
Woollam, J., Münchmeyer, J., Tilmann, F.,
Rietbrock, A., Lange, D., Bornstein, T., Diehl, T.,
Giunchi, C., Haslinger, F., Jozinović, D., Michelini, A.,
Saul, J., Soto, H. (2022): SeisBench—A Toolbox for
Machine Learning in Seismology. - Seismological
Research Letters, 93, 3, 1695-1709.

https://doi.org/10.1785/0220210324

Institional Repository GFZpublic: https://gfzpublic.gfz-potsdam.de/

https://gfzpublic.gfz-potsdam.de/

SeisBench - A Toolbox for Machine Learning in Seismology

Jack Woollam1, *, #, Jannes Münchmeyer2, 3, #, Frederik Tilmann2, 7, Andreas

Rietbrock1, Dietrich Lange6, Thomas Bornstein2, Tobias Diehl4, Carlo Giunchi5, Florian

Haslinger4, Dario Jozinović8, 9, Alberto Michelini8, Joachim Saul2, and Hugo Soto2

1Geophysical Institute (GPI), Karlsruhe Institute of Technology, Karlsruhe, Germany
2Deutsches GeoForschungsZentrum GFZ, Potsdam, Germany

3Institut für Informatik, Humboldt-Universität zu Berlin, Berlin, Germany
4Swiss Seismological Service, ETH Zurich, Zurich, Switzerland

5Istituto Nazionale di Geofisica e Vulcanologia, Sezione di Pisa, Pisa, Italy
6GEOMAR Helmholtz Centre for Ocean Research Kiel, Kiel, Germany

7Institut für geologische Wissenschaften, Freie Universität Berlin, Berlin, Germany
8Istituto Nazionale di Geofisica e Vulcanologia, Roma, Italy

9Unversità degli Studi Roma Tre, Largo San Leonardo Murialdo 1, Rome, Italy
*corresponding author
#equal contribution

Abstract1

Machine Learning (ML) methods have seen widespread adoption in seismology in recent years.2

The ability of these techniques to efficiently infer the statistical properties of large datasets often3

provides significant improvements over traditional techniques when the number of data are large4

(millions of examples). With the entire spectrum of seismological tasks, e.g., seismic picking and5

detection, magnitude and source property estimation, ground motion prediction, hypocentre deter-6

mination; among others, now incorporating ML approaches, numerous models are emerging as these7

techniques are further adopted within seismology. To evaluate these algorithms, quality controlled8

benchmark datasets that contain representative class distributions are vital. In addition to this,9

models require implementation through a common framework to facilitate comparison. Accessing10

these various benchmark datasets for training and implementing the standardization of models is11

currently a time-consuming process, hindering further advancement of ML techniques within seis-12

mology. These development bottlenecks also affect ’practitioners’ seeking to deploy the latest models13

on seismic data, without having to necessarily learn entirely new ML frameworks to perform this14

task. We present SeisBench as a software package to tackle these issues. SeisBench is an open-source15

framework for deploying ML in seismology - available via GitHub. SeisBench standardises access to16

both models and datasets, whilst also providing a range of common processing and data augmen-17

tation operations through the API. Through SeisBench, users can access several seismological ML18

models and benchmark datasets available in the literature via a single interface. SeisBench is built to19

be extensible, with community involvement encouraged to expand the package. Having such frame-20

works available for accessing leading ML models forms an essential tool for seismologists seeking to21

iterate and apply the next generation of ML techniques to seismic data.22

1

Introduction23

Seismology has always been a ‘data-rich’ field. With the continued advances in computational power,24

along with the increased use of high-density density deployments of nodal geophones, the seismic wavefield25

is now recorded with increasing resolution and fidelity. Such advances are not just exclusive to seismology;26

within science in general, larger, more detailed datasets are being compiled. Machine Learning (ML) has27

risen to prominence as a set of techniques to best exploit the information contained in such extensive28

datasets. Often termed ‘data-driven’ methods, ML tools probabilistically model the statistical properties29

of a given dataset to perform inference for a given task. As datasets get larger, and the inference step30

becomes a more tractable problem, these techniques are now achieving state-of-the-art performance across31

the entire spectrum of scientific fields. In many areas performance is outpacing the human analyst.32

Although some pioneering works harnessed neural networks for seismological applications (e.g Wang33

and Teng, 1997; Valentine and Trampert, 2012), for many years such techniques did not find wider34

usage in seismology until approximately three years ago. The possibility to assemble large datasets,35

massive parallelisation on commodity hardware through GPU computing, algorithmic improvements and,36

importantly, the availability of software frameworks such as PyTorch (Paszke et al., 2017) and Tensorflow37

(Abadi et al., 2016) has driven a wave of applications of ML techniques to classical seismological problems,38

including earthquake phase identification (Zhu and Beroza, 2019; Ross, Meier, Hauksson and Heaton,39

2018; Woollam et al., 2019; Zhou et al., 2019; Wang et al., 2019), earthquake detection (Mousavi, Zhu,40

Sheng and Beroza, 2019; Mousavi et al., 2020; Zhou et al., 2019; Perol et al., 2018; Dokht et al., 2019;41

Pardo et al., 2019), magnitude estimation (Lomax et al., 2019; Mousavi and Beroza, 2020; van den Ende42

and Ampuero, 2020; Münchmeyer et al., 2021a), and earthquake early warning (Kong et al., 2016; Li43

et al., 2018; Münchmeyer et al., 2021b), amongst others.44

From these initial works, a natural question arises: which ML techniques perform best for each45

task? Answering this question is not trivial, as each study uses different data, different ML frameworks46

for algorithm development, and different assessment metrics. Benchmarking and comparison studies47

are, therefore, inherently difficult. The varying data used during training is a particular problem, as the48

variable nature of earthquake source, propagation medium and site conditions mean that the performance49

of a model trained on one region or environment might not be directly compared to a model trained in a50

different region. To enable fair comparisons of models and model architectures over a range of possible51

environments, benchmark datasets are essential.52

Labelled benchmark datasets have been vital to rapid-progress in various classic ML application53

domains, most prominently computer-vision (MNIST, Deng, 2012; ImageNet Deng et al., 2009), and54

natural language processing (Sentiment140, Go et al., 2009), as they allow for easy assessment of which55

ML algorithms perform best. Creating such quality-controlled datasets takes, however, a significant56

amount of time. Benchmark datasets perform this step for users ensuring comparability of different57

2

studies, greatly accelerating the development and testing of novel ML algorithms. With ML methods58

only recently being widely adopted in seismology, historically, there were no benchmark datasets available59

for comparison works. This situation is now changing with the value of such datasets widely recognised.60

The seismological benchmark datasets now emerging (e.g. LenDB, Magrini et al., 2020; INSTANCE,61

Michelini et al., 2021; NEIC, Yeck et al., 2021; STEAD, Mousavi, Sheng, Zhu and Beroza, 2019) already62

cover a wide-range of potential seismic environments (e.g. global, regional, local), essential factors for63

training robust algorithms.64

However, the availability of new benchmark datasets does not completely solve the comparison prob-65

lem. Remaining issues include the differing data formats employed by different benchmarks, and the66

specific framework libraries ML researchers use to implement their models e.g. PyTorch, Tensorflow,67

