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Abstract1

The Epidemic-Type Aftershock Sequence (ETAS) model is a powerful statistical2

model to explain and forecast the spatiotemporal evolution of seismicity. However,3

its parameter estimation can be strongly biased by catalog deficiencies, particularly4

short-term incompleteness related to missing events in phases of high seismic activ-5

ity. Recent studies have shown that these short-term fluctuations of the completeness6

magnitude can be explained by the blindness of detection algorithms after earthquakes,7

preventing the detection of events with a smaller magnitude. Based on this assump-8

tion, I derive a direct relation between the true and detectable seismicity rate and9

magnitude distributions, respectively. These relations only include one additional pa-10

rameter, the so-called blind time Tb, and lead to a closed-form maximum likelihood11

formulation to estimate the ETAS parameters directly accounting for varying com-12

pleteness. Tests using synthetic simulations show that the true parameters can be13

resolved from incomplete catalogs. Finally, I apply the new model to California’s most14

prominent mainshock-aftershock sequences in the last decades. The results show that15

the model leads to superior fits with Tb decreasing with time, indicating improved de-16

tection algorithms. The estimated parameters significantly differ from the estimation17

with the standard approach, indicating higher b-values and larger trigger potentials18

than previously thought.19

Introduction20

The completeness magnitude Mc is defined as the magnitude of the smallest earthquakes,21

which the existing seismic network can detect everywhere. Its value depends on the quan-22

tity and configuration of the seismic stations and their signal-to-noise level. Significant23

Mc-variations are often related to network changes as the installation of new stations or24

failure of old ones. However, even in periods with constant network configuration, recording25

algorithm, and environment noise condition, theMc-level can vary. In particular, Mc often in-26

creases during high seismic activity, such as the first days of aftershocks following mainshocks27

(Kagan, 2004) or intense swarm activity (Hainzl, 2016a). Such rate-dependent, short-term28

Mc-fluctuations can bias the estimations of essential seismicity parameters for seismic hazard29

assessment, such as the b-value of the frequency-magnitude distribution or the aftershock30

productivity (Kagan, 2004). Thus, it is important to consider the time-dependence of data31

completeness in applications of seismicity models.32

The state-of-the-art model to fit and forecast seismicity in space and time is the so-called33

Epidemic-Type Aftershock Sequence (ETAS) model introduced by Ogata (1988; 1998). The34

ETAS model fits the earthquake rate as a linear superposition of a constant background35

rate µ(~x) and decaying rates of ongoing aftershock sequences triggered by past events. It is36
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described by37

R0(t, ~x) = µ(~x) +
∑
i:ti<t

K 10α(mi−Mmin) (c+ t− ti)−p ξ(~x− ~xi,mi) , (1)38

where the index i refers to events occurred in the past at times ti with epicenters ~xi and39

magnitudes mi ≥ Mmin ≥ Mc. In general, the ETAS model is estimated for Mmin = Mc,40

but sometimes a higher cutoff magnitude Mmin may be useful to reduce the computational41

load. The spatial probability density function ξ for the triggered aftershocks is not well-42

constrained but typically assumed to be power-law-type. The temporal decay function and43

the productivity-scaling are better constrained: The time function matches the well-known44

Omori-Utsu law and the total aftershock number scales exponentially with magnitude of the45

trigger event; in agreement with observations (Utsu et al., 1995; Hainzl and Marsan, 2008).46

The ETAS-estimation of the scaling parameter α, which determines the increase of the direct47

aftershock number with mainshock magnitude, is typically significantly less than the b-value48

(Hainzl and Marsan, 2008). However, this apparent result might be biased by the short-time49

incompleteness of earthquake catalogs. Furthermore, the estimated c-value is likely affected50

by missing events as also indicated by Hainzl (2016b).51

It has been already recognized that short-term incompleteness potentially biases the ETAS-52

estimations (Hainzl et al., 2013; Omi et al., 2013; Zhuang et al., 2017). Therefore, several53

approaches have been introduced to deal with this issue. For example, Hainzl et al. (2013)54

excluded the likely incomplete intervals from the fitting period of the ETAS model to the55

observed seismicity. For this purpose, they used an empirical relationship for California that56

relates the incompleteness period to the mainshock magnitude and the basic completeness57

level Mc (Helmstetter et al., 2006). However, in this approach, a significant amount of data58

is neglected, which weakens the model constraint. Furthermore, the results might still be59

affected by incompleteness during intensive swarm activity not related to a large mainshock.60

Alternatively, a replenishment algorithm has been introduced by Zhuang et al. (2017), which61

adds artificial events in the magnitude range identified to be incompletely recorded. While62

this method can compensate for missing events, it requires a manual definition of the time-63

evolution of the incompleteness magnitude. Furthermore, Omi et al. (2013; 2014) directly64

considered the time-varying completeness within the model fit. In this case, the ETAS65

model for early aftershocks is fitted, assuming an error function as detection probability for66

earthquake magnitudes with a mean value shifting in time. While this approach is promising,67

it requires estimating the time-dependence of the detection function from sparse data.68

In this paper, a closed-form of the ETAS model is introduced (Section Theory), which69

consistently accounts for rate-dependent incompleteness adding only one additional fitting70

parameter, the blind time Tb. The modified ETAS model accounts for the detection’s prob-71

ability dependence on the event’s magnitude and actual earthquake rate. This probability72

results from the simple assumption that an earthquake cannot be detected if it occurs within73

Tb after an event of larger magnitude (Hainzl, 2016a,b; de Arcangelis et al., 2018). The mod-74

ification allows estimating, using a maximum likelihood approach, simultaneously the true75
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ETAS-parameters and b-value from earthquake catalogs with time-dependent completeness.76

For demonstration, the model is tested for synthetic sequences and applied to California’s77

most prominent mainshock-aftershock sequences in the last decades (Section Applications).78

Theory79

In the following, Mc refers to the basic completeness magnitude of the catalog defining the80

completeness level in times of low seismicity. Furthermore, following the nomenclature of de81

Arcangelis et al. (2018), the modified ETAS model accounting for catalog incompleteness,82

which results from a blind time of detection algorithms after an earthquake occurrence, is83

called ETASI. For a closed formulation of this model, the relevant results of Hainzl (2016a;84

