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Rapid remote monitoring reveals spatial and
temporal hotspots of carbon loss in Africa’s
rainforests
Ovidiu Csillik 1✉, Johannes Reiche1, Veronique De Sy1, Arnan Araza1 & Martin Herold 1,2

Spatially explicit monitoring of tropical forest aboveground carbon is an important pre-

requisite for better targeting and assessing forest conservation efforts and more transparent

reporting of carbon losses. Here, we combine near-real-time forest disturbance alerts based

on all-weather radar data with aboveground carbon stocks to provide carbon loss estimates

at high spatial and temporal resolution for the rainforests of Africa. We identified spatial and

temporal hotspots of carbon loss for 2019 and 2020 for the 23 countries analyzed, led by

different drivers of forest disturbance. We found that 75.7% of total annual carbon loss in the

Central African Republic happened within the first three months of 2020, while 89% of the

annual carbon loss in Madagascar occurred within the last five months of 2020. Our detailed

spatiotemporal mapping of carbon loss creates opportunities for much more transparent,

timely, and efficient assessments of forest carbon changes both at the level of specific

activities, for national-level GHG reporting, and large area comparative analysis.
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Conserving and reducing the loss of rainforests is among the
most effective solutions for mitigating climate change and
for preserving key ecosystem services1. International and

national initiatives related to the Paris Climate Agreement stimulate
and implement targeted activities for avoiding tropical forest loss2.
Their success, however, depends on suitable information on where
and why forests are changing to define suitable policies and actions,
to support implementation and enforcement on the ground, and to
provide robust reporting on the progress and performance of such
activities3,4. Forest carbon monitoring efforts have evolved, but
limited spatial detail and timeliness hinder their usefulness for
tracking collective progress towards forest-specific climate mitiga-
tion goals. This is a particular issue for Africa’s humid forest
changes that remain poorly understood and quantified5,6. The fact
that the most recent national forest inventories (NFIs) of countries
in this region are 4.5 ± 3.2 years old (Supplementary Table 1)
highlights that available data are not serving the action-oriented
nature of ongoing forest-related mitigation schemes.

Rapid detection of forest disturbances in Africa has already
proven to decrease the probability of deforestation by 18%, with
an estimated social cost of carbon for avoided deforestation
between US$149 million and US$696 million7. Two main causes
of forest disturbance in the Congo basin between 2000 and 2014
were small-scale clearing for agriculture (84%) and selective
logging (10%), with regional differences8. For example, more than
60% of forest disturbances in Gabon are due to selective logging
and more than 90% of disturbances in the Democratic Republic
of the Congo (DRC) and the Central African Republic are due to
small-scale agriculture8. West and East African tropical forests,
including Madagascar, have lost almost all the forest extent in the
last decades9, while the last two largest tropical forest fragments
in Africa, both located in the DRC are at immediate threat due to
continuing expansion of rural populations into remote forests10.
A long-term future prediction indicates a decline in the African
tropical forest carbon sink11.

Monitoring forest carbon changes using remote sensing tech-
nologies has become increasingly feasible12–14 driven by the
abundance of multi-source satellite time-series data for tracking
forest changes15,16 and forest biomass and carbon stocks14,17.
Driven by the open access availability of Sentinel-1 data, radar-
based approaches are now operationally available to overcome
cloud-cover issues in large area tropical forest monitoring and
assess small-scale disturbances in a matter of days at 10 m spatial
scale18. Such information can be used to track changes at spa-
tiotemporal scales at which human activities affecting forests and
land use are operating. This creates opportunities for much more
transparent, timely, and efficient assessments of forest carbon
changes both at the level of specific activities, for national-level
GHG reporting, and large area comparative analysis.

