Deutsch
 
Datenschutzhinweis Impressum
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT

Freigegeben

Zeitschriftenartikel

ETAS-Approach Accounting for Short-Term Incompleteness of Earthquake Catalogs

Urheber*innen
/persons/resource/hainzl

Hainzl,  S.
2.1 Physics of Earthquakes and Volcanoes, 2.0 Geophysics, Departments, GFZ Publication Database, Deutsches GeoForschungsZentrum;

Externe Ressourcen
Es sind keine externen Ressourcen hinterlegt
Volltexte (frei zugänglich)

5011405.pdf
(Postprint), 9MB

Ergänzendes Material (frei zugänglich)
Es sind keine frei zugänglichen Ergänzenden Materialien verfügbar
Zitation

Hainzl, S. (2022): ETAS-Approach Accounting for Short-Term Incompleteness of Earthquake Catalogs. - Bulletin of the Seismological Society of America, 112, 494-507.
https://doi.org/10.1785/0120210146


Zitierlink: https://gfzpublic.gfz-potsdam.de/pubman/item/item_5011405
Zusammenfassung
The epidemic‐type aftershock sequence (ETAS) model is a powerful statistical model to explain and forecast the spatiotemporal evolution of seismicity. However, its parameter estimation can be strongly biased by catalog deficiencies, particularly short‐term incompleteness related to missing events in phases of high‐seismic activity. Recent studies have shown that these short‐term fluctuations of the completeness magnitude can be explained by the blindness of detection algorithms after earthquakes, preventing the detection of events with a smaller magnitude. Based on this assumption, I derive a direct relation between the true and detectable seismicity rate and magnitude distributions, respectively. These relations only include one additional parameter, the so‐called blind time Tb⁠, and lead to a closed‐form maximum‐likelihood formulation to estimate the ETAS parameters directly accounting for varying completeness. Tests using synthetic simulations show that the true parameters can be resolved from incomplete catalogs. Finally, I apply the new model to California’s most prominent mainshock–aftershock sequences in the last decades. The results show that the model leads to superior fits with Tb decreasing with time, indicating improved detection algorithms. The estimated parameters significantly differ from the estimation with the standard approach, indicating higher b‐values and larger trigger potentials than previously thought.