Keras (Chollet et al., 2015), Sklearn (Pedregosa et al., 2011), add complexity to any comparison work.68

Any benchmarking must, therefore, check that operations applied within each library are directly com-69

parable, with no discrepancies in implementation.70

The easy availability of both benchmark datasets, and standardised access to the latest models, are71

crucial ingredients for advancing the state-of-the-art. As this problem is common to any application72

based on ML (Király et al., 2021), tools have been developed in other fields to provide researchers73

with easy access to models and benchmark datasets (e.g. FLAIR, Akbik et al., 2019, natural language74

processing toolbox). These continue to be widely used, evidence of their ability to aid development.75

To date, we are unaware of the availability of such software in seismology. The outlined bottlenecks76

affect a wide range of potential users of ML. For the ’practitioner’, who wishes to apply ML models to their77

seismic data, they are currently facing significant hurdles, as they would have to learn specific frameworks78

to integrate the latest ML algorithms into their workflows. For the ’expert’ interested in developing novel79

techniques, they currently have to integrate various models, testing over varying datasets’, which may80

be in differing formats. Without any frameworks or toolboxes to help with these problems, researchers81

must construct such comparison pipelines from scratch. This is a significant undertaking. These factors82

are currently hindering more widespread ML adoption in seismology and are limiting progress in the83

development of the next generation of ML methods. Tackling these problems is key if the seismological84

community is to accelerate the development of ML techniques for seismic tasks and promote further85

adoption of ML within the field. We have built the SeisBench open-source software package to address86

these issues.87

3

The SeisBench ML framework88

SeisBench provides a unified point-of-access for ML development and application within the seismological89

community. Built in Python 1, it integrates both state-of-the-art models and datasets in a single frame-90

work. Figure 1 visually highlights this concept, introducing the core components of SeisBench. The91

range of datasets presented in the initial release include currently published seismological benchmark92

datasets from the literature, directly integrated into the package.93

SeisBench also provides access to additional custom benchmark datasets which are made newly avail-94

able in the initial release of the software. As all datasets within SeisBench adhere to a common format,95

users can compare their algorithms across a range of seismic environments, from detecting global signals96

to local settings. Models are accessed through a unified interface – enabling easy comparison of differing97

approaches. Whilst the model interface is designed towards integrating various deep learning models, the98

types of models that can be built and compared in SeisBench are not just limited to deep learning-based99

routines; traditional methods can also be directly deployed and integrated into comparison workflows.100

Finally, typical data augmentation and pre-processing steps are provided through an augmentation API.101

With seismologists, and general ML practitioners often, re-implementing the same operations for data102

pre-processing and augmentation, inclusion of many of the standard processes and augmentations in103

SeisBench will further facilitate faster model development.104

SeisBench is designed to be generally applicable to the entire spectrum of general seismological tasks,105

such as source parameter estimation, magnitude estimation, ground motion prediction. Whilst the106

currently included models relate specifically to picking and event detection, SeisBench is suitable for107

many other seismological tasks based on waveform analysis. The extensible nature of the API means108

that any parameter from a datasets’ metadata can be used as a label (target variable), enabling the109

construction of any supervised classification pipeline.110

Data - Standardising access to Benchmark datasets111

A standardised format for seismic waveforms and metadata information112

The SeisBench data module contains functionality to read and process seismological datasets which have113

been converted into the SeisBench standardised format. Using a standardised framework enables the114

construction or conversion of varying benchmark seismological datasets. The dataset format follows115

a typical approach encountered within the ML community (Figure 2), where the waveforms (training116

examples) are included in a single file. We use Hierarchical Data Format 5 (HDF5) to store the raw117

waveforms (Folk et al., 2011). Each multi-component waveform example is indexed by a lookup key.118

For all datasets, the required parameter ‘trace_name’ is used as the lookup key. The labels/metadata119

1See the Data and Resources for the link to the package.

4

associated with each training example are then stored in a simple table-structure (.csv). To ensure com-120

patibility across datasets, metadata parameter names should follow a common naming schema ‘CATE-121

GORY_PARAMETER_UNIT’ where: category defines the object which the parameter describes (i.e.,122

path, source, station, trace); parameter describes the provided information e.g. latitude or longitude;123

and unit provides the unit of measurement e.g., m, cm, s, counts, samples2124

Where several entries are required, such as trace start time and station name and location, such a125

data structure leaves the freedom to include additional specialised metadata only available for selected126

datasets. The metadata information is read into memory with the popular, high-level data-analysis127

library Pandas (Reback et al., 2020). With such a format, users can easily create their own custom128

pipelines to query and extract metadata information associated with the waveforms. Providing a common129

framework for data storage is key to any proposed benchmarking works. Imposing restrictions on both130

the format and naming schema ensures that any newly defined parameters are still standardised across131

datasets. This greatly the aids extensibility and comparability across datasets. Data throughput can be132

a major factor in the efficiency of training and application of ML models. SeisBench therefore introduces133

additional performance optimizations to the data structure that enhance IO read/write speed.134

Once a dataset has been converted to the SeisBench format, it is integrated into the SeisBench API135

by extending the base dataset interface, providing a unique class for the dataset. Ordering the datasets136

into a class-based hierachy naturally reflects the dataset format. Common operations such as filtering137

metadata and obtaining waveforms are all available via the base dataset interface. Further individual138

properties of each dataset can then be encapsulated in the dataset class. Tools are available to help139

scientists to convert their own datasets into benchmark datasets and contribute them to the SeisBench140

repository, if desired.141

Providing a common endpoint for benchmark datasets142

We have converted a range of seismological benchmark datasets (Table 1; Figure 3) into the SeisBench143

data format. These datasets contain various types of seismic arrivals from local to global scales (Figure144

4). All the datasets were either compiled from publicly available seismic data and metadata, or were145

directly converted from a published benchmark dataset from the literature. SeisBench thus provides146

easy access to data and model interfaces. All users have to do upon installation of the package is to147

instantiate their preferred data/model object; the data will then be downloaded and cached for repeat148

use. Within each benchmark dataset, training, validation, and testing splits are pre-defined to reduce149

variability of benchmark comparisons resulting from randomness or different choices for dataset splitting150

approaches. Of course, it remains possible to define custom splits for specialized applications. Here,151

we summarise the benchmark datasets integrated into the first release of SeisBench. The benchmark152

2An example of some of the more typically encountered metadata parameters for SeisBench datasets, and how they
would be named in the SeisBench format, can be found in the Data Appendix (Table A1).

