
Shible, H., Hollender, F., Bindi, D., Traversa, P., 
Oth, A., Edwards, B., Klin, P., Kawase, H., Gren-
das, I., Castro, R. R., Theodoulidis, N., Gueguen, 
P. (2022): GITEC: A Generalized Inversion Tech-
nique Benchmark. - Bulletin of the Seismologi-
cal Society of America, 112, 2, 850-877.

https://doi.org/10.1785/0120210242

Institional Repository GFZpublic: https://gfzpublic.gfz-potsdam.de/ 

https://gfzpublic.gfz-potsdam.de/


GITEC: A Generalized Inversion Technique 
Benchmark 

 
Hussein Shible*1,2, Fabrice Hollender1,2, Dino Bindi3, Paola Traversa4, Adrien Oth5, 

Benjamin Edwards6, Peter Klin7, Hiroshi Kawase8, Ioannis Grendas9, Raul R. Castro10, 
Nikolaos Theodoulidis11, and Philippe Gueguen2 

 
 

ABSTRACT 
Generalized inversion techniques (GITs) have become popular for determining seismological parameters 
(e.g., source, attenuation, and site response), particularly in low-to-moderate seismicity regions. Indeed, 
GITs can potentially provide reliable site-response estimates when a minimum number of recordings is 
available, as well as valuable information about source parameters and regional attenuation characteristics. 
Significant advances have been made on GITs in which different approaches and hypotheses were investi-
gated, such as the application of “nonparametric” and “parametric” inversion schemes. In this context, sev-
eral scientific questions have arisen that depend on the final scope of the GITs: What is the optimal inversion 
strategy for a given dataset configuration? What is the impact of the different choices, assumptions, and 
implementations on the reliability of the results? Is it possible to quantify the associated epistemic uncer-
tainties? Here, we have considered and compared the different approaches of GITs to improve the under-
standing of each for use in different applications. A methodological benchmark that includes different GIT 
methods and dataset configurations is set up to fulfill the objective, using a simple synthetic dataset, a 
French regional sparse dataset, and an Italian national dense dataset. The benchmark is developed in two 
phases: (1) phase I: a free phase with no common constraints; and (2) phase II: a constrained phase with 
unified reference conditions. Despite unifying the reference conditions in the different inversions, the vari-
ability was not reduced. Discrepancies are observed between different terms of GITs. Site responses appear 
to be the most robust estimates, compared to source and attenuation terms. The way that stress drops of 
earthquakes and quality factors for crustal attenuation are parameterized appears to lead to significant var-
iability between different approaches. Finally, uncertainties are addressed by quantification of the inter-
method variability for the different terms and parameters. 
 
KEY POINTS 
 The work presents a comparison of generalized inversion techniques. 
• The results indicate that site terms are the most robust. 
 Unaccounted complexities of ground motion in generalized inversion models can lead to increased un-

certainties. 
 
 
 
INTRODUCTION 
Seismic waves initiate from seismic faults and 
ruptures in the Earth’s crust, and propagate from 
the source to the Earth’s surface through differ-
ent paths to impact built structures and installa-
tions. The ground motions observed at the sur-
face can be greatly affected by several factors, 
such as the rupture characteristics (i.e., source 
effects), the seismic-wave attenuation properties 
of the Earth materials between the source and a 
specific site (i.e., path propagation effects), and 
the amplification of ground-motion amplitudes 
induced by specific lithological and topograph-
ical configurations in the near-surface subsoil 
(i.e., site effects). After several destructive earth-
quakes during the last few decades (e.g., Mexico, 
1985, Kobe, 1995, Haiti, 2010, and Tōhoku, 
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2011), accurate evaluation of strong ground mo-
tion factors has become a necessary step for re-
alistic prediction of the ground motion that can 
be expected for future strong earthquakes. 

Seismic hazard assessment is carried out to 
predict the intensity of ground shaking either in 
a given region or for a specific site. In seismic 
hazard assessment, the ground-motion evalua-
tion is generally carried out using ground-mo-
tion prediction equations (GMPEs), and they are 
determined through regression analyzes of em-
pirically recorded data. Recently, probabilistic 
seismic hazard studies have been progressively 
refined to improve site-specific hazard estimates 
by relaxing the ergodic assumption (Rodriguez-
Marek et al., 2013; Kotha et al., 2016). These 
studies require knowledge of the amplification of 
the ground motion at the site considered. Most of 
the current GMPEs base the evaluation of site re-
sponses on the 𝑉  proxy (time-averaged 𝑆-
wave velocity in the first 30 m of the profile) and 
the high-frequency near-surface attenuation pa-
rameter, 𝜅 . The 𝑉  proxy can reflect some site 
properties, but it is not enough to describe the 
frequency-dependent amplification of ground 
motion induced by the soil properties beneath 
the considered site (Lee and Trifunac, 2010). In 
addition, several sources of uncertainties are as-
sociated with κ measurements and applications 
to consider local attenuation effects. As a result, 
there is an increased attention toward improving 
the practice through more precise site-effect es-
timations. 

Within this scope, Bard et al. (2020) reviewed 
the main practices to obtain site-specific ground-
motion predictions and provided several recom-
mendations. One of the main recommendations 
was to investigate site effects with generalized 
inversion techniques (GITs), mainly because 
these represent an alternative tool for evaluating 
empirical site responses in the frequency do-
main. However, the latter use of GITs does not 
hide that they can deliver, along with site terms, 
other source, and attenuation parameters, such 
as stress drop and quality factors, which are of 
the main elements used in stochastic modeling 
(Boore, 2003) of earthquake ground motions. In-
deed, GITs were first introduced by Andrews 
(1986), based on the assumption that the Fourier 
spectrum of a recorded seismic signal can be sep-
arated into three main components: source, path, 
and the site factors. Then, generalized inversions 

were used in numerous studies that focused on 
crustal attenuation (e.g., Castro et al., 1990; Pa-
rolai et al., 2004; Bindi et al., 2006), source pa-
rameters (e.g., Oth et al., 2017), and site-re-
sponse estimations (Nakano et al., 2015; Ed-
wards and Fäh, 2017; Kawase et al., 2019). 

Although there are several methods for esti-
mating source parameters, crustal path attenua-
tion, and site responses individually, GITs are be-
ing used to estimate them simultaneously for a 
given dataset. The results of generalized inver-
sions of ground motion, including source and at-
tenuation parameters, have been used for sev-
eral purposes. Bora et al. (2015) used GITs to de-
velop a Fourier amplitude spectrum GMPE that 
can be adjusted to account for source, path, and 
site conditions for the regions of interest. The ad-
justing parameters were stress drops (∆𝜎), a 
quality factor (𝑄), and the high-frequency atten-
uation parameter 𝜅. Perron et al. (2017) focused 
on the estimation of 𝜅 for sites in the Provence 
area of southern France, and they indirectly used 
GIT results of Drouet et al. (2010) to compare 
with the 𝑄 values obtained from the path term of 
𝜅. Based on the GIT studies of Drouet et al. 
(2010) in France, Drouet and Cotton (2015) also 
performed stochastic simulations of ground mo-
tion, and they determined fully stochastic GMPEs 
for southern France based on these synthetic 
data. 

The choice of the most appropriate GIT 
scheme for an application might depend on the 
dataset geometry and characteristics. In addi-
tion, the most appropriate assumptions can vary 
for different dataset configurations and the aims 
of a study. However, these choices have not been 
deeply explored in the previous studies. In addi-
tion, the resulting “intermethod” uncertainty for 
the estimated physical parameters has not been 
addressed previously in the framework of de-
tailed parameter estimation. These issues con-
cerning intermethod variabilities were found 
motivating enough for us to set up an interna-
tional benchmark to compare the different im-
plementations of GITs currently in use, to inves-
tigate their advantages and drawbacks and their 
relative performance of each inversion tech-
nique with respect to the others, as well as to ex-
plore the uncertainty for the estimated seismo-
logical parameters from different implementa-
tions of the inversion procedure. 

