feature extrac-
tion are combined with the less abstract features 
from the encoder branch that include more spa-
tial context. In the original U-Net architecture, 
the upsampling operations are followed by 

convolutional layers before the skip connections. 
In our setup, these layers cause significant arti-
facts in the final results, and, therefore, we re-
moved them from the architecture. 

The spatial context information and the ab-
stract features are then combined in the Conv 
blocks, which eventually leads to less abstract 
and more practical representations of the ex-
tracted features toward the output layer. The fi-
nal Convout block consists of two convolutional 
layers that are organized in parallel, in which the 
first one is followed by a linear and the second 
one by an exponential activation function. These 
two parallel layers provide two outputs that we 
interpret as the mean and the variance of the tar-
get intensity measure (IM), respectively. Because 
no padding is applied to the features during con-
volution operations, the resolution of the output 
features is smaller (388 × 388) than that of the 
input features (572 × 572). 

 