5

datasets can be separated into two groups, datasets that are missing some common metadata such as153

station location information, and those that contain all typical metadata information such as the station154

location and source parameters. Table 1, and Figure 3 and 4 generally only show those datasets of the155

first group, where all the common metadata are present. The following dataset descriptions provide156

further information on the included metadata.157

158

ETHZ159

The ETHZ benchmark dataset is a manually compiled dataset for SeisBench. It contains local to re-160

gionally recorded seismicity throughout Switzerland and neighbouring border regions. The data are161

recorded on the publicly available networks: 8D; C4; CH; S; XT, operated by the Swiss Seismological162

Service (SED) at ETH Zurich. To construct this dataset, we obtained both the waveform recordings and163

the corresponding metadata information via SED’s FDSN web service (http://www.seismo.ethz.ch/164

de/research-and-teaching/products-software/fdsn-web-services/). Any detected seismic event165

from this network has had the phases manually labelled, including the discrimination of first, and later166

phases (e.g. Pn vs. Pg). In addition to the typical phase identification, the magnitude and polarity167

information is also available. In total, there are 57 metadata variables available for this dataset. We168

select all M > 1.5 events from the period of 2013 - 2020 for integration. In total there are 2,231 events169

containing 36,743 waveform examples. The traces are all in raw counts.170

We split training examples for this dataset into training, validation, and testing example splits by171

setting all events before August 1st 2019 as training examples (61.6%), all events between this date and172

the 4th September 2019 are set as the validation split (9.9%), and all the remaining events later than this173

date are the testing split (28.5%). Please note that the validation set can also be called the development174

set. These terms are interchangeably used throughout the literature.175

176

GEOFON177

The GEOFON monitoring service acquires and analysis waveforms from over 800, globally distributed178

seismic stations worldwide. The GEOFON benchmark dataset has been compiled from these recordings.179

It is a teleseismic dataset which includes 2270 events containing ∼275,000 waveform examples occurring180

between 2009 – 2013. Events have been picked automatically initially, with manual analysis and onset181

re-picking performed routinely whenever necessary to improve the location quality. The magnitudes182

range from ∼M 2 - 9. With the bulk of events compromising intermediate to large events (M 5-7; Figure183

4). Any regional events with smaller magnitudes are predominantly from the regions of Europe and184

northern Chile. 54 metadata variables are included with this dataset, the trace units are in raw counts.185

For the GEOFON dataset, please note the varying class distributions of picked phase types for this186

dataset. For local and near-regional events S onsets have been picked and for a small fraction both Pn187

6

http://www.seismo.ethz.ch/de/research-and-teaching/products-software/fdsn-web-services/
http://www.seismo.ethz.ch/de/research-and-teaching/products-software/fdsn-web-services/
http://www.seismo.ethz.ch/de/research-and-teaching/products-software/fdsn-web-services/

and Pg are included. For teleseismic events, almost no S onsets have been picked. Depth phases have188

been picked occasionally but not comprehensively189

For the training, validation and testing splits, we set all events occurring before 1st November 2012 as190

training examples (58.6%), all events between this date and 15th March 2013 as the validation examples191

(10.1%), and any remaining events past this date as the testing examples (31.3%).192

193

INSTANCE194

The INSTANCE benchmark dataset (Michelini et al., 2021) comprises ∼1.3 million regional 3-component195

waveforms from the Italian region, containing ∼50,000 earthquakes M 0 – 6.5 and also including ∼130,000196

noise examples. Within SeisBench, we provide separate access to the individual partitions of this dataset.197

The noise examples and signal examples are available as their own distinct dataset; the seismic events are198

further subdivided into datasets with waveforms in counts, and with waveforms in ground motion units.199

A combined dataset containing all noise examples and waveform examples in counts is also available.200

A total of 115 metadata variables are provided. In addition to the standard metadata variables, this201

dataset includes a rich set of derived metadata, e.g. peak ground acceleration and velocity, assigned pick202

label uncertainty in seconds.203

The training, validation, and testing sets are performed by randomly selecting ’event-wise’ for this204

dataset. All waveform examples belonging to the same event are, therefore, in the same split group.205

The final proportion of waveform examples for each class are 60.3% for training, 10% for validation, and206

29.7% for testing respectively.207

208

Iquique209

The Iquique benchmark dataset is a benchmark dataset of locally recorded seismic arrivals throughout210

northern Chile originally used in training the deep learning picker in Woollam et al. (2019). It contains211

13,400 waveform examples with 13,327 manual P-phase picks and 11,361 manual S-phase picks. All212

waveform units are in raw counts, there are 23 metadata variables associated with this dataset.213

For this dataset, the training, validation and testing splits are selected through randomly sampling214

the training examples, returning 60%, 30% and 10% for the training, validation, and testing splits215

respectively.216

LenDB217

The LenDB benchmark dataset (Magrini et al., 2020) is a published benchmark dataset containing local218

earthquakes recorded across a global set of 1487 broad-band and very broad-band seismic stations. It219

comprises ∼1.25 million waveforms. The dataset is split into 629,095 local earthquake examples and220

615,847 noise examples. The data were processed using a bandpass filter between 0.1 - 5 Hz and the221

instrument response was deconvolved to convert the recordings into physical units of velocity. Unlike the222

7

other datasets, only automatic P-phase picks are provided for LenDB. In total there are 23 metadata223

variables for this dataset.224

The training, validation, testing split is performed by selecting all examples with waveform start225

times before 16th January 2017 as training examples (60%). Any examples between this date and the226

16th August 2017 form the validation split (9.5%), and the remaining examples past this date form the227

test split (30.5%).228

229

SCEDC230

The Southern Californian Earthquake Data Centre (SCEDC) benchmark dataset has been constructed231

from publicly available waveform data (SCEDC, 2013). The waveforms and associated metadata are232

obtained via the Seismic Transfer Programme (STP) client (SCEDC, 2010). For the obtained seismic233

arrivals, all events have been manually picked. We select all publicly available recordings of seismic234

events in the Southern Californian Seismic Network, over the period 2000 - 2020. Only local recordings235

of seismic events (∼M -1 – 7) are included, with source to station paths spanning up to a maximum236

distance of ∼200 km. The dataset comprises ∼8 million waveform examples, which contain ∼7.5 million237

P-phases and ∼4.3 million S-phases. This dataset also contains a range of seismic instrument types238

including: extremely short period, short period, very broadband, broadband, intermediate band and239

long period instruments - both single and 3-component channels are also present. Units for the examples240

are raw counts.241

The split for this dataset is set randomly, with 60%, 10%, and 30% of the data compromising the242

training, development, and testing splits respectively. For the magnitude metadata information, please243

note the increase of M = 0 in events in comparison to the overall trend (Figure 4) which suggests some244

data cleaning is still required for this dataset for the purposes of magnitude prediction.245

246

STEAD247

The STanford EArthquake Dataset (STEAD; Mousavi, Sheng, Zhu and Beroza, 2019) published bench-248

mark dataset, contains a range of local seismic signals – both earthquake and non-earthquake – along249

with noise examples. The dataset includes ∼1.2 million waveforms, of which ∼200,000 are noise examples250

and the remaining contain seismic arrivals from ∼450,000 earthquakes (∼M -0.5 - 8). The units for the251

waveform examples are raw counts and there are 40 metadata variables associated with this event.252

For the split, we use the same test set as defined in Mousavi et al. (2020) which randomly set 10%253

of the examples as testing examples, we then add a validation set by randomly sampling from the re-254

maining samples. The final ratios of the training, validation, and testing split are again 60%, 30%, 10%255

respectively.256

257

8

The following datasets include cases where the publicly available waveform data, along with corre-258

sponding metadata was available for training ML models, but some common metadata is missing.259