GITEC benchmark (Generalized Inversions 



Techniques Comparisons) was organized based 
on the idea of performing several inversions with 
multiple GIT schemes on different datasets. The 
benchmark addresses the possible differences 
between different approaches on the same da-
taset and between different datasets. The main 
scope of GITEC is to compare and improve the 
knowledge on the performances of different gen-
eralized spectral inversion methods and the un-
derlying hypotheses they use to estimate 
ground-motion parameters. 

This GITEC “methodological benchmark” is 
expected to serve several goals: 
• First, a major concern is about the optimal in-

version strategy given a specific dataset. The 
presence of different implementations of in-
version schemes (i.e., parametric, nonpara-
metric) makes it important to investigate the 
pros and cons of each approach, depending on 
the dataset characteristics considered (e.g., 
dataset geometry, configuration, and others). 

• Exploration of the impact of the choices, as-
sumptions, and reference conditions on the fi-
nal results. 

• Addressing the quantification of epistemic un-
certainties by intermethod comparisons over 
different datasets. 

 
This work summarizes the results and the 

main conclusions reached with the GITEC bench-
mark. Inversions were run by the six teams that 
participated in the benchmark. Initially, inver-
sions were performed on a simple synthetic da-
taset as a sort of “sanity check” for all inversion 
schemes and codes. The inversions were then 
performed on two real datasets available from 
previous studies, with some slight modifications 
and updates. The impact of the choice of the ref-
erence condition was explored by performing 
two phases of inversions (I, II), in which the ref-
erence conditions were changed from phase I to 
phase II. In the first run, the teams’ reference 
conditions were freely set while unified in the 
second run. The impact of the dataset size on the 
inversion performance was also explored in two 
steps. First, the two datasets considered were 
chosen to have different numbers of records. 
Then, in a separate test, the number of records in 
one of the datasets was decimated before run-
ning the inversions. 

We do not claim to present here the “best 
practice” for GIT applications, but instead, we 

aim to provide a comparison of the different ex-
isting methods to address the question of the un-
certainties in GITs. In the end, analysis of the re-
sults from different approaches and inversion 
schemes allowed characterization of the inter-
method variability. We also highlight the relative 
robustness of the seismological terms and the 
relative suitability of the different approaches as 
functions of the dataset configuration. 
 
GITs 
Generalized inversion schemes are based on the 
principle that far-field, 𝑆-wave Fourier ampli-
tude spectra can be separated into three main 
components, as indicated in the following equa-
tion: 
 

𝐹𝐴𝑆 (𝑓) = 𝐸 (𝑓)𝐴 𝑟 , 𝑓 𝑆 (𝑓), (1)
 
in which 𝐹𝐴𝑆  is the Fourier amplitude spec-
trum for each frequency 𝑓 recorded at site 𝑖 for 
event 𝑗, 𝐸 (𝑓) is the source function, 𝐴 𝑟 , 𝑓  is 
the path contribution over distance 𝑟 for event 𝑗 
recorded at site 𝑖, and 𝑆 (𝑓) is the site-response 
term. Each of these terms is assumed to be inde-
pendent from one another for a given spectrum. 

Applying a logarithm to equation (1), we ob-
tain the linear equation that provides a linear 
system of the form 𝑨 ∙ 𝒙 = 𝒃, in which ∙ is the dot 
product, 𝒃 is the data vector, 𝒙 is the solution of 
the system, and 𝑨 describes the system matrix 
(Andrews, 1986; Castro et al., 1990). In the way 
that this system is defined, it has two undeter-
mined degrees of freedom. The system can then 
be solved if two additional constraints are ap-
plied to one (or several) site responses and to the 
attenuation function at a given reference dis-
tance. In GITs, this is often called the reference 
site condition. 

An inversion scheme can be implemented fol-
lowing either a nonparametric or a parametric 
approach. The difference between these two ap-
proaches lies in the assumptions made a priori. 
In a nonparametric inversion, no models with 
predefined function are assumed a priori, and 
the inversion is carried out at each frequency 
point to separate the three contributions de-
scribed in equation (1). Nonparametric inversion 
provides the source spectra 𝐸(𝑓) for each earth-
quake, the average attenuation curves 𝐴(𝑟, 𝑓) as 
functions of the distance at each frequency, and 
the site amplification 𝑆(𝑓) as a function of 



frequency for all of the sites. On the other hand, 
analytical models are assumed to account for the 
source and attenuation terms in the parametric 
approach, whereas the site term is kept nonpar-
ametric. Parametric inversions provide the di-
rect output of estimates of the controlling param-
eters for the models assumed. When performing 
nonparametric inversions, these parameters are 
instead retrieved by performing postinversion 
parameterization for each nonparametric term. 

To run parametric inversion schemes, models 
must be assumed a priori. The model of Brune 
(1970, 1971) and Eshelby (1957) is usually used 
for the source term, as described in the following 
equations: 
 

Ω(𝑓) =
2𝑅

4𝜋𝜌𝛽

⎝

⎛
(2𝜋𝑓) 𝑀

1 +
𝑓
𝑓 ⎠

⎞, (2)

 

∆𝜎 =
7

16
𝑀

𝑓

0.37𝑉
, (3)

 
in which𝑀  (𝑁 · 𝑚) is the seismic moment, 𝑓  
(Hz) is the corner frequency of the earthquake, 
∆𝜎 (Pa) is the stress drops, 𝑅  is the source ra-
diation pattern, which is assumed to be constant 
(𝑅 = 0.55 for 𝑆 waves; Boore and Boatwright, 
1984), 𝜌 (kg/m3) is the average density in the 
crust, 𝛽 (m/s) is the 𝑆-wave velocity of the me-
dium near the source, and 𝑉  is the average 𝑆-
wave velocity along the path. In general, for 
earthquakes at local to regional distances, we as-
sume that 𝛽 = 𝑉 = 3.5 km/s and 𝜌 = 2800 
kg/m3, as in several studies (e.g., Drouet et al., 
2010; Bindi et al., 2017). With 𝑀  obtained from 
inversions, the moment magnitude 𝑀  can be 
deduced using the relation of Hanks and Kana-
mori (1979), as in the following equation: 
 

𝑀 =
log (𝑀 ) − 9.05

1.5
. (4)

 
The attenuation of seismic waves is acquired 

by waves propagating through the crust, so it is 
usually constrained to unity at the nearest possi-
ble to the source. In the nonparametric approach, 
the attenuation is derived directly over the avail-
able distance bins in the data. When we have no 
data at short distances, the attenuation is fixed to 
1 at a distance defined as the reference distance 

(𝑅  ). This assumption leads to shifted sources 
at the chosen 𝑅 . Thus, nonparametric source 
terms need to be rescaled by 𝑅   for correct in-
terpretation. The path term assumed accounts 
for both anelastic attenuation and the geomet-
rical spreading decay effects, as given by the fol-
lowing equation: 
 

𝐴(𝑟, 𝑓) = exp −
𝜋 𝑟 − 𝑅 𝑓

𝑄 𝑓 𝑉

𝑅

𝑟
, (5)

 
in which 𝑄  and the exponent 𝛼 describe the fre-
quency-dependent quality factor, and 𝛾 is the co-
efficient of the geometrical spreading. It is worth 
noting that in a parametric approach, 𝑅  is im-
plicitly set to 1. 

Here, an additional attenuation representa-
tion is proposed for the quality factor, 𝑄. A more 
generalized evaluation of 𝑄, which is mainly as-
sumed as 𝑄 𝑓  in equation (5), can be provided 
for a given distance and frequency. We chose to 
evaluate the generalized 𝑄 at 50 km, in which at-
tenuation is not yet undergoing additional com-
plexities, and in which we can consider that 𝛾 =
1. Also, we chose the frequency to be in the mid-
dle of the frequency range considered in the da-
taset. Indeed, other choices are also possible for 
detailed interpretations, but we considered only 
one (𝑟, 𝑓) couple, with the general notation 
𝑄 (𝑓). The main consequences of such a param-
eterization are: 
• Having an alternative to the actual Q-model 

parameters can show better how much the ap-
proaches are consistent in their attenuation. 

• That the 𝑄 (𝑓) term reveals more information 
attenuation than the 𝑄  value. 