2016b) are firstly summarized in the first subsection before the ETASI model with its max-85

imum likelihood estimation is formulated in second subsection.86

Rate-dependent incompleteness87

The approach is based on the simple assumption that an earthquake of magnitude m cannot88

be properly distinguished and thus becomes not detectable by the seismogram analysis if89

it occurs less than a blind time Tb after an event of equal or larger magnitude (Hainzl,90

2016a; Lippiello et al., 2016). Based on this, Hainzl (2016b) derived the functional form of91

the apparent seismicity rate R and magnitude distribution F for the recorded, incomplete92

catalog data. In particular, R and F depend on the true underlying rate R0 at time t and93

the time-invariant, true magnitude distribution F0.94

The probability to observe an earthquake with a specific magnitude m ≥ Mc at time t is95

given by the probability that no earthquake occurred between time t − Tb and t with a96

magnitude larger than m. Assuming an (inhomogeneous) Poisson process with the true rate97

R0, this detection probability pd is given by98

pd(m, t) = exp[−N0(t)F0(m)] , (2)99

where F0(m) is the true complementary cumulative distribution function of the earthquake100

magnitudes and N0 is the true number of expected m ≥Mc events, i.e. the integral of R0(t),101

in the time interval [t − Tb, t]. Note that the product N0(t)F0(m) is simply the expected102

number of events with magnitude larger than m occuring in the interval Tb.103

With this detection probability, both the apparent rate and magnitude distribution can be104

analytically determined. Hainzl (2016b) showed that, specifically, the apparent rate is given105

by106

R(t) =
R0(t)

N0(t)

(
1− e−N0(t)

)
≈ 1

Tb

(
1− e−TbR0(t)

)
, (3)107
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and the apparent magnitude distribution becomes108

F (m, t) =
1− e−N0(t)F0(m)

1− e−N0(t)
≈ 1− e−R0(t)Tb F0(m)

1− e−R0(t)Tb
. (4)109

In both equations, the approximation is assumed to hold because the seismicity rates are110

usually not significantly varying over the time scale of Tb, which is in the order of seconds111

to minutes; thus N0(t) ≈ R0(t)Tb.112

Figure 1 illustrates these relations for different R0 and Tb values. Panel (a) shows the113

deviation of the apparent rate from the true one and the convergence of R to its maximum114

value 1/Tb for increasing R0-values. The frequency-magnitude distribution of the detected115

events is shown in panel (b), assuming the Gutenberg-Richter (GR) law for the frequency-116

magnitude distribution117

F0(m) = 10−b(m−Mc) (5)118

with b = 1. It becomes obvious that the effect of incompleteness strongly increases with119

increasing R0 and Tb in both cases.120

ETAS model for rate-dependent incompleteness (ETASI)121

For the ETAS model, the functional forms of R and F can be specified. In the following, we122

refer for simplicity to the time-dependent ETAS model123

R0(t) = µ+
∑
i:ti<t

K 10α(mi−Mc) (c+ t− ti)−p , (6)124

which is related to the integration of Eq. (1) over the region of interest and setting Mmin =125

Mc. This choice firstly helps to simplify the presentation and secondly avoids the complica-126

tion of modeling the spatial distribution. Due to lacking information, the spatial aftershock127

triggering is usually assumed to be isotropic, although real distributions are anisotropic due128

to the rupture extension, slip variability, and heterogeneous crustal properties, respectively.129

The assumption of isotropy is known to significantly bias the parameter estimations; specif-130

ically, the α-value (Hainzl et al., 2008; Seif et al., 2017). However, this paper focuses on131

clarifying the effect of considering short-term incompleteness in the ETAS approach. Thus132

the time-dependent model is more appropriate. In any case, it is straightforward to ex-133

tend the same concept to the spatiotemporal ETAS model (Eq. 1), as discussed in Section134

Discussion.135

Furthermore, we consider the Gutenberg-Richter (GR) law for the frequency-magnitude136

distribution (Eq. 5) with its probability density function137

f0(m) = ln(10) b 10−b(m−Mc) . (7)138
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In the standard approach, the ETAS-model rate R0(t) and the GR distribution are directly139

fitted to the recorded earthquakes by maximizing the likelihood function. For N observed140

earthquakes occurred at times ti ∈ [T1, T2] with magnitudes mi ≥ Mc (i = 1 . . . N), the141

log-likelihood (LL0) function is then given by:142

LL0 =
N∑
i=1

ln [R0(ti)f0(mi)]−
T2∫
T1

R0(t) dt143

=
N∑
i=1

ln [f0(mi)] +

 N∑
i=1

ln [R0(ti)]−
T2∫
T1

R0(t) dt

144

= LLGR + LLETAS (8)145

In this case, the optimization of the ETAS-parameters and that of the b-value can be sepa-146

rated. The maximization of LLGR =
∑N

i=1 ln[f0(mi)] = N ln [ln(10)b] − ln(10)b
∑N

i=1(mi −147

Mc) leads to the analytic Aki-estimator148

b =
log(e)

m̄−Mc

(9)149

with the mean magnitude m̄ (Aki, 1965). The optimization of LLETAS has to be done150

numerically.151

However, the maximization of Eq. (8) is biased by the short-term incompleteness of recorded152

catalogs. Thus, the ETAS parameters resulting from optimizing LL0 do not necessarily repre-153

sent the underlying physical process. The resulting parameters are optimized to describe the154

incomplete data set’s evolution; in particular, they fit the numerous small magnitude events155

that are most affected by the incompleteness. Furthermore, the validity of the Gutenberg-156

Richter law is assumed to hold for the recorded earthquakes at all times. However, this157

assumption is not valid, as, e.g., demonstrated in detail by Marsan & Ross (2021) for the158

1999 M7.1 Ridgecrest sequence. The mean magnitude is significantly higher at short times159

after mainshocks due to missing events. However, such biased estimations due to short-term160

incompleteness can be avoided by applying the same maximum likelihood approach to fit161

the incomplete, observational data but replacing the true functions (R0, F0) by the apparent162

rate and magnitude functions (R,F ) accounting for this incompleteness.163

Taking into account the functional dependence of the apparent rate R(t) and the apparent164

frequency-magnitude distribution on the true functions R0(t) and F0(m) (Eqs. 3 & 4), the165

maximum likelihood fit of the apparent functions to the observed data can be used to estimate166

the true parameters of the ETAS and GR model. In particular, the LL-value is in this case167
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given by168