260

NEIC261

The National Earthquake Information Centre (NEIC; Yeck et al., 2021) published benchmark dataset262

comprises ∼1.3 million seismic phase arrivals with global source-station paths. As information on the263

trace start-time and station is missing for this dataset, it is stored in the SeisBench format, but without264

this normally required information.265

For the training, development and testing split, the original publication presented randomly sampled266

splits, based on event-id. This random splitting approach is implemented in the SeisBench conversion of267

this dataset, again at 60%, 10%, and 30% for the training, development, and testing examples respec-268

tively.269

270

There are additional datasets integrated into SeisBench which were originally used in training notable271

deep learning algorithms in seismology. Typically, the waveforms for these datasets were already pre-272

processed for training, including windowing and labelling, so the original station metadata for each273

training example is unavailable for these datasets. As many of the datasets also use picked waveforms274

from the SCEDC network, this results in potential common overlap between the following listed datasets,275

for both metadata parameters and waveforms. The only differences being potentially different metadata276

variables across datasets (e.g. picked phase labels, vs. first motion labels).277

The deep learning training datasets converted into SeisBench format include: the ’GPD’ training278

dataset (Ross, Meier, Hauksson and Heaton, 2018) containing 4,773,750 examples of 4s waveforms,279

sampled at 100 Hz; the ’Ross2018JGRFM’ dataset used for training the deep learning-based first motion280

polarity detection routine in the Ross, Meier and Hauksson (2018) study, containing 6 s Z-component281

waveform samples from 100 Hz instruments; the ’Ross2018JGRPick’ dataset used for training the deep282

learning-based picker presented in the same work; The ’Meier2019JGR’ dataset, which contains the S.283

Californian component of the training examples from the Meier et al. (2019) work.284

Models285

The SeisBench model interface is an extensible framework which encompasses the application of all types286

of models to seismic data. It is designed to be generalizable to arbitrary seismic tasks which operate287

on waveform data. A range of deep learning models from the literature are provided through SeisBench288

(Table 2). All deep learning models are integrated with the PyTorch framework (Paszke et al., 2017).289

Where possible, models integrated into SeisBench have the corresponding weights from the original290

9

training procedure integrated. We also provide weights for each of the models trained on each of the291

included datasets (see the companion paper to this work, Münchmeyer and 12 coauthors (n.d.)).292

Initially integrated models293

The initial set of models integrated into SeisBench are listed below, where the acronyms CNN and RNN294

relate to Convolutional Neural Network, and Recurrent Neural Network respectively. For a more detailed295

description, refer to (Münchmeyer and 12 coauthors, n.d.).296

• BasicPhaseAE (Woollam et al., 2019), basic CNN U-Net, initially applied to regional aftershock297

sequence in Chile.298

• CRED (Mousavi, Zhu, Sheng and Beroza, 2019), CNN-RNN Earthquake Detector, initially trained299

on 500,000 training signal and noise examples from Northern California.300

• DPP (Soto and Schurr, 2021), DeepPhasePick, is a combination of a CNN for phase detection301

and two RNNs for onset time determination. Like BasicPhaseAE, the networks were designed for302

detecting and picking local events, with an initial application on a regional seismic network in303

Chile.304

• EQT (Mousavi et al., 2020), EarthQuake Transformer, an Attention-based Transformer Network305

to both detect and pick events.306

• GPD (Ross, Meier, Hauksson and Heaton, 2018) Generalised Phase Detection, CNN algorithm to307

detect seismic phases.308

• PhaseNet (Zhu and Beroza, 2019), CNN autoencoder algorithm, adapts the U-Net segmentation309

framework to the 1D problem of classifying seismic phases.310

Training data generation pipeline311

A common task for training ML models in seismology is building data generation pipelines. First, some312

pre-processing is usually done; for example, traces need to be truncated to the correct length and possibly313

normalized, labels need to be encoded. Furthermore, often it is beneficial to augment the data to increase314

the variability on training examples, for example by adding noise to the waveforms. To standardize this315

task, reduce the required coding amount and reduce errors in the training pipeline, SeisBench provides316

the generate API (cf. Figure 1).317

The generate API provides individual processing blocks, e.g., window selection, label definition, or318

normalization, which can be combined into a data generation pipeline in a flexible way. While many319

standard augmentations are already implemented, custom routines can be added easily. As the generate320

10

API only relies on the abstract data API, the same set of augmentations can be applied to any SeisBench321

compatible dataset with minimal changes in the code. In addition, since the generate API is integrated322

with PyTorch, it can facilitate efficient data generation with PyTorch’s built-in multi-processing.323

Example workflows - Using SeisBench benchmark datasets and324

models325

Here we highlight how the features and functionality provided through SeisBench can support users with326

their tasks, from practitioners just looking to use an ML model to experts wishing to conduct extensive,327

in-depth, comparison and benchmarking pipelines.328

Workflow 1 - Use pre-trained models for picking new seismic streams329

This workflow is relevant for practitioners who seek to leverage ML techniques on seismic data, but do330

not necessarily have the in-depth domain knowledge to do this through ML frameworks. This example331

demonstrates how to pick seismic waveforms with two leading, pre-trained models (EQT and GPD) via332

the SeisBench API. The commands to do this are displayed in Figure 5. The high-level functionality333

allows users to apply ML models to seismic data with just a few commands. If not previously downloaded,334

the pre-trained model weights are downloaded and subsequently cached for repeat use. The annotate335

and classify methods of the SeisBench models integrate with stream objects from the obspy package336

(Beyreuther et al., 2010), widely used within the seismological community. We omit the plotting code337

for brevity. Users can easily expand upon this example workflow to conduct seismic detection and picking338

pipelines. In terms of computational performance, we test the EQTransformer implementation on a K80339

GPU and annotate 24 hours of 100 Hz data from a single station in 6 s. Scaling this process results in a340

months worth of data being labelled in ∼3 minutes.341

Workflow 2 - Training models342

Training a deep learning model343

For those wishing to train a deep learning model, Figure 6 provides a run through of how this workflow344

can be built in SeisBench. This workflow highlights how the data, generate, and model modules combine345

to help users perform all the typical tasks required in such a pipeline. Any loading of the required models346

and data is performed initially. In this example, we train PhaseNet on the INSTANCE dataset. Once347

the dataset and model are loaded, the generate module can be used to perform typical pre-processing348

and data augmentation steps on the waveforms. The generator object accepts a suite of augmentations349

which will be applied to each batch during training. In this example, we randomly window the waveforms,350

11

normalise the amplitudes using the maximum amplitude present in the window, change the datatype to351

32bit floats, finally creating a probabilistic vector representation of P-picks, S-picks, and noise examples352

in the waveform. These steps can be achieved in 10 lines of code through SeisBench (see the Preprocessing353

and augmentations code block, Figure 6). The waveforms following processing are displayed in Figure 6.354

The augmented waveform data then form a training sample for PhaseNet. We also show the standard355