 
The 𝑄 (𝑓) term can be improved for better inter-
pretation of the attenuation properties. How-
ever, it appears a good start to exclude possible 
trade-offs (i.e., among 𝑄 , 𝛼, and 𝛾) from the com-
parisons. 
 
THE GITEC PROJECT 
Methodologies and inversion schemes in-
volved in the benchmark 
The GITEC benchmark includes several inversion 
schemes, as listed in Table 1, and these can be 
classified into three main categories: 
• Full nonparametric inversion schemes. These 

inversions can be carried out as: 
1. One-step inversion, including simulta-



neous inversion of each of source, path at-
tenuation, and site-response terms in equa-
tion (1). In this approach, a single matrix of 
the system of unknowns is first formed, and 
then it is solved. The used methods were: 
• The scheme developed by Bindi et al. 

(2009) and Oth et al. (2011) was run. In 
the following, these inversions have the 
reference #01N1. 

• The scheme developed by Klin et al. 
(2021) which is an improvement of the 
scheme of Klin et al. (2018). In the fol-
lowing, these inversions have the refer-
ence #02N1. 

2. Two-step inversion, in which the attenua-
tion is first solved in single step, then the 
source and site are afterward solved by 
correcting the Fourier spectra for the atten-
uation obtained from the first step. The 
two-step nonparametric inversion scheme 
run was the scheme developed by Castro 
et al. (1990). In the following, these inver-
sions have the reference #03N2. 

• Full parametric inversion schemes, divided 
into the following different inversion 
schemes: 
1. The scheme implemented by Drouet et al. 

(2010). In the following, these inversions 
have the reference #04P. 

2. The same scheme implemented by Drouet 
et al. (2010), but further redeveloped, 
modified, and optimized by Grendas et al. 
(2021), using a single attenuation model. In 
the following, these inversions have the ref-
erence #06P. 

3. The scheme implemented by Edwards et al. 

(2008). In the following, these inversions 
have the reference #07P. 

• Semiparametric (or partially nonparametric) 
inversion schemes, in which only the attenua-
tion model is parameterized with a 𝑄 model 
and a geometrical spreading factor, whereas 
the source and site terms are kept nonpara-
metric. This scheme was implemented by 
Nakano et al. (2015). In the following, these 
inversions have the reference #05SP. 

 
The datasets considered 
To investigate the performances of the different 
GIT schemes with respect to different datasets, 
we considered: 
• A synthetic dataset (as detailed in Goertz-All-

mann and Edwards, 2014) generated as a for-
ward problem solution according to equation 
(1) (Fig. 1a–c). The “as recorded” noise at the 
corresponding station and event time is added 
to the synthetic signals to provide realistic 
spectra with bandwidth according to the 
event size, distance to station, and general 
noise level. Alternate parameter setups (e.g., 
attenuation, stress drop, etc.) can be utilized. 
The dataset configuration is based on the ge-
ometry of the existing Swiss national seismic 
network (as of Goertz-Allmann and Edwards, 
2014), with events in the magnitude range of 
3.0–5.5. The generated signals are from 50 
stations and 100 events. Hypocentral dis-
tances are in the range of 0–200 km. 

• A sparse regional dataset as the RAP dataset 
(RAP: French Permanent Accelerometric Net-
work) in the French Alps region from Drouet 
et al. (2008, 2010). The final dataset (Fig. 

TABLE 1 
Inversion Schemes of the GITEC Benchmark 

No. Inversion Method Team Affiliation Scheme Code 

1 Oth et al. (2011) Adrien Oth, 
Dino Bindi 

ECGS, Luxembourg; 
GFZ Potsdam, Germany 

Nonparametric (one-step inversion) #01N1 

2 Klin et al. (2018) Peter Klin OGS, Trieste, Italy Nonparametric (two-step inversion) #02N1 

3 Castro et al. (1990) Raul Castro CICESE, Mexico Nonparametric (two-step inversion) #03N2 

4 Drouet et al. (2010) Hussein Shible CEA-Cadarache, France Parametric #04P 

5 Nakano et al. (2015) Hiroshi Kawase Kyoto University, Japan Semiparametric #05SP 

6 Grendas et al. (2021) Ioannis Grendas 
Nikolaos Theodoulidis 

AUTh, ITSAK, Greece Parametric #06P 

7 Edwards et al. (2008) Ben Edwards University of Liverpool, 
United Kingdom 

Parametric #07P 

AUTh, Aristotle University of Thessaloniki; CEA, French Alternative Energies and Atomic Energy Commission; CICESE, Centro de Investigación Científica 
y de Educación Superior de Ensenada; ECGS, European Center for Geodynamics and Seismology; ITSAK, Institute of Engineering Seismology and Earth-
quake Engineering; OGS, National Institute of Oceanography and Applied Geophysics. 



1d,e) consists of 72 earthquakes in the Alps 
area (recorded between 1998 and 2006) with 
hypocentral distances of up to 250 km. The 
hypocentral distances of the recorded events 
come from the French national network 
agency (RéNaSS), and the local magnitudes 
from RéNaSS and LDG (LDG: the Geophysical 
and Detection Laboratory of the French Alter-
native Energies and Atomic Energy Commis-
sion). Focal depths range between a few kilo-
meters and 10 km. We also note that there are 
other updated databases (e.g., Traversa et al., 
2020) that were not considered, with the aim 
to test the GIT performance on data-poor and 
less-constrained datasets. 

• A very dense regional dataset from central It-
aly. Data are from Bindi et al. (2017) and 
Pacor et al. (2016), with some updates and ex-
tensions. The dataset considered (Fig. 1g–i) 
consists of 231 earthquakes that were rec-
orded by 309 stations, which include the 2009 
L’Aquila sequence (mainshock 𝑀  6.1), and 
spans the period from July 2008 to January 
2017. In this dataset, the local magnitudes 
vary in the range from 3.0 to 6.1 and are 
mainly concentrated within the 3.0–4.5 range. 
The hypocentral distances are up to 140 km, 
and the depths of earthquakes are mainly 

between 5 and 10 km. 
 

Addressing the main objectives of GITEC re-
quires performing consistent and reliable com-
parisons of results provided by the different ap-
proaches and schemes. So, it was essential to 
provide synthetic datasets that serve as a control 
for inversion results and the associated variabil-
ity. The advantage of using a synthetic dataset is 
that the inversion is performed over data ob-
tained directly from the forward problem, so the 
underlying seismological parameters are known 
a priori. Absolute differences between true and 
inverted parameters can therefore be assessed. 
However, the inversion of synthetic data also 
presents the “best-case” scenario, which may 
therefore underestimate methodological epis-
temic uncertainty. It is therefore important to 
also include real data and assess the relative dif-
ferences between results, in spite of not knowing 
in which the true results lie. 
 
The two phases and the reference conditions 
First, generalized inversions on the real datasets 
were carried out without any a priori common 
constraints or assumptions; that is, each team 
performed the inversions independently. This 
starting phase (phase I) was important in 

Figure 1. (a,d,g) Maps showing the synthetic dataset and the earthquakes and stations for France and central Italy. (b,e,h) Magnitudes 
and hypocentral distances for the respective datasets. (c,f,i) Depth distribution of the respective sets of events, with magnitudes. Local 
magnitudes ML were considered for the French and Italian data. 



exploring the different choices to solve the in-
verse problem and eventually exploring the re-
sulting variability. Indeed, constraints can vary 
depending on the scheme followed. However, the 
common constraint types between the exploited 
approaches were mainly the choice of 𝑅  and 
the reference site condition. 

The reference distances and the sites for at-
tenuation and amplification were chosen inde-
pendently in phase I, as reported in Table 2. For 
𝑅 , its definition was essential in the nonpara-
metric approach, whereas it was indirectly set to 
1 in the parametric and semiparametric ap-
proaches. The reference site choices were based 
either on trial inversions to identify flat re-
sponses or previous studies from the literature 
that used similar datasets. The aim behind phase 
I was to quantify the global epistemic uncer-
tainty resulting due to different choices and in-
version implementations. 

In phase II of the inversions on the same real 
datasets, reference conditions were unified as 
much as possible. 𝑅  was set to 20 and 10 km 
in the nonparametric inversions for each of the 
French and Italian datasets, respectively. The 
correct choice of reference site generally re-
quires a priori knowledge about the site condi-
tions. Therefore, the inversions were con-
strained by selecting reference sites from those 
that were well characterized (i.e., with measured 
velocity profiles available). 