LL =
N∑
i=1

ln [R(ti)f(mi, ti)]−
T2∫
T1

R(t) dt169

=
N∑
i=1

ln [f(mi, ti)] +
N∑
i=1

ln [R(ti)]−
T2∫
T1

R(t) dt (10)170

where R(t) is given by Eq. (3) in combination with Eq. (6). The probability density function171

f(m, t), which describes the magnitude distribution of the incompletely recorded events, is172

equal to the negative derivative of the complementary cumulative distribution function F173

provided in Eq. (4) using the true GR distribution F0 given in Eq. (5). Specifically, the174

apparent probability density function of the magnitudes is given by175

f(m, t) = ln(10)bN0(t)
10−b(m−Mc) e−N0(t) 10−b(m−Mc)

1− e−N0(t)
. (11)176

In this case, the optimization of the b-value and the ETAS parameters cannot be separated.177

The reason is that f depends not only on the magnitude but also on N0 and consequently178

on the ETAS parameters. In addition to the standard parameters (b, µ,K, α, c, p), the LL-179

value depends on the blind time Tb. Therefore, the maximum likelihood search involves180

seven instead of six free parameters.181

Applications182

The ETASI model is first applied to synthetic sequences to test the ability to retrieve the183

known true parameters from incomplete earthquake catalogs. Then, the same approach is184

applied to selected mainshock-aftershock sequences in California.185

Synthetic simulations186

The analyzed synthetic sequences were simulated with the ETAS model using the inverse187

transform method (Felzer et al., 2002; Zhuang and Touati, 2015) with fixed parameters188

µ = 1.0 d−1, K = 0.0035, α = 1.0, c = 0.001 d, p = 1.2, b = 1.0, Mmin = 2.0, and189

Mmax = 7.0. These values correspond to a theoretical branching ratio of 0.8, meaning190

that 80% of the events are aftershocks on average (Helmstetter & Sornette, 2002). Each191

simulation lasts for 100 days, with an M6 mainshock occurring approximately after ten days.192

Specifically, the times of the background events were first randomly selected, assuming a193

7



stationary Poisson process with the rate µ, and then the magnitude of the background event194

that occurred closest to 10 days was set to 6. In contrast, all other events’ magnitudes were195

randomly selected from the Gutenberg-Richter distribution between 2 and 7, assuming b = 1.196

In this way, each simulation consists of a significant number of aftershocks well centered in197

the simulated time interval. For each sequence, all non-detectable earthquakes occurring less198

than a blind time of Tb = 60 s after a larger magnitude event were removed to create an199

analogon to real incomplete catalogs.200

A magnitude versus time plot of such a simulated sequence is shown in Fig. 2(a). The original201

ETAS simulation comprises all data points, but each of the events marked by crosses occurs202

within Tb = 60 s after an event with a larger magnitude and is not included in the analyzed203

(recorded) catalog (points). The incomplete catalog consists of 921 events, which is 60% of204

the original catalog. The inset shows the same data as a function of the time relative to205

the M6 event on a logarithmic scale. In this semi-logarithmic representation, the data gap206

(crosses) directly after the mainshock is visible for small magnitudes. For comparison, the207

dashed line shows the empirical completeness function for mainshocks derived for mainshocks208

in California (Helmstetter et al., 2006)209

Mc(M, t) = M − 4.5− 0.75 log(t) , (12)210

where the mainshock’s magnitude M is 6.0 in our case. The empirical curve is found to211

well approximate the time-dependence of the completeness magnitude of the first period212

after the mainshock but does not account for missing events after larger aftershocks in the213

beginning and the remainder of the sequence. However, single events are also missed in214

periods without large events, e.g., the earthquake with magnitude 2.02 at day 33, which215

occurred shortly after an M2.2 event.216

As noted in the introduction, one strategy to deal with the incompleteness is to fit the217

standard ETAS model only in time intervals, where completeness can be assumed according218

to the empirical relation. However, using this strategy would reduce and distort the available219

information in the example case. Removing all incomplete time intervals following m ≥ 4220

events according to Eq. (12) leads to a division of the time interval into 15 periods with221

approximately 80% of the total catalog events. However, 7% of the earthquakes are still222

missed in these expected complete periods. These numbers actually depend on the assumed223

empirical relation (here, Eq. 12), which is not universal, likely depending on the seismic224

network and the detection approach. Thus, ideally, the incompleteness relation should be225

first estimated for the specific data, which further complicates the approach. These numbers226

and facts highlight the drawbacks of the mentioned approach and favor the proposed ETASI227

application.228

For the same example, panels Fig. 2(b)-(c) show the ETASI results for the parameter esti-229

mations. In each case, the difference of the Likelihood-value to its maximum, LLmax −LL,230

was calculated varying two parameters, while the other parameters were fixed to the actual231

ETAS parameters: α & K in (b), c & p in (c), and c & Tb in (d). In all cases, the max-232
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imum likelihood estimations are close to the true values marked by crosses. In particular,233

the difference between LLmax and the likelihood value for the true parameters is so small234

(less than five) that the model with fixed true parameters would be favored over the esti-235

mated maximum likelihood parameters based on the Bayesian information criterion (BIC)236

considering the two free parameters.237

In the following, all model parameters are simultaneously estimated to test the ETASI ap-238

proach for real applications. For that purpose, the LL in Eq. (10) is maximized considering239

the entire parameter space (µ,K, α, c, p, b, Tb) for the given synthetic catalog. Then, the240

same procedure was repeated for 100 different synthetic catalogs, each consisting of another241

random ETAS simulation with subsequent removal of non-recordable events using the pa-242

rameters mentioned above. Boxplots represent the resulting parameter estimations in Fig. 3.243

For each parameter, the box extends from the 25% to the 75% quantile of the estimated pa-244

rameters. The horizontal line marks the median, while the bar indicates the full range of the245

estimated values. These estimations are compared to (i) the corresponding values resulting246

from applying the standard ETAS model (Eq. 8) and (ii) the true values. In addition, the247

fit quality is compared on the right panel of Fig. 3 using the corrected information gain per248

earthquake (IGPEc), which accounts for the additional parameter of the ETASI model. The249

IGPEc-value is determined by the difference (∆AIC) of the corrected Akaike information250

criterion (AICc) between the ETASI and the ETAS model, normalized by twice of the event251

number (Rhoades et al., 2014, Eq. 8). The IGPEc values are all positive and scatter around252