PyTorch syntax to iterate through a DataLoader object and train the model as the last step (see the356

Train code block, Figure 6).357

Transfer learning358

Rather than train a new model from scratch, transfer learning forms another common workflow users359

may require. Transfer learning, involves using a pre-trained model, initially trained for some given task360

- for example detecting seismic phases on a regional scale throughout S. California - and subsequently361

training the model to solve a related task - such as detecting teleseismic arrivals. This is often a useful362

as the knowledge learned during the initial training phase results in relatively less data being required363

to optimize the model for the new task.364

The modular nature of the API means that to switch any dataset or model for another, all that is365

required is to change data or model imported (indicated by the dashed lines in Figure 6). So, to load366

a pre-trained version of a given model, all users have to do is call the from_pretrained method. The367

syntax to perform this step is also displayed in workflow 1. Datasets can also be swapped easily. For368

the purposes of this example, any dataset containing P-, and S-picks could be loaded in place of the369

INSTANCE dataset in workflow 2, and the training would then be performed on this alternative dataset,370

using the PhaseNet model initially trained on regional seismic waveforms in California as initialization371

for the training.372

Workflow 3 - Benchmark differing models across differing datasets373

Beyond training for a single model or dataset, SeisBench allows for comparison pipelines to be easily374

constructed. Having an objective measure of the performance of newly proposed algorithms against375

current state-of-the-art routines is fundamental to progress in any field, and standard procedure in376

traditional ML domains such as image recognition. As ML is a recent adoption within seismology, it377

could be argued that this step has not yet been carried out extensively. A detailed benchmarking study378

of various published ML picking models was carried out by us with the SeisBench framework and is379

presented with the companion paper to this work (Münchmeyer and 12 coauthors, n.d.). The code used380

for this benchmark study is made available and can serve as a template for future benchmarking studies3.381

3Available at https://github.com/seisbench/pick-benchmark

12

https://github.com/seisbench/pick-benchmark

Extensibility382

The SeisBench API is published with an open-source license (GPLv3). The software is designed to be383

extensible, and we encourage the seismological community to contribute. If users wish to integrate their384

own benchmark datasets or models to the package for public download, we ask that they get in touch385

with the project through GitHub (https://www.github.com/seisbench/seisbench); where further386

information on the contribution guidelines can be found. In particular, we encourage inclusion of already387

published models and datasets. The code-base has extensive test coverage to reduce the risk of coding388

errors.389

With the picking and detection problems having been widely explored in recent years with ML390

approaches, more complex problems are now being tackled with these techniques. We envisage that391

the models incorporated into SeisBench will expand to include such tasks. For example, hypocentre392

determination, source parameter estimation, etc., can all be constructed with SeisBench. All that is393

required is that the labels for a supervised learning task are present in the metadata. Once the state-of-394

the-art ML models for a given task are available in SeisBench - as shown with the picking example above395

- the major advantages of integrating new models within this framework become apparent. The initial396

processing routine set up for a model can be directly used to compare against existing state-of-the-art397

models. This ease of testing will hopefully promote further innovation of ML in seismology.398

Conclusions399

We have developed SeisBench as an open-source Python package, built to aid users in their application400

of ML techniques to seismic data. It minimizes common barriers to development for both practitioners401

looking to apply ML methods to seismic tasks, and experts who wish to benchmark and train leading402

algorithms. The software provides access to recently published benchmark datasets for machine learning403

in seismology, downloadable and accessible through a common interface. SeisBench extends this concept404

to provide a common access point to ML models, with state-of-the-art models and corresponding weights405

for seismic tasks directly integrated. We provide access to a range of picking models from the literature406

in the first iteration of the software but the framework is applicable for many seismological tasks based407

on waveform analysis such as location and magnitude estimation. By tackling some of the common408

bottlenecks encountered when developing ML algorithms, we hope that SeisBench will help practitioners409

iterate and deploy their models, advancing the development of the next generation of ML techniques410

within seismology.411

13

https://www.github.com/seisbench/seisbench

Acknowledgements412

We thank the Impuls- und Vernetzungsfonds of the HGF to support the REPORT-DL project under413

the grant agreement ZT-I-PF-5-53. We use PyTorch (Paszke et al., 2017) for integrating deep learning414

models into the package. JM acknowledges the support of the Helmholtz Einstein International Berlin415

Research School in Data Science (HEIBRiDS). This work was also partially supported by the project416

INGV Pianeta Dinamico 2021 Tema 8 SOME (CUP D53J1900017001) funded by Italian Ministry of417

University and Research “Fondo finalizzato al rilancio degli investimenti delle amministrazioni centrali418

dello Stato e allo sviluppo del Paese, legge 145/2018”. We thank the reviewers S. Mostafa Mousavi and419

Steve Hicks for their positive, detailed reviews which greatly helped improve the manuscript.420

We would also like to thank the authors of the original benchmarking and model papers, who made421

publicly available either benchmark datasets, or original model weights. Open-source development is an422

important component of advancing research and SeisBench only works as a tool with these models and423

datasets openly accessible.424

Data and Resources425

All data used in this paper either come from published sources listed in the references, or are com-426

piled from publicly available seismic recordings. Further information on how each individual dataset427

obtained, or accessed any waveform data can be found in the Data - Standardising access to Bench-428

mark datasets section. The source code for SeisBench is available through GitHub https://www.429

github.com/seisbench/seisbench, with the associated documentation also hosted at the following430

link https://seisbench.readthedocs.io/en/latest/.431

Declaration of Competing Interests432

The authors declare no competing interests.433

14

https://www.github.com/seisbench/seisbench
https://www.github.com/seisbench/seisbench
https://www.github.com/seisbench/seisbench
https://seisbench.readthedocs.io/en/latest/

References434

Abadi, M., Barham, P., Chen, J., Chen, Z., Davis, A., Dean, J., Devin, M., Ghemawat, S., Irving, G.,435

Isard, M. et al. (2016), Tensorflow: A system for large-scale machine learning, in ‘12th {USENIX}436

symposium on operating systems design and implementation ({OSDI} 16)’, pp. 265–283.437

Akbik, A., Bergmann, T., Blythe, D., Rasul, K., Schweter, S. and Vollgraf, R. (2019), Flair: An easy-438

to-use framework for state-of-the-art nlp, in ‘NAACL 2019, 2019 Annual Conference of the North439

American Chapter of the Association for Computational Linguistics (Demonstrations)’, pp. 54–59.440

AlpArray Seismic Network (2014), ‘Eastern alpine seismic investigation (easi) - alparray complimentary441

experiment’.442

URL: http://networks.seismo.ethz.ch/networks/xt/443

Beyreuther, M., Barsch, R., Krischer, L., Megies, T., Behr, Y. and Wassermann, J. (2010), ‘Obspy: A444

python toolbox for seismology’, Seismological Research Letters 81(3), 530–533.445