First, the selected sites were associated with 
rock geological conditions, that is, 𝑉  > 1000 

m/s, with at least 20 records. For the French sta-
tions, the 𝑉  was obtained from the characteri-
zation campaign data of Hollender et al. (2018). 
Then, one-dimensional SH-wave (1DSH) numeri-
cal simulations were carried out to estimate the 
theoretical elastic transfer functions using the 𝑉  
profiles provided. The 1D reflectivity model (Ken-
nett, 1974) was used to derive the responses of 
the horizontally stratified layers excited by a ver-
tically incident SH-plane wave (original software 
written by Gariel and Bard, and used previously in 
a large number of investigations, e.g., Bard and 
Gariel, 1986; Cadet et al., 2012; Laurendeau et al., 
2018). We aimed to select the stations with the 
flattest site responses from the 1DSH simulations 
as the reference sites in the inversions. This pro-
cedure led to the choice of stations OGCH and LSS 
as the reference stations for the French and Italian 
datasets, respectively. The theoretical site re-
sponses that were fixed in the inversions are 
shown in Figure 2. 

Intermethod comparisons were only under-
taken in phase II, in which all teams used the 
same reference condition. In this section, de-
tailed analyses are conducted before the evalua-
tion of the intermethod variability. Individual 
source-by-source or site-by-site comparisons 
are avoided in this text. Only the global statistical 
analyses are addressed here for simplicity and 
clarity. 
 
RESULTS 
Inversions using the synthetic dataset 
Performing an initial sanity check with a 

TABLE 2 
Reference Sites Considered in the French and Italian datasets for Phase I, the Free Phase 

Dataset Inversion 𝑹𝒓𝒆𝒇  (km) Reference Site 

France #01N1 20 OGLE, ISOL 

 #02N1 16 CALF, ISOL, NBOR, OGAN, OGCH, OGFB, OGGM, OGLE, OGMU, SAOF, STET 

 #03N2 1 BELV, CALF, NBOR, OGAG, OGAN, OGCH, OGDI, OGGM, OGMO, OGMU, OGSI, OGTB, SAOF 

 #04P 1 CALF, ISOL, NBOR, OGAN, OGCH, OGFB, OGGM, OGLE, OGMU, SAOF, STET 

 #06P 1 CALF, ESCA, ISOL, MENA, NBOR, OGAG, OGAN, OGCA, OGCH, OGDI, OGGM, OGLE, OGMA, OGMB, OGMO, OGMU, 
OGSI, OGTI, SAOF, STET 

 #07P 1 None 

Central Italy #01N1 20 MNS, RM06, RM08 

 #02N1 20 CLN, LSS 

 #04P 1 CLN, LSS 

 #05SP 1 CLN, LSS 

 #06P 1 All sites with “rock” classification following EC8 classes provided with the dataset, based on 𝑉  inferred or 
measured values. 

 #07P 1 None 



synthetic dataset using a simple model parame-
terization helped to avoid ambiguities in the re-
sults that might make the interpretations diffi-
cult. It also provides a baseline upon which 
model-to-model variability can be based. Syn-
thetic data were generated using the 50-bar 
Brune model for the sources, with a homogenous 
attenuation model for the earth crust with a qual-
ity factor 𝑄 = 600 (frequency independent). The 
reference (nonamplifying) site was also pro-
vided as input to the teams. 

The results provided by the different inver-
sion schemes led to broadly the correct parame-
ter values, as highlighted by the 𝑀 , -𝑀  plots 
in Figure 3. Comparing the inverted corner fre-
quencies within the range [0.3–10 Hz] with the 
inverted 𝑀  showed that the stress drops ob-
tained varied within the range of 35–60 bars, 
which is considered accepta-
ble knowing that the correct 
values of the stress drops used 
in the generation of the syn-
thetic dataset were 50 bars. 

The attenuation values ob-
tained by the different teams 
are considered acceptable 
compared with the values 
used in the synthetics (Table 
3). Among the remaining 
methods, in general, all mod-
els slightly overestimate the 
frequency dependence of 𝑄 
(as defined by 𝛼 in 𝑄(𝑓) =
𝑄 𝑓 ) and underestimate the 
reference 𝑄 . The geometric 
spreading rates were univer-
sally well recovered. This dif-
ference gave a first indication 

that we might face strong trade-offs when deal-
ing with attenuation parameters. On the other 
hand, the inverted site terms were consistent 
with the true site amplification. Finally, this test 
on such a simple dataset appeared beneficial and 
allowed some code adjustments that were help-
ful in the continuation of the exercise. 
 
Results for the sparse regional dataset, using 
the French Alps dataset 
Comparisons of the results from the different in-
version schemes are provided here for the 
French dataset. As shown in Figure 4, the varia-
bility in the attenuation appeared low when lim-
iting the comparison within each type of ap-
proach (i.e., nonparametric, parametric). How-
ever, more significant discrepancies were ob-
served in the attenuation curves at large 

Figure 2. Amplification functions for each of the chosen reference stations (a) OGCH and (b) LSS, as estimated from the One-dimensional 
SH-wave (1DSH) numerical simulation based on the available 𝑉  profiles. The bandwidth used is shaded in red. 

Figure 3. Synthetic dataset for source results. (a) The 1:1 plot of the Mw obtained from the 
inversions (𝑀 , ) with respect to the input magnitudes (𝑀 ). (b) Corner frequencies versus 
inverted 𝑀  showing the stress-drop distributions that resulted from the inversions. Dashed 
lines show increasing (from bottom to top) stress-drop levels of 1, 10, 100, and 1000 bars. 



distances, even when comparing within each 
type of approach. The wide range of distances in 
the dataset probably increased the complexity 
for the attenuation model for distances >100 km. 
These complexities might be better captured 
with nonparametric attenuation functions that 
are derived directly from the data. For example, 
between 50 and 200 km, the low-frequency at-
tenuation showed discrepancies up to a factor of 
4 between the parametric and nonparametric 
approaches. At high frequencies, these discrep-
ancies can increase to a factor of around 10 for 
large distance ranges. 

Table 4 summarizes the attenuation parame-
ters that were obtained by the inversion 
schemes. The parameters provided by the differ-
ent participating teams show significant variabil-
ity for both of the inversion phases: the quality 
factor 𝑄  from 55 to 390; the frequency depend-
ence 𝛼 from 0.3 to 1.1; and the geometrical 
spreading 𝛾 from 0.7 to 1.3. For some of the in-
versions, the attenuation was not affected by the 
reference choices, as for #03N2 and #07P 
mainly, as the reference choice does not affect 
the attenuation terms in these inversions. For 
some of the results that were very similar for the 
nonparametric attenuation (e.g., #01N1, #02N1 
in phase I), the 𝑄  values were different, which 

highlights the strong trade-off between the pa-
rameters (𝑄 , 𝛼, and 𝛾). The other representation 
of 𝑄 (i.e., 𝑄 (𝑓) was estimated at 50 km and 4 Hz; 
𝑄  4 Hz)) resulted in values that were more 
consistent within each approach type (i.e., either 
parametric or nonparametric). The 𝑄  (4 Hz) 
representation reflects more what is observed 
with the nonparametric attenuation curves in 
Figure 4. Furthermore, these estimations were 
not greatly affected between the two phases of 
the inversions. 

Figure 5 shows the source term results from 
the two phases of the inversions. Acceleration 
source spectra are compared between the non-
parametric approaches with the fitted Brune 
model from the parametric inversions. The dis-
crepancies reach a factor of 10 for the mean 
source spectra (for all of the events) obtained 
from each inversion scheme. In addition, variable 
slopes are clearly seen between the inversions at 
high frequencies, with variation across negative 
and positive values. 

Figure 6 shows the mean site responses from 
the different inversions of phases I and II. Differ-
ences can be clearly seen for both the phases, 
with a factor of around 3 at the lower frequencies 
that increases to 10 times or higher at high fre-
quencies. Thus, unifying the reference conditions 
provides more comparable mean amplifications 
(especially for the nonparametric approach) at 
lower frequencies, but there was no decrease in 
the variability at higher frequencies. 