0.08, indicating a better fit of the ETASI model.253

Using the standard ETAS model, all parameter estimations are found to be biased. In par-254

ticular, the c-value is significantly and systematically overestimated with large uncertainties,255

while the overestimation of the p-value is moderate. Note that c and p estimations are known256

to be positively correlated, meaning that the overestimation of one of both parameters also257

leads to an overestimation of the other (Holschneider et al., 2012). Furthermore, the pro-258

ductivity parameters are also strongly biased, with a considerable overestimation of K and a259

significant underestimation of α. Note that the range of estimated α-value from 0.5 to 0.85260

covers most of the ETAS-based estimations for real, likely incomplete catalogs, while other261

methods indicate values close to one (Hainzl and Marsan, 2008). Finally, the b-value is also262

significantly underestimated, with most estimations lying between 0.8 and 0.9. This effect263

of short-term incompleteness on the b-value estimation has been already recognized before264

(Kagan, 2004; Hainzl, 2016a).265

Utilizing the ETASI approach, the parameter estimations are significantly better. The results266

indicate that the background rate µ, as well as the aftershock productivity parameters K and267

α, can be well estimated. The same holds for the Gutenberg-Richter b-value with estimations268

scattering around one. The Omori parameters c and p are slightly overestimated, such as269

the blind time Tb. The reason for this bias is likely related to broken links due to the removal270

of undetected earthquakes, leading to wrong associations of events. While the range of the271

estimated p and Tb values include the true values, the estimated c-values are in all cases272
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larger than the true one but still significantly better than the c-estimates of the standard273

model.274

A similar analysis was repeated for c = 1 s and c = 0.1 d. In both cases, the parameter K275

was adjusted to keep the same branching ratio of 0.8 (see Supplementary Material Fig. S1276

and S2). In the case of the tiny c-value, more events remain undetected compared to the277

case analyzed above. Vice versa, the rate-dependent incompleteness plays a less significant278

role in the case of the large c-value. However, in both cases, the ETASI approach is also279

found to provide reasonable estimations of the actual ETAS parameters.280

Earthquake sequences in California281

After the successful test for synthetic catalogs, the ETASI model is now applied to real282

catalogs where the ETAS model will only approximate the real dynamics, and the true283

seismicity parameters are not known. In particular, ETAS parameters are estimated for284

the aftershock sequences of the six largest mainshocks that occurred in the last decades in285

California.286

Data287

The California data were downloaded from the Southern California Earthquake Data Cen-288

ter (SCEDC) and consist of 699,174 earthquakes recorded between January 1, 1981, and289

December 31, 2019 (see Data and Resources). A magnitude cutoff of Mc = 2.05 is used to290

avoid the general incompleteness of m < 2 events (Hutton et al., 2010). The special value291

of 2.05 instead of 2.0 is used because, although magnitudes are given to two decimal places,292

significant clustering at single-digit values indicates relics of 0.1-magnitude binning. Thus,293

a cutoff value of 2.0 would likely include events in the magnitude range between 1.95 and294

2.0. The finally analyzed catalog consists of 118,926 earthquakes with magnitude m ≥ 2.05.295

At first, the six largest earthquakes, so-called mainshocks, were selected, which occurred296

within the box defined by [32.0◦N, 36.5◦N] and [−121.0◦W,−115.0◦W]. For each of these297

mainshocks, the target space-time volume is defined by (i) a disk A centered at the mainshock298

epicenter with a radius of 100 km and (ii) a time interval of T = [−10, 100] days relative to299

the mainshock time. All m ≥ 2.05 events inside this volume are the target events for the300

ETASI fit.301

As discussed at the beginning of Section ETAS model for rate-dependent incompleteness302

(ETASI), detailed modeling of the spatial interactions is here avoided because it can lead to303

biased ETAS-estimations (Hainzl et al., 2008). Nevertheless, the spatial triggering can be304

considered to some extend by integration of Eq. (1) over A. In this way, the model considers305

that parts of the aftershocks are expected to be triggered outside of A as well as earthquakes306

that occurred outside of A might have triggered aftershocks within A. In particular, the307
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integration leads to an replacement of Eq. (6) by308

R0(t) = µ+
∑
i:ti<t

κiK 10α(mi−Mc) (c+ t− ti)−p with κi =

∫
A

ξ(mi, |~x− ~xi|) d~x (13)309

with κi being the fraction of aftershocks, which is expected to be triggered inside A (Za-310

kharova et al., 2017). Here I used the empirical, magnitude-dependent probability density311

distribution derived for California seismicity consisting of three different regimes with tran-312

sitions at the scale of the rupture length and the thickness of the crust (Moradpour et al.,313

2014, Eq. 7).314

This approach not only considers that some aftershocks are triggered outside of A but also315

allows to include the effects of large events occurring outside this space-time volume. In316

particular, the sum of Eq. 13 includes all events in the target region A and target time317

interval. However, it also includes events outside the space-time volume, which are estimated318

to trigger more than 0.01 events in the total target volume AxT . In this way, finite-size effects319

are avoided.320

The spatial and temporal distributions of the selected six mainshock-aftershock sequences321

are shown in Fig. 4, and the mainshock source information and the number of target and322

total events are summarized in Tab. 1. The earliest case is that of the 1987 Superstition323

Hill pair of earthquakes in the Salton Trough with magnitudes 6.2 and 6.6 separated only by324

approximately 12 hours. The following sequence is related to the largest mainshock, the well-325

known M7.3 1992 Landers earthquake, which also triggered the most extensive aftershock326

sequence. In 1994, the M6.7 Northridge event occurred on a blind thrust fault in the San327

Fernando Valley region. The selected aftershocks are almost isotropically clustered in this328

case, while linearly elongated distributions are observed in all other cases. In 1999, the329

M7.1 Hector Mine earthquake occurred in the Mojave Desert and triggered the third largest330

aftershock activity. An even more intensive sequence was triggered by the 2010 M7.2 Baja331

California mainshock, which occurred just south of California’s border in Mexico. Finally,332

the Ridgecrest sequence consists of three major events with magnitudes of 6.4, 5.4, and 7.1,333

which occurred in July 2019 within 34 hours. The Ridgecrest mainshocks occurred on two334

perpendicular faults, an SW-NE and an NW-SE-oriented fault.335

Results336

Tab. 2 summarizes the parameter estimations resulting from the standard ETAS and the337