CERN (2016), ‘Cern seismic network’.446

URL: http://networks.seismo.ethz.ch/networks/c4/447

Chollet, F. et al. (2015), ‘Keras’.448

URL: https://github.com/fchollet/keras449

Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K. and Fei-Fei, L. (2009), Imagenet: A large-scale hier-450

archical image database, in ‘2009 IEEE conference on computer vision and pattern recognition’, Ieee,451

pp. 248–255.452

Deng, L. (2012), ‘The mnist database of handwritten digit images for machine learning research’, IEEE453

Signal Processing Magazine 29(6), 141–142.454

Dokht, R. M., Kao, H., Visser, R. and Smith, B. (2019), ‘Seismic event and phase detection using455

time–frequency representation and convolutional neural networks’, Seismological Research Letters456

90(2A), 481–490.457

Folk, M., Heber, G., Koziol, Q., Pourmal, E. and Robinson, D. (2011), An overview of the hdf5 technology458

suite and its applications, in ‘Proceedings of the EDBT/ICDT 2011 Workshop on Array Databases’,459

pp. 36–47.460

Go, A., Bhayani, R. and Huang, L. (2009), ‘Twitter sentiment classification using distant supervision’.461

URL: http://help.sentiment140.com/home462

Király, F. J., Löning, M., Blaom, A., Guecioueur, A. and Sonabend, R. (2021), ‘Designing machine463

learning toolboxes: Concepts, principles and patterns’, arXiv preprint arXiv:2101.04938 .464

15

Kong, Q., Allen, R. M., Schreier, L. and Kwon, Y.-W. (2016), ‘Myshake: A smartphone seismic network465

for earthquake early warning and beyond’, Science advances 2(2), e1501055.466

Li, Z., Meier, M.-A., Hauksson, E., Zhan, Z. and Andrews, J. (2018), ‘Machine learning seismic wave467

discrimination: Application to earthquake early warning’, Geophysical Research Letters 45(10), 4773–468

4779.469

Lomax, A., Michelini, A. and Jozinović, D. (2019), ‘An investigation of rapid earthquake characterization470

using single-station waveforms and a convolutional neural network’, Seismological Research Letters471

90(2A), 517–529.472

Magrini, F., Jozinović, D., Cammarano, F., Michelini, A. and Boschi, L. (2020), ‘Local earthquakes detec-473

tion: A benchmark dataset of 3-component seismograms built on a global scale’, Artificial Intelligence474

in Geosciences 1, 1–10.475

Meier, M.-A., Ross, Z. E., Ramachandran, A., Balakrishna, A., Nair, S., Kundzicz, P., Li, Z., Andrews, J.,476

Hauksson, E. and Yue, Y. (2019), ‘Reliable real-time seismic signal/noise discrimination with machine477

learning’, Journal of Geophysical Research: Solid Earth 124(1), 788–800.478

Michelini, A., Cianetti, S., Gaviano, S., Giunchi, C., Jozinovic, D. and Lauciani, V. (2021), ‘Instance–the479

italian seismic dataset for machine learning’, Earth System Science Data Discussions pp. 1–47.480

Mousavi, S. M. and Beroza, G. C. (2020), ‘A machine-learning approach for earthquake magnitude481

estimation’, Geophysical Research Letters 47(1), e2019GL085976.482

Mousavi, S. M., Ellsworth, W. L., Zhu, W., Chuang, L. Y. and Beroza, G. C. (2020), ‘Earthquake trans-483

former—an attentive deep-learning model for simultaneous earthquake detection and phase picking’,484

Nature communications 11(1), 1–12.485

Mousavi, S. M., Sheng, Y., Zhu, W. and Beroza, G. C. (2019), ‘Stanford earthquake dataset (stead): A486

global data set of seismic signals for ai’, IEEE Access 7, 179464–179476.487

Mousavi, S. M., Zhu, W., Sheng, Y. and Beroza, G. C. (2019), ‘Cred: A deep residual network of488

convolutional and recurrent units for earthquake signal detection’, Scientific reports 9(1), 1–14.489

Münchmeyer, J. and 12 coauthors (n.d.), ‘Which picker fits my data? a quantitative evaluation of490

deeplearning based seismic pickers’.491

URL: https://arxiv.org/..492

Münchmeyer, J., Bindi, D., Leser, U. and Tilmann, F. (2021a), ‘Earthquake magnitude and location493

estimation from real time seismic waveforms with a transformer network’, Geophysical Journal Inter-494

national 226(2), 1086–1104.495

16

Münchmeyer, J., Bindi, D., Leser, U. and Tilmann, F. (2021b), ‘The transformer earthquake alerting496

model: a new versatile approach to earthquake early warning’, Geophysical Journal International497

225(1), 646–656.498

Pardo, E., Garfias, C. and Malpica, N. (2019), ‘Seismic phase picking using convolutional networks’,499

IEEE Transactions on Geoscience and Remote Sensing 57(9), 7086–7092.500

Paszke, A., Gross, S., Chintala, S., Chanan, G., Yang, E., DeVito, Z., Lin, Z., Desmaison, A., Antiga, L.501

and Lerer, A. (2017), ‘Automatic differentiation in pytorch’.502

Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Pretten-503

hofer, P., Weiss, R., Dubourg, V. et al. (2011), ‘Scikit-learn: Machine learning in python’, Journal of504

machine learning research 12(Oct), 2825–2830.505

Perol, T., Gharbi, M. and Denolle, M. (2018), ‘Convolutional neural network for earthquake detection506

and location’, Science Advances 4(2), e1700578.507

Reback, J., McKinney, W., Den Van Bossche, J., Augspurger, T., Cloud, P., Klein, A., Roeschke, M.,508

Hawkins, S., Tratner, J., She, C. et al. (2020), ‘pandas-dev/pandas: Pandas 1.0. 3’, Zenodo .509

Ross, Z. E., Meier, M.-A. and Hauksson, E. (2018), ‘P wave arrival picking and first-motion polarity510

determination with deep learning’, Journal of Geophysical Research: Solid Earth 123(6), 5120–5129.511

Ross, Z. E., Meier, M.-A., Hauksson, E. and Heaton, T. H. (2018), ‘Generalized seismic phase detection512

with deep learning’, Bulletin of the Seismological Society of America 108(5A), 2894–2901.513

SCEDC (2010), ‘Seismic transfer program (version 1.4.1)’.514

URL: https://scedc.caltech.edu/data/stp/515

SCEDC (2013), ‘Southern california earthquake data center. caltech. dataset’.516

Soto, H. and Schurr, B. (2021), ‘DeepPhasePick: a method for detecting and picking seismic phases517

from local earthquakes based on highly optimized convolutional and recurrent deep neural networks’,518

Geophysical Journal International 227(2), 1268–1294.519

Swiss Seismological Service (SED) At ETH Zurich (1983), ‘National seismic networks of switzerland’.520

URL: http://networks.seismo.ethz.ch/networks/ch/521

Swiss Seismological Service (SED) At ETH Zurich (2005), ‘Temporary deployments in switzerland asso-522

ciated with aftershocks and other seismic sequences’.523

URL: http://networks.seismo.ethz.ch/networks/8d/524

Swiss Seismological Service (SED) At ETH Zurich (2008), ‘Seismology at school program, eth zurich’.525