If we compare both sources and sites, it can be 
seen that the approach that results in the higher 
high-frequency slope on the sources corre-
sponds to the lower slope on the site terms. After 
conducting phase I only, these slope observa-
tions were attributed to different choices of the 
reference site in phase I, which was one of the 
main motivations for carrying out phase II of the 

TABLE 3 
Mean Estimations of the Attenuation Parameters from the Different 
Inversions for the Synthetics Dataset 

Inversion 𝑸𝟎 𝜶 𝜸 

Synthetic 600,00 0,00 1,00 

#01N1 533,00 0,06 1,02 

#02N1 517,64 0,07 0,99 

#04P 555,87 0,03 0,99 

#05SP 539,08 0,04 1,00 

#06P 504,62 0,06 0,97 

#07P 514,00 0,05 0,98 

TABLE 4 
Summary of the Mean Estimations of the Attenuation Parameters for French Dataset from the Different Inversions for Phases I and II 

 𝑸𝟎 𝑸𝟓𝟎 𝐤𝐦(𝟒 𝐇𝐳) 𝜶 𝜸 

Inversion Phase I Phase II Phase I Phase II Phase I Phase II Phase I Phase II 

#01N1 277.64 80.82 38.73 38.55 0.51 1.02 1.26 0.76 

#02N1 55.28 68.73 40.16 41.92 1.12 1.12 0.58 0.87 

#03N2 76.75 75.75 45.97 45.97 1.03 1.03 0.70 0.70 

#04P 239.68 341.73 118.68 118.68 0.44 0.31 1.08 1.07 

#06P 236.68 389.33 121.43 121.43 0.45 0.27 1.01 1.07 

#07P 203.00 203.00 151.32 151.32 0.52 0.52 0.97 0.97 



iterations. However, the high-frequency variabil-
ity remained significant and was not reduced in 
phase II. Nevertheless, these data show that 
there is generally an impact of the choice of the 
reference condition on the source spectra ob-
tained, so this choice represents an important 
step in the inversions. 

Next, we explored the impact of these differ-
ences resulting from inversion in terms of non-
parametric curves on estimating the physical pa-
rameters. A postinversion parameterization was 
performed to estimate 𝑀 , 𝑓 , and ∆𝜎. To conduct 
consistent comparisons with the parametric in-
versions, the same models assumed in these 
schemes were used to postfit the nonparametric 
source spectra (equation 2). Figure 7a shows the 
𝑀  obtained from the inversions versus the 𝑀  
of the original dataset. Limited dispersion can be 
seen among the results for both the phases I and 
II, which is not the case for the other source pa-
rameters. 

Figure 7b,c shows the 𝑓 , –𝑀 ,  and ∆𝜎 –
𝑀 ,  distributions, respectively. Significant dis-
crepancies can be seen for the mean ∆𝜎 between 

the phases I and II. This reflects important varia-
bility, despite the unifying of the reference sites in 
phase II. The estimated ∆𝜎 provided by ap-
proaches #01N1, #02N1, and #06P lie in the 
range of 0.1–10 bars, whereas the approaches 
#04P and #07P result in ∆𝜎 values in the range of 
1–1000 bars, with means of around 10 and 100 
bars, respectively. These data highlight that the 
intermethod variability for these source parame-
ters is significant even when the reference site 
conditions are fixed (i.e., in phase II). 
 
Results for a dense regional dataset, using the 
central Italian dataset 
Following the French dataset inversions, the re-
sults from the Italian dataset are presented in 
this section. At first glance, the path terms appear 
to show good agreement between the different 
approaches. However, when the ratios were 
computed with respect to one of the specific 
teams (#01N1), the intermethod differences 
reached a factor of 4, which was relatively large 
(Fig. 8). In phase I, the nonparametric ap-
proaches appeared to have close estimations at 
all frequencies and distances (#01N1, #02N1), 

Figure 4. French dataset results from phases I and II. (Top) Attenuation curves from the different approaches for the three frequencies, 
(a) 0.5, (b) 4, and (c) 25 Hz, plotted as functions of the hypocentral distance. (Bottom) Ratios of the attenuation curves with respect to 
#01N1. 



whereas the parametric approaches showed rel-
atively variable curves. In phase II, the attenua-
tion curves from all of the approaches were vari-
able despite the unified reference station. Thus, 
significant variability affects these attenuation 
terms, even though the distance range was lim-
ited to 140 km. 

The data presented in Figure 9 show the 

source spectra obtained from the different 
schemes. For phase I, the data showed compara-
ble shapes of the source spectra, with small dif-
ferences in amplitude at high frequencies. How-
ever, for phase II, the high-frequency slopes of 
source spectra appeared variable, with a ten-
dency to decay beyond 10 Hz for the nonpara-
metric approach of source spectra. Within each 

Figure 5. French dataset results from phases (a) I and (b) II. Overall comparisons of the source spectra obtained from the different inver-
sions (as indicated) and showing the means for all of the spectra (bold black). 



type of inversion, consistent results were ob-
tained. With the parametric source spectra being 
fixed to the Brune model, the high-frequency de-
cay of the source terms is not possible (i.e., #07P, 
#04P, #06P inversion schemes). 

Table 5 shows the results for the attenuation 
parameterizations, in which greater variability is 
seen for the 𝑄  values as well as for 𝛼 and 𝛾. For 
instance, the 𝑄  values range from 45 to 500, 

along with variations in 𝛼 and 𝛾, which shows the 
significant trade-offs among these parameters. 
This might be due to trade-offs induced by the 
simplicity of the attenuation model used, which 
excludes any possible slope changes with dis-
tance (i.e., geometrical spreading effects) or by 
neglecting the possible regional variations. For 
the 𝑄  (4 Hz) representation, the values are 
more consistent (between different inversions) 

Figure 6. French dataset results from phases (a) I and (b) II. Overall comparisons of the site amplifications obtained from the different 
inversions (as indicated) and showing the means for all of the sites (bold black). 



than seen for the 𝑄  values, with also little 
changes between phases I and II. Although the 
variability is reduced with the 𝑄  (4 Hz) rep-
resentation, it is still present and reflects the dis-
crepancies observed in Figure 8. 

Figure 10 shows the overall views of the site 
term estimations provided by the different 
teams. The main observations for the Italian site 
amplifications are the differences in the high fre-
quencies. Phases I and II show that the inver-
sions can give different responses to the same 
reference site at high frequencies. For example, 
both methods showed changes of the slope, as for 
#01N1 and #02N1, whereas other inversions, 
such as #04P, #06P, and #07P, were not greatly 
affected. This appears to be partially counterbal-
anced by the larger high-frequency decay in the 
source spectra obtained by these inversion 
schemes, highlighting the evident trade-off be-
tween these two terms. 

Although the semiparametric approach 
(#05SP) was applied in phase II only, it showed 
a decay on the source spectra. This suggests that 
high-frequency decay of the source spectra can-
not be avoided by estimation of the attenuation 
parameters first in a two-step inversion to avoid 
the source–site trade-offs. 

Comparisons of source parameters obtained 

directly from the parametric inversions or 
postinversion fitting of the nonparametric 
schemes are shown in Figure 11. The 𝑀 –𝑀  
plots show some consistency, in which the GIT 
results show higher values to low 𝑀  and lower 
values to high 𝑀 . This consistency was main-
tained between phases I and II. The stress drops 
∆𝜎 again showed significant variability in both 
the phases I and II, along with the corner fre-
quencies, 𝑓 , . In general, the parametric 
schemes resulted in higher ∆𝜎 than the nonpara-
metric schemes, although within-type variability 
was also significant. 
 