ETASI model (a visualization of the results is provided in the Supplementary Material338

Fig. S3). Besides the parameters, the table also provides the maximum likelihood values LL339

for both models, which is obtained in the case of the standard ETAS model by maximizing340

Eq. (8), while it is related to the maximization of Eq. (10) in the case of the ETASI model.341

Because the ETASI model includes an additional fitting parameter, the LL-values cannot342

be directly compared. The model with more degrees of freedom is generally expected to fit343
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better. Therefore, the value of the corrected information gain per earthquake (IGPEc) is also344

provided (as done for the synthetic sequences) to account for the additional parameter. A345

positive IGPEc-value between 0.06 and 0.11 is obtained for all six cases. The corresponding346

∆AIC-values range between 442.2 and 1702.1 and 1 − exp(−∆AIC/2) can be interpreted347

as the relative probability that the model with minimum AIC (here the ETASI model)348

minimizes the information loss (Burnham and Anderson, 2002). Thus, the ETASI model fits349

significantly better than the standard ETAS model.350

The estimated parameters also differ significantly. Two observations are most remarkable:351

Firstly, the α-value increases systematically applying the ETASI model. While the ETAS352

model obtains low values in the range between 0.36 (Landers) and 0.66 (Ridgecrest), the353

estimations scatter around one in the case of the ETASI model with values between 0.88354

(Landers) and 1.18 (Ridgecrest). A similar trend is observed for the b-value: The maximum355

likelihood estimation yields b ∈ [0.79, 1.10] for ETAS and b ∈ [0.94, 1.39] for ETASI. Both356

observations are in agreement with the results for the synthetic sequences in Section Synthetic357

simulations. For the remaining parameters, the difference between the two model estimations358

is not systematic, with positive and negative changes.359

A visual comparison of the ETAS and ETASI model fits is shown in Fig. 5, left column. The360

semi-logarithmic plots show the observed earthquake magnitudes and rates as a function361

of the time after the mainshocks. Similar to the case of the analyzed incomplete synthetic362

catalogs, aftershocks with small magnitudes were missed directly after the mainshock. This363

deficiency is compared to the empirical completeness relation (Eq. 12) of Helmstetter et al.364

(2006), represented by the black dashed lines. The empirical relation is found to fit well for365

the four sequences before 2000 but significantly overestimates the completeness magnitudes366

for the latest two sequences, the 2010 Baja California and the 2019 Ridgecrest sequence. The367

quality of the rate fits of the ETAS and ETASI model are difficult to distinguish visually.368

Both fit the observed, incompletely recorded rates very well. However, the ETASI also369

provides the estimated true rate of m ≥ 2.05 events, indicated in the same plots by the370

dashed curve. Shortly after the mainshock, these estimated true rates are found to be by a371

factor between 10 and 100 larger than the detected rates.372

Furthermore, the ETASI model predicts a time-dependence of the frequency-magnitude dis-373

tribution of the catalog events, while the standard ETAS approach implicitly assumes a374

constant distribution. To test whether the ETASI model fits the observation, I calculated375

the b-value of the observed events in time bins by the Aki-estimator (Aki, 1965, Eq. 9),376

which is solely dependent on the mean magnitude. I notably estimated the b-values in non-377

overlapping time windows consisting of M = 100 events with m ≥ 2.05. The results for378

the empirical data are shown as black crosses in the right panels of Fig. 5, where the width379

and height of the crosses refer to the time interval and plus/minus one standard deviation,380

b/
√
M , of the Aki-estimator, respectively. A similar trend is observed in all cases. The esti-381

mated b-value is less than 0.5 directly after the mainshock and then continuously increases382

until it converges to a stable value around one. The limit value is well fitted by the estimated383
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b-value of the ETASI model (dashed horizontal line), while it is significantly underestimated384

by the standard ETAS approach (gray horizontal line). The time until convergence varied385

between approximately one day (Ridgecrest) and one month (Landers). The convergence386

phase can be compared to the forecasts of the ETASI model, whose probability density mag-387

nitude distribution (Eq. 11) is defined by the estimated true b value (Tab. 2) and the true388

rate R0(t) (dashed curve in the left panels of Fig. 5), which is known at all times. Thus389

I calculated the mean value of Eq. (11) at the times of all aftershocks and determined the390

related b-value by Eq. (9). The results are shown by thin solid curves in the right panels391

of Fig. 5. The ETASI forecasts fit very well the observed time-dependence of the empirical392

b-values.393

Discussion394

The ETASI model builds on the assumption that the short-time incompleteness is related395

to a blind time Tb of the detection algorithm. In this case, the detection probability for396

earthquakes with a magnitude m can be determined by the Poissonian probability that no397

larger than m event occurred within Tb before the event. An effective blind time is expected398

to be present in almost every detection algorithm, while its actual value will depend on399

the particular algorithm. For example, a classical short-term-average to long-term-average400

ratio (STA/LTA) picker typically uses LTA windows around 30 s (Earle and Shearer, 1994).401

In this period, the arrival of seismic waves related to a preceding event prevents picking402

a smaller magnitude event within the STA window. Because of the delayed arrival of the403

seismic waves and associated coda waves of preceding events, the effective blind time is even404

larger than the LTA window. The time between the earthquake rupture (catalog time) and405

a sufficient attenuation of the coda wave is of the order of one minute for local events (Wang406

and Shearer, 2017). Thus, for an STA/LTA-picker, the blind time is expected to be of the407

order of 100 s. More sophisticated methods like template-matching detection techniques408

might lead to a significantly shorter blind time because full waveform information is used409

(Ross et al., 2019). However, the approach only works well if the waveforms of subsequent410

events do not overlap in time, which again introduces an effective blind time of the algorithm.411