Here, we present a high-resolution spatially explicit rapid
monitoring of local carbon loss in Africa’s humid tropical forest by
combining data of radar-based forest change alerts and spatial
carbon stock estimates. We define local carbon loss as the com-
plete or partial potential loss of carbon that can later be emitted
into the atmosphere. We analyzed the spatiotemporal dynamics of
carbon loss in 2019 and 2020 by combining aboveground carbon
estimates, derived from a combination of best available remote
sensing and field data, with near-real-time radar-based forest
disturbance alerts, at a spatial scale of 10m with monthly intervals.
We separate between high and low confidence alerts and provide
uncertainty estimates at the pixel and country-level by combining
the uncertainties of the carbon map with commission and omis-
sion errors of the alerts. We analyzed 23 countries with a wide
variety of spatiotemporal patterns of carbon loss and found cor-
relations between the two years analyzed reaching up to 0.94.

Results and discussion
Continental, regional, and local spatiotemporal patterns of
carbon loss. For Africa’s primary tropical humid forest, carbon
losses due to forest disturbances reached 42.2 ± 5.1 MtC yr−1

(mean ± standard deviation, where MtC yr−1 is one million metric
tons of carbon loss per year) in 2019 and 53.4 ± 6.5 MtC yr−1 in
2020. Just 9 countries out of the 23 analyzed accounted for 95.0%
of total gross losses in 2019 and 94.3% in 2020. These countries
contain about 95.7% of all primary tropical humid forests of
Africa, with the DRC accounting for 52.8%, Gabon 11.8%, the
Republic of the Congo 11.0%, and Cameroon 9.8%. Of these, DRC
and Cameroon were responsible for 49.3% and 19.1% of losses in
2019 and 44.7% and 20.6% in 2020. DRC and Cameroon had an
annual increase of 15.0% and 36.5% respectively, between 2019
and 2020. From countries with at least 1 MtC emitted in the two
years analyzed, Madagascar had the highest annual increase in
carbon loss (+153.9%), while Equatorial Guinea is the only
country with a decrease in carbon loss (−20.1%). Extending the
carbon loss analysis for both past and future will help to better
understand these variations and whether the COVID-19 global
pandemic had any influence on the general increase between 2019
and 202019. While the absolute numbers for carbon loss
estimates should be treated carefully and a sample-based approach
should be preferred for an unbiased estimate of absolute
numbers20, we focused our analysis on the trends of carbon loss at
the continental, country, and local scale (Fig. 1 and Supplementary
Fig. 1).

The high temporal detail of the analysis revealed various
monthly patterns of carbon losses for countries, highly related to
local rainfall patterns18 (Fig. 2). Countries like Cameroon, Liberia,
Nigeria, Central African Republic (CAR), and Madagascar
showed a clear dry-wet seasonal variation in carbon loss per
year, while the Republic of the Congo and the DRC, due to their
latitudinal extent, exhibited two dry-wet season variations per
year with varying intensities (Fig. 2). The seasonal variation can
be explained by higher accessibility to forests during the dry
months when activities related to smallholder agriculture and
logging are more feasible than in the wet season when many
roads become inaccessible.

One of the highest differences between the months with the
most and the least carbon losses was found for Madagascar (72
times more carbon loss in March compared to November 2019).
In CAR, the three consecutive months with the highest
cumulative carbon loss (January to March 2020) contributed to
75.7% of the total annual loss (between February and April 2020),
in Nigeria 73.9% (January to March 2020), Liberia 73.1%
(February to April 2020), Madagascar 70.7% (September to
November 2020), and Cameroon 62.2% (January to March 2020).
Lower percentages were found for countries with mixed
seasonality and patterns, like DRC 36.7% (January to March
2020), and the Republic of the Congo 32.8% (January to March
2020) (Fig. 2). For the latter two countries, we expect better-
defined peaks of carbon loss at local scales, where climatic
conditions are not mixed. The annual cumulative carbon loss (%)
per country (Fig. 3) showed that Liberia, Nigeria, CAR, and
Cameroon reached between 70-90% of their annual carbon loss in
April, while Madagascar reached 60% in October. The DRC,
Gabon, Republic of the Congo, Equatorial Guinea, and Ghana
have a more gradual monthly increase of cumulative carbon loss
with less contrasting seasonality effects. Monthly patterns of
carbon losses between the two years analyzed resulted in a
correlation coefficient of 0.94 for the CAR, 0.92 for the DRC, 0.91
for Madagascar, 0.90 for Gabon, and 0.83 for Cameroon
(Supplementary Fig. 2). For the Republic of the Congo, the two
years correlated 0.51. Knowing the peak months of carbon loss
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for each country and that these patterns are repeatable from one
year to another can contribute to better target and prioritize
enforcement activities, as well as predicting future patterns and
early reporting of annual forest carbon losses.