UNCERTAINTIES ASSOCIATED WITH THE GIT 
RESULTS 
One of the main objectives of the GITEC bench-
mark was not only to investigate but also to 
quantify the overall uncertainties associated 
with the GIT data. Generally speaking, uncertain-
ties can result from either uncertainty in the es-
timates of the seismological parameters pro-
vided by a given inversion scheme (i.e., in-
tramethod uncertainties) or epistemic uncer-
tainties related to the choice of the inversion 
scheme (i.e., intermethod uncertainties) and to 
the characteristics of the dataset on which the 
GIT is based. The intramethod uncertainties can 

Figure 7. French dataset source results. (a) Plot (1:1) of the 𝑀  from the inversions (𝑀 , ) with respect to 𝑀  values provided. (b) 
Distribution of the corner frequencies 𝑓  versus 𝑀 ,  estimated from the inversions. Dashed lines, stress-drop lines of 1, 10, 100, and 1000 
bars. (c) Stress-drop distributions from the generalized inversion technique (GIT) approaches versus the 𝑀 , . The linear trend is shown 
in each plot for each inversion (with color and dashing codes in the legends). 



be described by the standard deviations associ-
ated with the results of the selected inversion 
procedure. The intermethod uncertainties can be 
captured by exploring the variability of the re-
sults provided by the different inversion ap-
proaches for the different dataset configurations. 
Here, we explored the intermethod variability, 
focusing only on phase II of the iterations for sim-
plicity. Finally, a representative short summary 
of results is provided for both the phases. 
 
Strategy for characterization of intermethod 
uncertainties 
Given that the parametric and nonparametric in-
version approaches do not provide the same re-
sults as the direct output (i.e., parametric inver-
sions provide direct estimates of the seismologi-
cal parameters, whereas nonparametric inver-
sions provide spectral curves of the source, at-
tenuation, and site terms), the comparisons of 
the variability of the results are best carried out 
in two steps. 

The intermethod uncertainties were first 
quantified for the nonparametric spectra of the 
source, attenuation, and site terms. Because the 

parametric GIT provides only parameters, the 
source spectra and attenuation curves were re-
constructed from their models. The second step 
was to quantify the variability for the estimations 
of the physical parameters. For the nonparamet-
ric approaches, postinversion parameterizations 
were considered (using the hypotheses and 
models consistent with those adopted by the par-
ametric inversion schemes and previously pre-
sented in the text). In the end, the full (i.e., para-
metric and nonparametric) intermethod varia-
bility can be analyzed for each dataset consid-
ered. To determine a sort of minimum level vari-
ability, the quantification was performed over 
the synthetic dataset. Then the variabilities asso-
ciated with the real dataset inversions are pre-
sented. 

It is generally known that when uncertainties 
are addressed, large numbers of observations or 
estimations are needed to obtain meaningful sta-
tistics. However, for this benchmark, only a total 
of six inversion schemes were applied to each da-
taset. On this basis, other forms of variability in-
dicators are defined and adopted. First, the 
standard deviations are calculated in the natural 

Figure 8. Central Italian dataset results from phases I and II. (Top) Attenuation curves from the different approaches for the three fre-
quencies, (a) 0.5, (b) 4, and (c) 25 Hz, plotted as functions of the hypocentral distance. (Bottom) Ratios of the attenuation curves with 
respect to #01N1. 



logarithmic scale, std(log10), for the nonparamet-
ric spectra, termed spectral variability. Then, the 
parametric variability is presented by the coeffi-
cient of variation (COV) on the estimated param-
eters. The use of the COV ensures a variability es-
timation that does not depend on the mean val-
ues. As an alternative, (max−min)/2 is intro-
duced instead of standard deviations and the ra-
tio of (max−min)/(max+min) for COV, in which 
max and min are the maximum and minimum 

estimations of the variable considered. This is in-
dicated as the maxmin (MM) estimation in both 
the cases. 
 
Quantification of the uncertainties 
Spectral variability (std and MM of log10). For 
each event, the nonparametric source spectra, 
attenuation, and site (from the different inver-
sions) are used to estimate both the standard de-
viations and MM (in log10). Figure 12 shows 

Figure 9. Italian dataset results for (a) phases I and (b) II. Overall comparisons of the source spectra obtained from the different inversions 
(as indicated) and showing the means for all of the spectra (bold black). 



example site response and source spectra that 
results from different inversions of phase II of 
the French and Italian data. The results on each 
site (and source) are considered to quantify the 
uncertainty, as described earlier. Similar steps 
are done for the attenuation curves at each fre-
quency. Then, the estimations are presented for 
each source and site as functions of the fre-
quency, whereas they are presented as functions 
of distance and frequency for the attenuation 

curves, as shown in Figures 13 and 14. The color 
scale used in Figures 13 and 14 corresponds to 
the values of the variability estimate (i.e., 
std(log10) or (max−min)/2). 

If the panels of Figures 13 and 14 are com-
pared horizontally, it can be seen that the site re-
sponses are less prone to variability for both the 
representations (i.e., std, MM). Also, the synthetic 
data show an expected minimal variability be-
tween the methods, with a tendency for lower 

Figure 10. Central Italian dataset results from phases (a) I and (b) II. Overall comparisons of the site amplifications obtained from the 
different inversions (as indicated) and showing the means for all of the sites (bold black). 



variability for the site terms. The source spectra 
of the synthetic data show minimal variability of 
0.2 (std) and 0.3 (MM), or a factor of 1.5 and 2, 
respectively, in the linear scale, whereas the var-
iability of the site responses is around 0.1 (for std 
and MM) or a factor of 1.2. Despite the differ-
ences in the mean site responses, the variability 
of the site responses for the French and Italian 
datasets is much more limited than for the 
source terms. The variability of the site terms 
starts to increase significantly to 0.4 std beyond 
10 Hz (factor of 2.5). 

If the panels in Figures 13 and 14 are com-
pared vertically, the same term variability for the 
different datasets can be considered. For exam-
ple, the sources for the French dataset show high 

variability that starts at 0.3 std (factor of 3) at 
low frequencies and exceeds 1 std at high fre-
quencies (factor 10). The Italian dataset shows 
more consistency in terms of lower variability 
for the source spectra, which does not exceed 0.2 
std (factor 1.5) before 8 Hz and reaches 0.5 std 
afterward (factor of 3). The attenuation terms 
show similar variabilities that increase beyond 
100 km in both of the real datasets to reach 0.4 
std (factor of 3). As for the site responses, similar 
robustness is achieved up to 10 Hz for both the 
datasets. 

The reduced variability of results from central 
Italy is probably due to the good geometry and 
density of the network, which allowed the re-
cording of each event tens or even hundreds of 

TABLE 5 
Summary of the Mean Estimations of the Attenuation Parameters for Italian Dataset from the Different Inversions for Phases I and II 

 𝑸𝟎 𝑸𝟓𝟎 𝐤𝐦(𝟒 𝐇𝐳) 𝜶 𝜸 

Inversion Phase I Phase II Phase I Phase II Phase I Phase II Phase I Phase II 

#01N1 5,13,84 358,04 35,81 35,81 0,22 0,40 2,16 2,23 

#02N1 150,86 90,95 40,18 49,10 0,64 0,70 1,88 1,37 

#03N2 56,13 56,13 51,50 51,50 0,59 0,59 1,26 1,26 

#04P - 45,60 - 82,23 - 0,74 - 1,01 

#06P 88,78 98,98 98,87 90,38 0,49 0,46 0,97 1,03 

#07P 122,87 122,87 60,07 60,07 0,54 0,54 1,61 1,61 

Figure 11. Central Italian dataset source results. (a) Plot (1:1) of the 𝑀  obtained from the inversions (𝑀 , ) with respect to the 𝑀
values provided. (b) Distribution of the corner frequencies 𝑓  versus 𝑀 ,  estimated from the inversions. Dashed lines, stress-drop lines 
of 1, 10, 100, and 1000 bars. (c) Stress-drop distributions from the GIT approaches versus the 𝑀 , . 



times. After comparisons between the results 
from the French and Italian datasets, it appears 
that the redundancy in the datasets (in terms of 
the number of recordings, the data sampling for 
the distance, and magnitude ranges) is essential 
and helpful to reduce the variability associated 
with generalized inversions. In other words, the 
more data there are from the region under study, 
the lower the intermethod variability. 
 

Source parameter variability 
(COV and MM). Figures 15 and 
16 show the estimations of the 
variability of the source pa-
rameters using COV and MM. 
For each event, the variability 
from the six inversion types is 
assessed with COV and MM. In 
both the cases, the distribu-
tions of these estimations are 
plotted over constant bins. In 
each bin, the average number 
of recordings is reported on 
the right axis (𝑁 ). 