For simplicity, a magnitude-independent Tb-value is assumed in the ETASI approach. The412

short source durations justify this simplification. Recorded waves are the result of a convolu-413

tion of the crustal Green’s functions with the source function. Only the latter is magnitude-414

dependent. However, the earthquake source durations are usually less than a few seconds415

for m < 5 events. Thus, for the vast majority of the events, the source times are much less416

than the travel times of the induced waves to the seismic stations, justifying the use of a417

constant Tb-value.418

In reality, other reasons than an algorithm’s blind time might lead to short-term excursions419

of the completeness magnitude above the general completeness level Mc. One reason might420
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be the short-term failures of seismic stations in the network due to power outages or other421

problems. Another reason could be that the completeness level changed because the oper-422

ators focused their hand-picking of the earthquakes’ onsets in particular periods. However,423

the latter is less relevant for modern catalogs because recorded waveforms are nowadays424

processed continuously with the same algorithms. Thus the ETASI approach is assumed to425

be best suited for most recent catalogs processed by automatized algorithms on continuous426

waveforms.427

For our analyzed sequences in California, the estimated values of the blind time Tb signifi-428

cantly decrease with the date (Tab. 2). While Tb is in the range between 140 and 200 s before429

2000, it is only 27 s for the last Ridgecrest sequence in 2019, as visualized in Fig. 6b. This ob-430

servation indicates an improving detection algorithm of the Southern California Earthquake431

Data Center (SCEDC) over time.432

The ETASI model allows addressing the c-value in more detail. The c-estimations based433

on catalog data are typically in the order of hours to days depending on the mainshock434

and cutoff magnitude (Utsu et al., 1995; Hainzl, 2016b). However, the catalog’s short-term435

incompleteness affects the c-estimations significantly. For case examples in California and436

Japan, sophisticated reprocessing of the recorded seismograms revealed many additional437

events missed by routine detection procedures, reducing c to values in the order of minutes438

(Kagan, 2004; Kagan and Houston, 2005; Peng et al., 2006, 2007; Enescu et al., 2007). These439

systematic studies indicate that c-values estimated, e.g., by the standard ETAS approach, are440

at least partially related to the catalog’s incompleteness rather than the aftershock triggering441

mechanism. However, in principle, the ETASI model allows estimating the true c-value442

related to earthquake triggering by accounting for the catalog’s short-term incompleteness.443

The estimated value range between 2 minutes for Ridgecrest and 20 hours for Landers. Most444

values are significantly smaller than the estimations of the ETAS model, except Landers445

and Northridge. Notably, the high value for the Landers sequence is questionable. To446

analyze the uncertainties of the c-value estimates, I recalculated the maximum likelihood447

value optimizing all parameters besides the c-value, which was varied systematically between448

10 and 105 s. The resulting IGPEc values are shown in Fig. 6a for all six sequences. The figure449

shows that for all analyzed c-values and sequences, the ETASI fit (solid line) is superior to the450

best fit of the ETAS model (horizontal dashed line). Furthermore, the curves have a broad451

maximum indicating large uncertainties of the c-estimations. In particular, by defining the452

uncertainties according to an IPGEc-margin of 0.01 (gray horizontal bar), the uncertainties453

of all estimations almost overlap: For Ridgecrest and Superstition Hill, only upper bounds454

of 15 min and 1.5 h are defined but no lower limit. In contrast, c ranges between 30 s and455

4 h for Baja California and between 6 min and 8 h for Northridge. Finally, only a lower limit456

of approximately 30 min can be defined for both Hector Mine and Landers. However, the457

synthetic tests in Section Synthetic simulations indicate that all c-values might be slightly458

overestimated. Furthermore, the estimated uncertainty does not yet account for violations459

of the model assumptions, such as additional sources of incompleteness mentioned above.460
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Thus the true uncertainties will be even larger, indicating that a physical interpretation of461

the estimated c-values remains a difficult task.462

The performed synthetic tests and application to California sequences show that ignoring463

short-term incompleteness of earthquake catalogs leads to significantly biased parameters,464

which might strongly affect forecasts of the ETAS model. The underestimated α-value leads465

to an underestimation of the number of direct aftershocks triggered by large earthquakes. In466

contrast, the underestimated b-value overestimates the magnitudes of these events, leading467

to stronger secondary triggering. The impact of the combined effect depends on the specific468

parameters and the target quantity. A systematic analysis of the effect on forecasts is out469

of the scope of this paper. However, as an example, I calculated the foreshock probability470

of a magnitude 6.0 event, i.e., the probability that one of the aftershocks of an M6 event471

is larger than 6.0. For this purpose, I performed 1000 synthetic ETAS-simulations starting472

with an M6 event using the ETAS and ETASI parameters estimated for Ridgecrest (Tab. 2).473

The resulting foreshock probability is found to be 93%, given the parameters estimated by474

the standard ETAS approach. If a standard b-value of 1.0 is used instead of the estimated475

value of 0.79, the estimated probability drops to 3%. In contrast, using the parameters476

estimated with ETASI, the foreshock probability is estimated to be 9%, demonstrating the477

strong impact of considering short-term catalog incompleteness.478

In some applications, the use of a simple Omori-Utsu decay might be sufficient to fit the479

aftershock activity. In this case, the same maximum likelihood approach (Eq. 10) can be480

used, where R(t) and f(m, t) are calculated by Eq. (3) and (11) with R0(t) = K(c+ t)−p and481

N0(t) = K[(c+t)1−p−(c+t−Tb)1−p]/(1−p) for p 6= 1, or N0(t) = K[log(c+t)−log(c+t−Tb)]482

for p = 1.483

In this paper, the time-dependent version of the ETAS model is considered because of its484

simplicity and the mentioned potential problems using isotropic spatial kernels. However,485

an extension to a full space-time version is straightforward. Instead of Eq. (10), one simply486

has to maximize487

LL =
N∑
i=1

ln [R(ti, ~xi)f(mi, ti)]−
T2∫
T1

∫
A

R(t, ~x) dt d~x488

with R(t, ~x) being determined by the first part of Eq. (3), i.e.,489

R(t, ~x) = R0(t, ~x)
1− e−N0(t)

N0(t)
, (14)490

where R0(t, ~x) is given by Eq. (1). The detection probability is dependent on the total491

activity in the analyzed area within the blind time. Thus, N0(t) used for the calculation of492
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R(t, ~x) (Eq. 14) and f(mi, ti) (Eq. 11) is given in this case by493

N0(t) =

t∫
t−Tb

∫
A

R0(t, ~x) dt d~x ≈ Tb

∫
A

R0(t, ~x) d~x ,494

where the approximation is possible due to the short duration of Tb.495

Conclusion496

The ETAS model is presently maybe the most powerful statistical seismicity model, re-497

producing the general characteristics of spatiotemporal earthquake clustering. However, its498

application and forecast ability can be hampered by biased parameter estimations related to499

catalog deficiencies. In particular, it has been recognized that the short-term incompleteness500

can significantly bias the forecasts of the aftershock productivity and magnitudes (Kagan,501