Several hotspots of carbon losses can be seen in Fig. 1. The high
spatial and temporal details of our analysis are shown in Fig. 4,
where several local examples with different drivers of forest
disturbances are shown, like logging roads, selective logging,
mining, oil palm plantations, urban expansion, and small-holder
agriculture. This kind of information, coupled with auxiliary
datasets (e.g., legal concessions, protected areas) can identify the
legality of forest disturbance21.

Implications of rapid monitoring of local carbon loss. Near-real
time alerts combined with biomass maps result in spatially
explicit forest carbon loss, unlike global tabular statistics of
national data22,23. We provide new insights into the spatio-
temporal dynamics of carbon loss with consistent assessment of
accuracy that could enable transparency and completeness for
countries reporting on their REDD+ progress to the UNFCCC24.
We provide monthly carbon loss estimates that could play a key
role in local, national, and international forest initiatives for
global carbon policy goals25. Such a system can be implemented
with minimal costs and is based on open-source datasets and
Google Earth Engine cloud computing platform26, thus enabling
cost-effective national monitoring of forest carbon loss7. Pro-
viding rapid reporting on the location, time, and amount of

carbon lost across Africa’s primary humid forest will help
undertake immediate action to protect and conserve carbon-rich
threatened forests. Furthermore, countries will be able to predict
and estimate their annual carbon loss before a reporting period
ends, thus having the opportunity to adjust their practices to meet
their country-specific commitments for climate change mitigation
initiatives.

Limitations and future improvements. We used the RADD
alerts (Radar for Detecting Deforestation)18 with a minimum
mapping unit (MMU) of 0.2 ha as accuracy estimates were
available for this MMU. Events smaller than 0.2 ha would add to
the total carbon loss but are by nature associated with higher
uncertainties18. The implications of the RADD alerts using a
global humid tropical forest product as a forest baseline for
201816,27,28 are twofold. First, the global nature of this product
might result in inconsistencies at the local level18. Second,
because the forest cover loss information used to generate the
forest baseline is based on optical Landsat data, persistent cloud
cover in the second half of 2018 in some areas led to missed
reporting of forest disturbances, thus being detected at the
beginning of 2019 by the RADD alerts. This possible over-
estimation of carbon loss at the start of 2019 is not an issue for a
near-real-time alerting system since later months are not affected.
Furthermore, the alerts do not distinguish between human-
induced disturbances and natural forest disturbances18. When a
new forest disturbance alert is detected, it will be confirmed or

Fig. 1 Carbon loss across Africa’s rainforests. We analyzed 23 countries containing primary moist forest. The aboveground carbon stock (green palette)
underlies the carbon loss estimations (red palette). Several hotspots can be seen across these regions. The uncertainties of the carbon loss estimations are
expressed as standard deviations and shown in Supplementary Fig. 1.
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Fig. 2 Temporal patterns of carbon loss for the top 10 countries. We show monthly statistics for 2019 and 2020 and the associated uncertainty (black
lines). We separate between high (red bars) and low (yellow bars) confidence alerts, the latter showing up for the last 3 months of 2020.
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rejected within 90 days by subsequent Sentinel-1 images18. That is
why our carbon loss reporting separates between high and low
confidence alerts for the last three months of 2020, which is
common for most forest disturbance alerting products18,29. We
separated all the alerts into core and boundary pixels. Core alerts
represent complete tree cover removal and we assumed complete
carbon loss within a pixel. For boundary alerts, we assumed a 50%
carbon loss since these mainly represent forest disturbances with
partial tree cover removal. Detecting and quantifying the level of
degradation remains challenging and future developments will
minimize this uncertainty by providing variable percentages of
degraded forest30. The timeliness and spatial details of future
forest disturbance alerting products will improve with the avail-
ability of open access long-wavelength radar data from near-
future satellite missions (e.g., NISAR L-band SAR in 202331), by
using a combination of optical and radar forest disturbance alert
products, and integration with high-resolution satellite products.