The statistics carried out 
for the French and Italian da-
tasets show very low inter-
method variability for the 
magnitude 𝑀 , as compared 
to that for the 𝑓  and ∆𝜎 pa-
rameters. Indeed, the variabil-
ity in terms of seismic moment 
𝑀 , which is directly used in 
the inversions, is higher than 
for that of 𝑀 . This shows that 
the deduced 𝑀  has lower var-
iability, as it benefits from the 
relationship given in equation 
(4). On the other hand, for the 
comparison of the two da-
tasets, 𝑓  and ∆𝜎 show very 
small drops in their variability 
for central Italy (mainly in Fig. 
15). The MM representation 
shown in Figure 16 appears to 
limit the variability estima-
tions more, in which fewer 
bins are obtained than for Fig-
ure 15. 

Any specific event in the 
French dataset was recorded 
on average by 10 sites, 
whereas for the Italian da-

taset, the events were recorded on average by 40 
sites. This might represent evidence that data re-
dundancy (i.e., to have events covered by as 
many sites as possible) is important intermethod 
variability of GIT. 
 
Summary and comparisons of estimated variabil-
ity. For a representative summary of the variabil-
ity, we computed the generalized values for each 

Figure 12. Example site-response and source spectra results are shown of each of the (a) 
French and (b) Italian datasets. The results are those obtained from the second phase of the 
inversions. The names of sites and dates of events are indicated at the top of each figure. 



dataset. For the nonparametric curves, the three 
frequencies of 0.5, 4, and 25 Hz were picked to 
compute the means of the variability per dataset 
for all of the sources and sites, and at all distances 
within the common range for attenuation (i.e., 
[1–140 km]). Figures 17 and 18 show the values 
plotted directly instead of in a tabulated form. 

Figure 17 shows the mean spectral variability 
for both the indicators (i.e., std and MM). What 
can be seen from these comparisons is the high-
frequency variability of the sources and sites. 
However, the highest variability is seen for the 
source and attenuation terms. The site terms 
represent the most robust terms of these estima-
tions. Evidently, unifying the reference condi-
tions in phase II did not decrease the variability 

observed. 
The mean COV was also evaluated for all of the 

events, along with the mean attenuation param-
eters for each dataset (Fig. 18). Although the MM 
estimations were generally lower than COV, the 
two GIT parameters that are most prone to high 
variability are ∆𝜎 and 𝑄 . This might serve as a 
reference for the uncertainty on these parame-
ters using GIT approaches. 
 
Possible origins of variability: regional varia-
tions 
It is important to start to understand the origins 
of the variability observed. Therefore, we plotted 
the regional distributions of the spectral variabil-
ity of the sources and sites in Figure 13. These 

Figure 13. (a–c) Synthetic, (d–f) France, and (g–i) Italian datasets. Estimations from the constrained phase (i.e., phase II) of the inter-
method variabilities (as indicated), as standard deviations of log10 at each frequency, for the source spectra and the amplifications ob-
tained after the inversions. The single-color scale is given at the bottom. 



spectra variability values were retrieved from 
the estimates that are presented in Figures 19 
and 20. At each source (or station), the color 
scale of the marker corresponds to the level of 
variability (std(log10)), whereas the size repre-
sents the number of recordings (𝑛𝑏 ). In this 
way, any regional changes in the variability can 
be captured. 

For the French Alps (Fig. 19), the source spec-
tra variability showed limited regional depend-
ence, whereas the site variability showed re-
gional changes, in particular, at high frequencies. 
At 4 and 25 Hz, the sites in the southeast of 
France showed higher variability, although this 
is not clear at the lower frequency of 0.5 Hz. 

Going from the north to the south of the Alps, 
there was increasing variability. 

Also, for central Italy (Fig. 20), there were re-
gional changes in the spectral variability, again at 
high frequencies, in particular. The center of the 
dataset region (i.e., near the reference station 
marked in red) contrasts with the northern parts 
at all frequencies. For example, at high fre-
quency, increasing variability is observed from 
the center to the northern regions. 

We looked for recent studies of regional vari-
ations to identify any correlations within the re-
gions considered. Indeed, regional variations are 
usually addressed in terms of crustal attenua-
tion, in which regionalized maps of attenuation 

Figure 14. (a–c) Synthetic, (d–f) France, and (g–i) Italian datasets. Estimations from the constrained phase (i.e., phase II) of the inter-
method variabilities (as indicated), as maxmin (MM) of log10 at each frequency, for the source spectra and the amplifications obtained 
after the inversions. The single-color scale is given at the bottom. 



characteristics are established using attenuation 
tomography studies, such as those of Mayor et al. 
(2016, 2018), in the European context. Indeed, 
these previous studies mainly used the coda 
waves to estimate quality factors from tens of 
thousands of recordings, and they displayed the 
results on maps that showed the lateral varia-
tions of the frequency-dependent quality factors. 

After detailed comparisons of these maps, 
several aspects can be mentioned. First, within 
the French dataset, the variability changes at 
high frequencies tended to match the attenua-
tion variations in the maps of Mayor et al. (2016), 
who focused on regions that included the south-
east of France. Although the source variability 
was not clear, the site variability changed from 
higher values at higher attenuation in the south 
of the dataset region to lower values with lower 
attenuation in the north. On the other hand, the 
Italian dataset shows that there was low variabil-
ity with fewer attenuation zones in the center 
than the northern parts at high frequencies. As a 
result, most of the higher variability (either for 
source or site) is seen in the higher attenuation 
zones. 

In summary, in high attenuation regions, we 
observed more variability compared to those of 
low attenuation. A direct interpretation of these 
correlations might be that regional variations of 
attenuation that were not accounted for in the 
GIT inversions and models led to increased 

variability. The tradeoffs allow this variability to 
be transmitted to either the source or the site or 
both the terms. 
 
EXPLORING THE IMPACT OF THE DATASET 
SIZE 
After the illustration of these results, we were in-
terested in investigating the impact of a lack of 
redundant data on the inversion results. For this, 
a “decimated” subset of the French dataset was 
used as follows: 
• the number of sites was reduced from 42 to 

14; 
• the number of events was reduced from 72 to 

24; 
• the recordings per station and event (with 

conserving a lower bound, >3) were reduced 
from 645 to 107; and 

• the dataset referred to the OGCH hard-rock 
site as the chosen reference site. 

 
With all of the other features remaining the 

same as for the initial GITEC French dataset, the 
inversion schemes of teams #01N1 (nonpara-
metric) and #04P (parametric) were applied to 
both the original and this decimated dataset. 

Examples of the results for two events are il-
lustrated in Figure 21. These two inverted source 
spectra show that larger changes affected the 
nonparametric GIT spectra when the data were 
reduced than the parametric GIT spectra. The 

Figure 15. French and Italian datasets. Estimated variability for each of the source physical parameters (a) 𝑀 , (b) 𝑓 , and (c) 𝛥𝜎. Varia-
bility estimations are grouped into different bins of constant coefficient of variation (COV) width (0.1). For each bin, the mean numbers of 
recording sites (𝑁 ) is also shown. 



ratios between the new and initial inverted spec-
tra provide a clear illustration of the factors of 
the changes that occurred. In a second step, the 
mean ratio was computed (over all of the fre-
quencies), and the events were grouped into bins 
following their mean ratio. 

Applying the same procedure to the inverted 
site amplifications, Figure 20 also shows the dis-
tributions of the mean ratios obtained over the 
events and sites considered for both of the GIT 
methods. This ratio for events 
inverted with #01N1 covers a 
range of 0–5, whereas that for 
#04P remains limited. On the 
contrary, the site responses 
for the decimated dataset ap-
pear to be less affected for 
both the methods. 

These changes in the in-
verted spectra will definitely 
affect the physical parameter 
estimates, especially as it was 
not possible to postfit some of 
the source spectra for the non-
parametric method to a Brune 
model. This indicates the fail-
ure of the inversion to retrieve 
the event spectra when there 
are very few records available. 
Following these observations, 
it appears that the nonpara-
metric GIT approach results in 

less reliable source spectra when there are re-
duced amounts of data compared with the para-
metric GIT approaches. Here, we deduce the non-
reliability in this test by the significant impact on 
results before and after the data decimation. 
These observations seem reasonable, because in 
the parametric approach the source spectrum 
has fixed a priori form, unlike the case in the non-
parametric approach. 
 