2004; Hainzl et al., 2013; Hainzl, 2016a). Several methods have already been introduced502

before to deal with this problem (Hainzl et al., 2013; Omi et al., 2013, 2014; Zhuang et al.,503

2017). However, the proposed ETASI-approach provides, for the first time, a closed-form504

maximum likelihood approach accounting for the short-time incompleteness of earthquake505

catalogs. The ETASI model has only one additional parameter, namely the blind time Tb506

representing the time after an earthquake in which subsequent events with smaller magnitude507

are missed by the network’s detection algorithm.508

The ETASI model allows estimating the real parameters relevant for seismic hazard assess-509

ment, such as the aftershock productivity and the Gutenberg-Richter b-value. The performed510

synthetic tests show that both are largely underestimated if short-time incompleteness is511

ignored, while the ETASI model can retrieve the true values. The application to major512

mainshock-aftershock sequences in California also leads to superior fits of the ETASI model513

with similar parameter trends, where the resolved productivity parameter α is found to be514

close to one. The results indicate that large-magnitude events have a significantly larger515

trigger potential than previously thought.516

Data and Resources517

The California earthquake catalog has been downloaded from the Southern California Earth-518

quake Data Center (SCEDC, https://scedc.caltech.edu/research-tools/alt-2011-dd-hauksson-519

yang-shearer.html) on October 8, 2020. The Supplemental Material includes two figures520

similar to Fig. 3 but for a smaller and larger c-value, respectively. Furthermore, it includes521

a third figure illustrating the estimated parameters for California’s sequences provided in522

Tab. 2.523

16



Acknowledgments524

I want to thank Leila Mizrahi and her colleagues for sharing their work related to an iterative525

EM-algorithm for ETAS accounting for short-term incompleteness (https://arxiv.org/abs/2105.00888).526

I am also grateful to Kaoru Sawazaki and an anonymous reviewer for their helpful comments527

and suggestions. This study was supported by the DFG Collaborative Research Centre 1294528

(Data Assimilation - The seamless integration of data and models, project B04).529

References530

Aki, K. (1965). Maximum likelihood estimate of b in the formula logN = a − bM and its531

confidence limits, Bull. Earthquake Res. Inst., 43, 237–239.532

Burnham, K. P., and D. R. Anderson (2002). Model selection and multimodel inference: A533

practical information-theoretic approach, Springer-Verlag, 2nd ed., paragraph 6.4.5.534

de Arcangelis, L., C. Godano, and E. Lippiello (2018). The overlap of aftershock coda waves535

and short-term postseismic forecasting, J. Geophys. Res. 123, 5661–5674.536

Earle, P. S., and P. M. Shearer (1994). Characterization of global seismograms using an537

automatic-picking algorithm, Bull. Seismol. Soc. Am. 84, 366–376.538

Enescu, B., J. Mori, and M. Miyazawa (2007). Quantifying early aftershock activity of539

the 2004 mid-Niigata Prefecture earthquake (Mw6.6), J. Geophys. Res. 112, B04310,540

doi:10.1029/2006JB004629.541

Felzer, K. R., T. W. Becker, R. E. Abercrombie, G. Ekstrom, and J. R. Rice (2002). Trig-542

gering of the 1999 Mw 7.1 Hector Mine earthquake by aftershocks of the 1992 Mw 7.3543

Landers earthquake, J. Geophys. Res. , 107, 2190, doi:10.1029/2001JB000911.544

Hainzl, S. (2016a). Rate-dependent incompleteness of earthquake catalogs, Seismol. Res.545

Lett. 87, 337–344.546

Hainzl, S. (2016b). Apparent triggering function of aftershocks resulting from rate-dependent547

incompleteness of earthquake catalogs, J. Geophys. Res. 121, 6499–6509.548

Hainzl, S., and D. Marsan (2008). Dependence of the Omori-Utsu law parameters on549

main shock magnitude: Observations and modeling, J. Geophys. Res. 113, B10309,550

doi:10.1029/2007JB005492.551

Hainzl, S., A. Christophersen, and B. Enescu (2008). Impact of earthquake rupture ex-552

tensions on parameter estimations of point-process models, Bull. Seismol. Soc. Am. 98,553

2066–2072.554

17



Hainzl, S., O. Zakharova, and D. Marsan (2013). Impact of aseismic transients on the esti-555

mation of aftershock productivity parameters, Bull. Seismol. Soc. Am. 103, 1723–1732,556

doi: 10.1785/0120120247.557

Hauksson, E., P. M. Shearer, and W. Yang (2012). Waveform Relocated Earthquake Catalog558

for Southern California (1981 to June 2011). Bull. Seismol. Soc. Am. 102, 2239–2244.559

Helmstetter, A., and D. Sornette (2002). Subcritical and supercritical regimes in epidemic560

models of earthquake aftershocks, J. Geophys. Res. 107, 2237, doi:10.1029/2001JB001580.561

Helmstetter, A., Y. Y. Kagan, and D. D. Jackson (2006). Comparison of short-term and562

time-independent earthquake forecast models for southern California, Bull. Seismol. Soc.563

Am. 96(1), 90–106.564

Holschneider, M., C. Narteau, P. Shebalin, Z. Peng, and D. Schorlemmer (2012).565

Bayesian analysis of the modified Omori law, J. Geophys. Res. 117, B06317,566

doi:10.1029/2011JB009054.567

Hutton, K., J. Woessner, and E. Hauksson (2010). Earthquake monitoring in southern Cal-568

ifornia for seventy-seven years (1932–2008), Bull. Seismol. Soc. Am. 100, 423–446.569

Kagan, Y. Y. (2004). Short-term properties of earthquake catalogs and models of earthquake570

source, Bull. Seismol. Soc. Am. 94(4), 1207–1228.571

Kagan, Y. Y., and H. Houston (2005). Relation between mainshock rupture process and572

Omori’s law for aftershock moment release rate, Geophys. J. Int. 163, 1039–1048.573

Lippiello, E., A. Cirillo, G. Godano, E. Papadimitriou, E., and V. Karakostas (2016). Real-574

time forecast of aftershocks from a single seismic station signal, Geophys. Res. Lett. 43,575