We relied on an aboveground biomass baseline map from
201832, prior to RADD alerts starting from 2019. Biomass
estimation for the tropical moist forests is based on ALOS-2
PALSAR-2 L-band satellite and its usage needs to account for the
local biases, especially underestimating AGB values higher than
250Mg ha−1 (ref. 32). Although we reduced this underestimation
by adjusting the AGB map based on ground field data, more
research is needed on providing up-to-date high-resolution
aboveground carbon estimates33 that could further increase the
accuracy of local carbon loss estimation. Radar-based estimation
of forest carbon stocks is challenging over mountainous terrain
and is less accurate in complex canopies3 and future integration
of radar and optical satellite data will provide more robust
estimates33. Nevertheless, new spaceborne missions (e.g., GEDI34,
BIOMASS35) will provide an unprecedented amount of forest
structure samples that will improve the algorithms and thus the
final accuracy of aboveground biomass estimates.

We focused on exploring and analyzing local carbon losses and
showing high temporal and spatial patterns of carbon losses. We
showed the country statistics to emphasize the temporal
dynamics of carbon losses and compare the temporal profiles
across our study region. Our approach was not to provide
stratified area estimations36 associated with forest disturbances
but we used this concept in the sense that we had a stratified
sample of higher quality reference data18 to estimate the omission
and commission errors and consider those in our uncertainty
estimation on the pixel level. The analysis showed that omission
and commission errors are small and rather balanced, and thus
do not result in a major area bias for the forest disturbances. The
uncertainties of the aboveground biomass product32 were

adjusted for known regional biases using regional forest biomass
plot data sources. With this approach, the original aboveground
biomass map bias was partly corrected using a model-based
approach deemed to be an alternative to a sample-based approach
whenever country data are unavailable37. Our uncertainty
analysis and error reduction showed that we expect only minor
bias in the forest disturbance and the biomass data and the
remaining uncertainties are propagated in our pixel-based
uncertainty layer.

Conclusions
We introduce an analysis framework to estimate tropical forest
aboveground carbon loss with high-spatial and temporal resolu-
tion that provides suitable information to enhance implementa-
tion and enforcement on the ground. This type of spatially
explicit analysis will benefit all actors involved in climate change
mitigation policies and actions, with improved transparency,
transferability, and speed of reporting carbon losses promptly.
Our framework provides a continentally comprehensive dataset
on carbon losses that can be easily adapted to ingest new datasets,
thus providing a benchmarking approach that will enhance the
capacity of countries to track the progress towards the goals of the
Paris Agreement at multiple scales.

Methods
Study area. The study area is represented by the primary tropical humid forest of
Africa and covers 23 countries. The primary tropical forest is defined as mature
natural tropical forest cover that has not been completely cleared and regrown in
recent history27. We created a reference primary tropical humid forest mask for
2018 using the extent of these forests in 200127, from which we excluded the forest
loss between 2001 and 201816 and mangroves28.