URL: http://networks.seismo.ethz.ch/networks/s/526

17

Valentine, A. P. and Trampert, J. (2012), ‘Data space reduction, quality assessment and search-527

ing of seismograms: autoencoder networks for waveform data’, Geophysical Journal International528

189(2), 1183–1202.529

URL: http://dx.doi.org/10.1111/j.1365-246X.2012.05429.x530

van den Ende, M. P. and Ampuero, J.-P. (2020), ‘Automated seismic source characterization using deep531

graph neural networks’, Geophysical Research Letters 47(17), e2020GL088690.532

Wang, J. and Teng, T.-l. (1997), ‘Identification and picking of s phase using an artificial neural network’,533

Bulletin of the Seismological Society of America 87(5), 1140–1149.534

Wang, J., Xiao, Z., Liu, C., Zhao, D. and Yao, Z. (2019), ‘Deep learning for picking seismic arrival times’,535

Journal of Geophysical Research: Solid Earth 124(7), 6612–6624.536

Woollam, J., Rietbrock, A., Bueno, A. and De Angelis, S. (2019), ‘Convolutional neural network for537

seismic phase classification, performance demonstration over a local seismic network’, Seismological538

Research Letters 90(2A), 491–502.539

Yeck, W. L., Patton, J. M., Ross, Z. E., Hayes, G. P., Guy, M. R., Ambruz, N. B., Shelly, D. R., Benz,540

H. M. and Earle, P. S. (2021), ‘Leveraging deep learning in global 24/7 real-time earthquake monitoring541

at the national earthquake information center’, Seismological Society of America 92(1), 469–480.542

Zhou, Y., Yue, H., Kong, Q. and Zhou, S. (2019), ‘Hybrid event detection and phase-picking algorithm543

using convolutional and recurrent neural networks’, Seismological Research Letters 90(3), 1079–1087.544

Zhu, W. and Beroza, G. C. (2019), ‘Phasenet: a deep-neural-network-based seismic arrival-time picking545

method’, Geophysical Journal International 216(1), 261–273.546

18

Mailing Addresses547

• jack.woollam@kit.edu548

• munchmej@gfz-potsdam.de549

• tilmann@gfz-potsdam.de550

• andreas.rietbrock@kit.edu551

• dlange@geomar.de552

• saul@gfz-potsdam.de553

• djozinovi@gmail.com554

• alberto.michelini@ingv.it555

• carlo.giunchi@ingv.it556

• tobias.diehl@sed.ethz.ch557

• florian.haslinger@sed.ethz.ch558

• soto@gfz-potsdam.de559

• bornstth@hu-berlin.de560

19

List of Figure Captions561

1. Schematic diagram to show the motivation behind SeisBench. SeisBench acts as a unifying frame-562

work for developing models and applying them to seismic data. The differing packages used563

for model development, and the differing benchmark dataset formats are represented by vary-564

ing colours. The data, generate, and model tags highlight the different modules available within565

SeisBench.566

2. Example of data structure for SeisBench. Waveforms are stored in a HDF5 file, indexed by567

trace name. The metadata for each waveform example is stored in a table format as a .csv568

file. The trace name is required as a column, as this is then used as the lookup key to the569

raw data. This schematic diagram displays the overall concept, with the implementation slightly570

more complex to optimise performance. For more information see the technical documentation571

(https://seisbench.readthedocs.io/en/latest/).572

3. Benchmark datasets integrated into SeisBench with the initial release of the software; seismic573

sources are circles, stations are triangle markers. Not shown are some additional datasets which are574

included in the SeisBench initial release dataset collection, but are either missing source information575

(NEIC, GPD, Ross2018JGRPick, Ross2018JGRFM, Meier2019JGR), or have minimal number of576

events for plotting (the local Iquique dataset).577

4. Logarithmic histograms of epicentral distance and magnitude distributions for the datasets with578

source and station information. For the two-dimensional scatterplot in the last column, all points579

are plotted with transparency to highlight the overall distribution. The Iquique, NEIC, GPD,580

Ross2018JGRPick, Ross2018JGRFM, Meier2019JGR datasets are not shown because they are581

lacking either, magnitude, or source and station location information.582

5. Example code-blocks which download a seismic waveform [1], then loads a pre-trained deep learning583

picking model and applies the model to predict on the seismic stream using either one of two ML584

architectures (GPD and EQTransformer) [2]. Resulting picks and characteristic functions from the585

output probabilities are displayed beneath the code blocks. Characteristic function is abbreviated586

to "CF". Picks are represented by dotted lines, event detections for the EQT case are the shaded587

regions. The GPD picker makes a spurious S -pick before the onset of the event but as the original588

model weights have been incorporated into the pickers to pick on new, unseen data, this example589

may not be representative of the optimum performance of the respective model architectures, which590

could be achieved by training on data matched to the application case.591

6. Example code-block with additional schematic diagrams displaying syntax required to perform full592

training of a deep learning model in SeisBench. PhaseNet is used for training, with the INSTANCE593

20

https://seisbench.readthedocs.io/en/latest/

dataset being used as training data. Further workflow examples demonstrating the functionality594

provided by SeisBench can be found at https://github.com/seisbench/seisbench/tree/main/595

examples.596

21

https://github.com/seisbench/seisbench/tree/main/examples
https://github.com/seisbench/seisbench/tree/main/examples
https://github.com/seisbench/seisbench/tree/main/examples

Tables597

Table 1: Overview of the datasets. The noise column indicates the number of dedicated noise traces.

Note that it is still possible to extract noise examples from datasets without dedicated noise traces by

selecting windows before the first arrival. For distances, the datasets cover local(L, 0 ≤ ∆ <150 km),

regional (R, 150 ≤ ∆ <600 km), and teleseismic (T, ∆ > 600 km) records. The datasets with variable

trace length contain considerably more than 60s of data for most examples. fs denotes the sampling

rate, Tr. length denotes the trace length in seconds. When the sampling rate varies within a dataset,

the range of sampling rates is listed. The GPD, Ross2018JGRPick, Ross2018JGRFM, Meier2019JGR

datasets are omitted from this table because these datasets do not contain source property information.

NEIC is included because it is used for the benchmark comparison in Münchmeyer and 12 coauthors

(n.d.). The horizontal split in the table separates the benhcmark datasets containing regional to local

arrivals (top section), and the datasets containing teleseismic arrivals (bottom section).

Traces Events P picks S picks Noise Region Dist Tr. length fs [Hz]
ETHZ 36,743 2,231 35,227 18,960 0 Switzerland L/R variable 100 - 500

INSTANCE 1,291,537 54,008 1,159,249 713,883 132,288 Italy L/R 120 s 100
Iquique 13,400 409 13,327 11,361 0 N. Chile L variable 100
LenDB 1,244,942 303,902 629,095 0 615,847 various L 27 s 20
SCEDC 8,111,060 378,528 7,571,970 4,364,155 0 S. California L variable 40 - 100
STEAD 1,265,657 441,705 1,030,231 1,030,231 235,426 various L/R 60 s 100

GEOFON 275,274 2,270 284,240 2,847 0 global R/T variable 20 - 200
NEIC 1,354,789 137,424 1,025,000 329,789 0 global R/T 60 s 40

22

Table 2: Description of the models studied. The number of parameters refers to the total number

of trainable parameters. Note that these numbers might deviate slightly from the ones published by

the original authors due to differences in the underlying frameworks. For DPP, information delimited

by slashes indicate Detector/P-Picker/S-Picker networks. The row "Orig. weights" indicates whether

original weights were published and are available in SeisBench. For PhaseNet, weights were published by

the authors, but these weights could not straightforwardly be integrated into SeisBench due to technical

issues.