Figure 16. French and Italian datasets. Estimated MM for each of the source physical parameters (a) 𝑀 , (b) 𝑓 , and (c) ∆𝜎. MM estima-
tions are grouped into different bins of constant MM width (0.1). For each bin, the mean numbers of recording sites (𝑁 ) is also shown. 

Figure 17. Phase I and II mean spectral variability estimations in terms of (a) standard de-
viations of log10 and (b) MM of log10. These estimations are shown by considering all the 
events, the attenuation at distances between [0–140 km], and all the sites. Three frequency 
points are considered. 



SUMMARY AND CONCLUSIONS 
The main observations and conclusions can be 
summarized as:  
• The attenuation characteristics of the regions 

considered appear to be more complicated 
than the simple homogenous quality factor. 
Significant attenuation changes with distance 
and regional variations of attenuations are be-
hind the variability observed for the attenua-
tion curves obtained. Also, such simple 𝑄 
models can result in very unstable estima-
tions of the attenuation parameters. 

• The site terms appear to show the lowest var-
iability (on average, a factor of 1.2 below 10 
Hz and 1.5 beyond 10 Hz) among the different 
results, in which site references can have im-
portant roles in terms of the average site re-
sponses in the dataset considered. 

• The source terms appear to be subject to high 
variability with a factor 3 at low frequency 
that increases to factor of 5 at high frequency, 
in the French dataset. Data redundancy is 

important to decrease this variability over all 
the frequencies, as in the Italian dataset (i.e., 
sufficient numbers of recordings per event 
and site). 

• The 𝑀  source parameter shows less variabil-
ity among the different approaches (factor 0.1 
around the mean value) than the corner fre-
quency (𝑓 ) and the stress drops (∆𝜎), with 
factors reaching 0.7 and 1.7 around the mean 
value, respectively. This might be a result of 
the way that the parameterization uses 𝑀  di-
rectly, instead of 𝑀 . The relation used to de-
duce 𝑀  from 𝑀  (𝑀 ∝ log (𝑀 )) leads to 
reduced variability in the results for 𝑀 . 

• The comparisons after data decimation sug-
gest that the nonparametric scheme tends to 
deliver less reliable source terms when the 
amount of data is reduced, whereas the site 
response remains more stable. Thus, keeping 
the dataset updated with recordings and in-
cluding new stations can provide essential 
benefits for nonparametric GIT approaches. 

Figure 18. Phases I and II mean parameter variabilities, in terms of (a) COV and (b) MM of log10, for all the event and attenuation param-
eters delivered by the different GIT approaches. 



 
Based on the different approaches used (i.e., 

parametric, nonparametric), each appears to 
have its own pros and cons relative to the desired 
application. With relatively few data in a given 
dataset, applying a nonparametric approach ap-
pears to be counter-indicated for both source 
and attenuation. For example, the attenuation 
model derived for such an approach can only be 
defined using the source–site distance points in 
the dataset. In contrast, with a parametric ap-
proach, the model assumed from the beginning is 
calibrated through the inversion iterations to fit 
the recorded data characteristics. 

Nonparametric GIT is accompanied by an in-
direct assumption made on the source by defin-
ing the attenuation curves to start from unity at 
the reference distance “𝑅 .” This assumption 
implies that all sources are shifted to the 𝑅 , 
whereby the attenuation starts from unity at this 
distance. This can be a very approximate as-
sumption when there are little or no data in the 
short-distance range (e.g., <50 km). 

On the other hand, nonparametric approaches 

appear to provide more infor-
mation about earthquake 
sources and regional attenua-
tion than parametric ap-
proaches, because the unmod-
eled source spectra and atten-
uation curves can be visual-
ized with fewer a priori as-
sumptions. Therefore, an im-
portant aspect is to reduce the 
a priori assumptions as much 
as possible to improve the ad-
equacy of the models. 

For the preference between 
the GIT methods, several 
points can be mentioned. 
Where there is a sufficient 
amount of data, the nonpara-
metric approach represents a 
reliable tool. Because nonpar-
ametric inversions estimate 
source and attenuation mod-
els based on the data, then the 
richer the data, the more ro-
bust the models are inverted. 
On the other hand, GIT on 
small datasets would be better 
carried out according to para-
metric inversion schemes un-

der the conditions that provide the necessary 
constraints for the inversions from a priori 
knowledge. 

Following the several aspects indicated ear-
lier related to the reliability of GIT at high fre-
quencies, several questions can be posed. First, it 
can be directly proposed that reducing the as-
sumptions on sources (i.e., nonparametric spec-
tra, instead of the Brune model) might be the rea-
son behind the high-frequency discrepancies. In 
other words, the source spectra can follow a mul-
tiple corner frequency form. For example, the 
study of Bindi et al. (2019) that used data from 
central Italy proposed a source model that was 
anchored by a parameter they called “𝜅 ”. 
This confirmation for the presence of high-fre-
quency slope for sources can only be accepted if 
the inversion schemes are shown to be stable 
and free of high-frequency trade-offs. Thus, the 
high-frequency performance of the inversion 
schemes remains under question. On the other 
hand, if the susceptibility of the nonparametric 
inversions to trade-offs is accepted, then these 

Figure 19. French dataset. Maps of the variabilities for the (a–c) sources and (d–f) sites in 
terms of std of log10 at three different frequency points (0.5, 4, and 25 Hz). Triangles and 
circles, stations, and earthquakes, respectively; symbol size, proportional to number of re-
cordings; symbol color, intermethod variability at the given site or source. 



differences at high frequency 
can be misleading. Thus, the 
parametric models (especially 
the Brune model) might be 
preferred instead of accepting 
that these trade-offs occur. 
However, the final answer to 
this question about the high-
frequency performance of GIT 
methods remains relatively 
unclear, and needs further in-
vestigations and testing. 

To conclude, the preference 
of either a parametric or a 
nonparametric approach does 
not appear straightforward, in 
general. The preference might 
be case dependent, based on 
the dataset of interest (e.g., the 
amount of data available). 
However, as the best practice, 
we propose that it is best to 
proceed carefully with both 
the approaches in parallel, 
with continuous comparisons 
of the results from the differ-
ent approaches before their 
direct application and the use 

of corresponding results. 
Several additional questions need to be 

explorated in the future to improve the 
understanding of the variability and its 
origins. For instance, synthetic datasets 
can be used to address specific questions 
such as the accounting of regional varia-
tions and depth dependence of attenua-
tion. Also, additional aspects of dataset 
configurations are interesting to explore 
(e.g., the impact of the seismological net-
work geometry with respect to earth-
quake location and vice versa). This might 
help to improve the efficiency of future in-
versions by providing optimized datasets. 
In addition, the minimum and maximum 
magnitude limits below (or above), which 
the corner frequencies can be resolved by 
the inversions appears to be an interest-
ing question. Finally, it seems interesting 
to address the possibility of capturing 
more complicated seismic-wave phenom-
ena using GIT approaches, such as 

Figure 20. Italian dataset. Maps of the variabilities for the (a–c) sources and
(d–f) sites in terms of std of log10 at three different frequency points (0.5, 4,
and 25 Hz). Triangles and circles, stations, and earthquakes, respectively;
symbol size, proportional to number of recordings; symbol color, inter-
method variability at the given site or source. 

Figure 21. Decimated French dataset. (Top) Examples of the sources for the two (a,b) events 
and (c,d) sites as considered in two inversions: once with the whole French dataset (solid 
lines) and once with the decimated dataset (dashed lines). (e–h) Ratios of the curves in pan-
els (a)–(d) (i.e., between the whole and decimated datasets). (Bottom) Distributions of the 
mean ratios defined for all of the events (𝑖) and the sites (𝑗), as obtained after each of the
inversions performed. 



extending the assumptions on the point-source 
models generally used in GIT and for stochastic 
ground-motion simulations. 
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