Forest disturbance alerts. We used the RADD alerts (Radar for Detecting
Deforestation) based on Sentinel-1 data for the years 2019 and 202018. Forest
disturbance is defined as the complete or partial removal of tree cover within a
10 × 10 m pixel (0.01 ha)18. Complete removal of tree cover is associated with a
stand-replacement disturbance at the pixel scale, while partial removal mainly
represents disturbances associated with boundary pixels and selective logging18.
The alerts are based on Sentinel-1 radar satellite time-series data and a forest
disturbance alert is triggered and confirmed with high confidence after multiple
consecutive observations using Bayesian updating18. There are two types of alerts:
(1) low confidence alerts are provided for a forest disturbance probability >0.85 and
(2) high confidence alerts for forest disturbance probabilities >0.975, within a
maximum period of 90 days from first detection18. Due to this timeframe of
confirming alerts, analyzing 2019 and 2020 alerts will result in the last three
months of 2020 having both high and low confidence alerts. We used an MMU of
0.2 ha since at this MMU the alerts were validated18. The user’s and producer’s
accuracies of high confidence alerts of forest disturbance larger than or equal to
0.2 ha were 97.6% and 95.0%, respectively, using stratified random sampling and a
buffer zone around alerts to ensure a good estimate of the omission error36. For
each alert pixel, we computed the number of neighboring alert pixels in an eight

Fig. 3 Annual cumulative carbon loss (%) for both years analyzed, 2019 and 2020. Africa’s total cumulative carbon loss is shown with a black line. The
10 topmost emitting countries out of 23 countries analyzed are shown and represented by distinct colored lines.
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Fig. 4 Local examples of approx. 10 × 10 km in extent showing different spatiotemporal patterns and drivers of carbon loss. The first column shows the
carbon loss, the second column the associated uncertainty, the third column the day-of-the-year when the loss occurred, and the last column shows the
monthly distribution of carbon loss and associated uncertainty for each local example. The center coordinates of each location are shown in the third
column as latitude and longitude. Exact locations are shown in Supplementary Fig. 3. a Logging roads and selective logging in the Central African Republic,
b mining of gold and titanium in the Republic of the Congo, c development of an oil palm plantation in Cameroon, d forest disturbance related to building a
new capital city in Equatorial Guinea, and e small-scale agriculture expansion at the edge of the forest in the DRC.
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connected direction and separated between core alerts (pixels fully surrounded by 8
alert pixels) and boundary alerts (pixels with less than 8 neighboring alert pixels)18.

Aboveground biomass estimation. We used the single-date spatially explicit ESA
Climate Change Initiative (CCI) Version 2 aboveground biomass map for 2018
with per-pixel associated accuracy (standard deviation) at a spatial resolution of
100 m32. The map was obtained based on Sentinel-1 C-band and ALOS-2 PAL-
SAR-2 L-band data using an algorithm that inverts a semi-empirical model relating
the forest backscatter to canopy density and height and then transformed to AGB
using allometric equations32. The per-pixel standard deviation is calculated by
propagating individual uncertainties of the SAR measurement and the modeling
framework32. The AGB estimates for the wet tropics depend solely on the L-band
backscatter data that is prone to local biases related to wet conditions and limited
sensitivity to biomass in moderate to high biomass forests32. This resulted in a non-
uniform bias or the overestimation of low biomass and underestimation of high
biomass (>250 MgC/ha), the latter being driven by signal saturation of remote
sensing images38. This map bias can be modeled since different forest types, cli-
matic gradients, topography, and aboveground biomass itself have been found to
affect bias in biomass predictions39,40. Map bias can be modeled only after
accounting for the sources of uncertainties from the map and the plot data used for
validation41.

A collection of research and forestry plots was compared with the CCI Biomass
map for 2018 to derive the map bias41. Then, bias was modeled as a function of the
AGB map and its textural properties as well as other spatially exhaustive covariates
such as biome42, topographic variables (aspect and slope), forest fractional cover43,
and the standard deviation layer of the AGB map using a random forest model44.
The bias model followed a 10-fold cross-validation and was assessed through Root
Mean Square Error (RMSE) (42.24 Mg/ha) and Mean Absolute Error (MAE)
(29.25 Mg/ha). The predictive power of the covariates was also evaluated using
variable importance measures while the sensitivity of the modeled trends to its
inputs was assessed using partial dependence plots45. Statistical significance of
predicted bias was assessed using the prediction standard errors obtained with the
infinitesimal jack-knife approach46. Only those statistically significant bias pixels
were used to correct AGB map pixels. We ultimately converted the bias-adjusted
AGB and associated standard deviation to carbon values using a conversion factor
of 0.4747.