BascicPhaseAE CRED DPP EQT GPD PhaseNet
Params 33,687 293,569 199,731/

546,081/
21,181

376,935 1,741,003 23,305

Type U-Net CNN-RNN CNN/RNN/RNN CNN-RNN-
Attention

CNN U-Net

Training set N. Chile S. California N. Chile STEAD S. California N. California
Orig. weights N Y N Y Y N
Reference Woollam et al.

(2019)
Mousavi, Zhu,
Sheng and
Beroza (2019)

Soto and
Schurr (2021)

Mousavi et al.
(2020)

Ross, Meier,
Hauksson and
Heaton (2018)

Zhu and
Beroza (2019)

23

Figures598

Figure 1: Schematic diagram to show the motivation behind SeisBench. SeisBench acts as a unifying

framework for developing models and applying them to seismic data. The differing packages used for

model development, and the differing benchmark dataset formats are represented by varying colours.

The data, generate, and model tags highlight the different modules available within SeisBench.

24

Figure 2: Example of data structure for SeisBench. Waveforms are stored in a HDF5 file, indexed by trace

name. The metadata for each waveform example is stored in a table format as a .csv file. The trace name

is required as a column, as this is then used as the lookup key to the raw data. This schematic diagram

displays the overall concept, with the implementation slightly more complex to optimise performance. For

more information see the technical documentation (https://seisbench.readthedocs.io/en/latest/).

25

https://seisbench.readthedocs.io/en/latest/

Figure 3: Benchmark datasets integrated into SeisBench with the initial release of the software; seismic

sources are circles, stations are triangle markers. Not shown are some additional datasets which are

included in the SeisBench initial release dataset collection, but are either missing source information

(NEIC, GPD, Ross2018JGRPick, Ross2018JGRFM, Meier2019JGR), or have minimal number of events

for plotting (the local Iquique dataset).

26

Figure 4: Logarithmic histograms of epicentral distance and magnitude distributions for the datasets with

source and station information. For the two-dimensional scatterplot in the last column, all points are plot-

ted with transparency to highlight the overall distribution. The Iquique, NEIC, GPD, Ross2018JGRPick,

Ross2018JGRFM, Meier2019JGR datasets are not shown because they are lacking either, magnitude, or

source and station location information.

27

Figure 5: Example code-blocks which download a seismic waveform [1], then loads a pre-trained deep

learning picking model and applies the model to predict on the seismic stream using either one of two

ML architectures (GPD and EQTransformer) [2]. Resulting picks and characteristic functions from the

output probabilities are displayed beneath the code blocks. Characteristic function is abbreviated to

"CF". Picks are represented by dotted lines, event detections for the EQT case are the shaded regions.

The GPD picker makes a spurious S -pick before the onset of the event but as the original model

weights have been incorporated into the pickers to pick on new, unseen data, this example may not

be representative of the optimum performance of the respective model architectures, which could be

achieved by training on data matched to the application case.

28

Figure 6: Example code-block with additional schematic diagrams displaying syntax required to perform

full training of a deep learning model in SeisBench. PhaseNet is used for training, with the INSTANCE

dataset being used as training data. Further workflow examples demonstrating the functionality provided

by SeisBench can be found at https://github.com/seisbench/seisbench/tree/main/examples.

29

https://github.com/seisbench/seisbench/tree/main/examples

Appendix599

Parameter name Description

trace_name A unique identifier for the trace.

trace_start_time The start time for the trace - if possible following ISO 8601:2004.

trace_sampling_rate_hz Sampling rate of the trace. If sampling rate is constant across all traces

in the data set, it can also be specified in the data_format group in the

hdf5 data file.

trace_npts The number of samples in the trace.

trace_channel The channel from which the data was obtained without the component

identifier, e.g., HH, HN, BH.

trace_category A category to assign to the trace, e.g. earthquake, noise, mine blast.

trace_snr_db The signal-to-noise ratio of trace in decibels.

trace_p_arrival_sample Sample in trace at which P-phase arrives

trace_p_uncertainty_s Uncertainty of P-phase pick in seconds.

trace_p_weight The weighting factor assigned to the P-phase pick.

trace_p_status The status of the P-phase pick, e.g. manual/automatic.

trace_s_arrival_sample Sample in trace at which S-phase arrives.

trace_s_uncertainty_s Uncertainty of S-phase pick in seconds.

trace_s_weight The weighting factor assigned to the S-phase pick.

trace_s_status The status of the S-phase pick, e.g. manual/automatic.

trace_completeness The fraction of samples in the trace, which were not filled with place-

holder values (between 0 and 1). Placeholder values occur for example

in case of recording gaps or missing component traces.

source_id A unique identifier for the source trace.

source_origin_time Origin time of the source - if possible following ISO 8601:2004.

source_origin_uncertainty_sec Uncertainty of source origin time in seconds.

source_latitude_deg Source latitude coordinate in degrees.

source_latitude_uncertainty_deg Uncertainty of source latitude coordinate in degrees.

source_longitude_deg Source longitude coordinate in degrees.

source_longitude_uncertainty_deg Uncertainty of source longitude coordinate in degrees.

source_depth_km Source depth in kilometers.

source_depth_uncertainty_km Uncertainty of source depth coordinate in degrees.

source_error_sec The error association with the source location in seconds.

source_gap_deg Azimuthal gap from the source determination in degrees.

30

source_magnitude Magnitude value assigned to source.

source_magnitude_type The type of magnitude calculation used when assigning magnitude to

source.

station_network_code Instrument network code.

station_code Instrument station code.

station_location_code Instrument location code.

station_latitude_deg Instrument latitude in degrees.

station_longitude_deg Instrument longitude in degrees.

station_elevation_m Instrument elevation in m.

path_back_azimuth_deg The backazimuth of phase path from source to receiver in degrees.

path_ep_distance_km The epicentral distance of source receiver path in kilometers.

path_hyp_distance_km The hypocentral distance of source receiver path in kilometers.

path_p_travel_s Travel-time for P-phase in seconds.

path_p_residual_s Residual of P-phase against some prediction in seconds.

path_s_travel_s Travel-time for P-phase in seconds.

path_s_residual_s Residual of S-phase against some prediction in seconds.

Table A1: Example of the parameter naming schema for SeisBench, where metadata parameters follow

the naming format guidelines ‘CATEGORY_PARAMETER_UNIT’. The table displays a subset of

some of the more common naming parameters. When extending or including new datasets, this can be

extended for individual use cases to include any new metadata parameter, providing it adheres to the

naming schema.

31