Aboveground carbon loss and uncertainties. We combined the forest dis-
turbance alerts and aboveground carbon stocks to estimate local carbon loss at two
different spatial scales, 10 m (0.01 ha) and 100 m (1 ha). The two spatial scales
matched those of the two main datasets used, the alerts and biomass estimates, and
thus easier integration with either of them can be achieved. Carbon loss at 10 m
was calculated as the percentage of the 0.01 ha of the alert pixel within the 1 ha area
of an aboveground carbon pixel (1%). Losses at 1 ha were computed as the per-
centage of disturbance alerts within a 1 ha pixel from the total aboveground carbon
stored by that 1 ha pixel. For both approaches, a distinction between high and low
confidence and core and boundary disturbance alerts was made. We considered
complete removal of tree cover and, therefore, complete carbon loss (100%) for
core alerts and partial carbon loss (50%) for boundary alerts.

We estimated the uncertainty of carbon loss estimates per pixel and at the
country level based on the propagation of the AGB standard deviation and the
commission and omission errors of the alerts.

We defined a model of carbon loss (CL) (Eq. 1):

CL ¼ AGC ´ i ð1Þ
where AGC represents the aboveground carbon in forest biomass in a certain pixel
and i is an indicator that is 1 if a pixel is labeled as disturbed and 0 otherwise. For
the case a pixel is labeled as being disturbed, we combined the variance of AGC and
the commission error of the alerts (2.4%). The probability of a pixel labeled as
disturbed (i ¼ 1) to actually be disturbed is 0.976 and the variance of this binomial
trial is 0.0234. We further used the formula for the variance of a product of two
uncorrelated random variables, resulting in the variance of carbon loss estimate
(varðCLÞ) to be computed as (Eq. 2):

var CLð Þ ¼ AGC2 ´ 0:0234þ 0:9762 ´ stdevAGC
2 þ 0:0234 ´ stdevAGC

2 ð2Þ
For the case a pixel was not labeled as being disturbed, thus considered intact

forest (i ¼ 0), it has an expected disturbance probability of 0.05 due to the
omission error of the alerts. Its variance would then be 0.0475 and applying the
corresponding formula from above would result in the variance of the carbon loss
for an undisturbed pixel to be (Eq. 3):

var CLð Þ ¼ AGC2 ´ 0:0475þ 0:052 ´ stdevAGC
2 þ 0:0475 ´ stdevAGC

2 ð3Þ
We assumed complete dependence of the uncertainties when we scaled up to

the country level, which resulted in a conservative approach since data dependence
always results in larger uncertainty values48. As a first step, we calculated the
standard deviation at the aggregated country scale as the sum of standard
deviations at the pixel level48. In computing carbon loss uncertainties, we did not
consider land cover successions or the main drivers of carbon loss. We then
expanded the formula above to calculate the variance of a product of multiple
uncorrelated random variables (AGC, commission, omission errors, and their

variances) and computed the country-scale variance of carbon loss (varðCLÞcountry)
as (Eq. 4):

varðCLÞcountry ¼ stdevðAGCÞ2 þ AGC2
� �

´ 0:0234þ 0:9762
� �

´ 0:0475þ 0:052
� �� AGC2 ´ 0:9762 ´ 0:052

ð4Þ

Ultimately, we calculated the square root of the resulted variances and
expressed the per-pixel and country-scale carbon loss statistics and uncertainties as
mean ± standard deviation.

Data availability
The data used for this study are available from the ESA Climate Change Initiative
Biomass (https://climate.esa.int/en/projects/biomass/) and RADD alerts (http://radd-
alert.wur.nl/). The data resulted from our study are available as Google Earth Engine
assets at https://code.earthengine.google.com/?asset=users/cskovidiu/AfricaCarbonLoss
(carbon loss and date of loss) and https://code.earthengine.google.com/?asset=users/
cskovidiu/AfricaCarbonLoss_SD (standard deviation of carbon loss).

Code availability
The code is available upon request from the corresponding author.
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