6252–6258.576

Marsan, D., and Z. E. Ross (2021). Inverse migration of seismicity quiescence during the 2019577

Ridgecrest sequence, J. Geophys. Res. 126, e2020JB020329, doi:10.1029/2020JB020329.578

Moradpour, J., S. Hainzl, and J. Davidsen (2014). Nontrivial decay of aftershock density579

with distance in Southern California, J. Geophys. Res. 119, 5518–5535.580

Ogata, Y. (1988). Statistical models of point occurrences and residual analysis for point581

processes, J. Am. Stat. Assoc., 83 9-27.582

Ogata, Y. (1998). Space-time point-process models for earthquake occurrences, Ann. Inst.583

Statist. Math. 50, 379-402.584

Omi, T., Y. Ogata, Y. Hirata, and K. Aihara (2013). Forecasting large aftershocks within585

one day after the main shock, Sci. Rep. 3, 2218, doi:10.1038/srep02218.586

18



Omi, T., Y. Ogata, Y. Hirata, and K. Aihara (2014). Estimating the ETAS model from an587

early aftershock sequence, Geophys. Res. Lett. 41, 850–857, doi:10.1002/2013GL058958.588

Peng, Z. G., J. E. Vidale, and H. Houston (2006). Anomalous early aftershock decay rate589

of the 2004 Mw6.0 Parkfield, California, earthquake, Geophys. Res. Lett. 33, L17307,590

doi:10.1029/2006GL026744.591

Peng, Z. G., J. E. Vidale, M. Ishii, and A. Helmstetter (2007). Seismicity rate immediately592

before and after main shock rupture from high-frequency waveforms in Japan, J. Geophys.593

Res. 112, B03306, doi:10.1029/2006JB004386.594

Rhoades, D. A., M. C. Gerstenberger, A. Christophersen, J. D. Zechar, D. Schorlemmer, M.595

J. Werner, and T. H. Jordan (2014). Regional earthquake likelihood models II: Information596

gains of multiplicative hybrids, Bull. Seismol. Soc. Am. 104, 3072–3083.597

Ross, Z. E., D. T. Trugman, E. Hauksson, and P. M. Shearer (2019). Searching for hidden598

earthquakes in Southern California, Science 364, 767–771.599

Seif, S., A. Mignan, J. D. Zechar, M. J. Werner, and S. Wiemer (2017). Estimating ETAS:600

The effects of truncation, missing data, and model assumptions, J. Geophys. Res. 122,601

449–469.602

Utsu, T., Y. Ogata, and R. S. Matsu’ura (1995). The centenary of the Omori formula for a603

decay of aftershock activity, J. Phys. Earth, 43 1–33.604

Wang, W., and P. M. Shearer (2017). Using direct and coda wave envelopes to resolve the605

scattering and intrinsic attenuation structure of Southern California, J. Geophys. Res.606

122, 7236–7251.607

Zakharova, O., S. Hainzl, D. Lange, and B. Enescu (2017). Spatial variations of aftershock608

parameters and their relation to geodetic slip models for the 2010 Mw8.8 Maule and the609

2011 Mw9.0 Tohoku-oki earthquakes, Pure Appl. Geophys. 174, 77–102.610

Zhuang, J., and S. Touati (2015). Stochastic simulation of earthquake catalogs, Community611

Online Resource for Statistical Seismicity Analysis, doi:10.5078/corssa-43806322. Avail-612

able at http://www.corssa.org.613

Zhuang, J., Y. Ogata, and T. Wang (2017). Data completeness of the Kumamoto earthquake614

sequence in the JMA catalog and its influence on the estimation of the ETAS parameters,615

Earth. Planets and Space 69, 36, doi:10.1186/s40623-017-0614-6.616

Address617

Sebastian Hainzl, Helmholtz-Zentrum Potsdam: Deutsches GeoForschungsZentrum GFZ,618

Telegrafenberg, 14473 Potsdam, Germany619

19



Table 1: Information concerning the six selected mainshock-aftershock sequences in Califor-
nia and Baja California. The target area A is defined by a disk centered at the mainshock
epicenter with a radius of 100 km, and the fitted period extends from -10 to 100 days rela-
tive to the mainshock occurrence. The second last column provides the number N of target
events within this volume, while the number Ntot in the last column also includes the events
outside of AxT used in Eq. (13).

Name Year Magnitude Epicenter N(m ≥ 2.05, AxT ) Ntot

Superstition Hill 1987 6.6 33.01◦N, -115.83◦W 2398 2526
Landers 1992 7.3 34.20◦N, -116.44◦W 9295 10157
Northridge 1994 6.7 34.23◦N, -118.54◦W 2166 2226
Hector Mine 1999 7.1 34.60◦N, -116.27◦W 3988 4164
Baja California 2010 7.2 32.30◦N, -115.29◦W 7245 7485
Ridgecrest 2019 7.1 35.77◦N, -117.60◦W 5285 5343

Table 2: Estimated parameters of the selected mainshock-aftershock sequences in California
resulting from maximizing Eq. (8) according to the standard ETAS approach or Eq. (10)
using the ETASI model. The column LL refers to the maximum likelihood value, and IGPEc
is the corrected information gain per earthquake relative to the ETAS model (Rhoades et al.,
2014). The standard errors of the parameters are determined by the inverse of the Hessian
matrix of the log-likelihood function.

Sequence model µ [1/day] K α c [min] p b Tb [s] LL IGPEc

Superstition Hill
ETAS 0.9± 0.2 0.068± 0.009 0.55± 0.02 105± 47 1.37± 0.02 1.10± 0.02 7903 0
ETASI 1.5± 0.1 0.006± 0.010 1.02± 0.01 10± 22 1.21± 0.01 1.39± 0.01 141± 79 8176 0.11

Landers
ETAS 0.2± 0.7 0.093± 0.009 0.36± 0.02 93± 40 1.31± 0.02 0.93± 0.01 34801 0
ETASI 1.8± 0.3 0.101± 0.041 0.88± 0.01 1197± 117 1.60± 0.03 1.22± 0.01 182± 44 35653 0.09

Northridge
ETAS 0.2± 0.2 0.049± 0.008 0.46± 0.02 35± 48 1.26± 0.02 0.80± 0.02 6677 0
ETASI 0.4± 0.1 0.004± 0.012 1.06± 0.02 77± 49 1.32± 0.01 1.02± 0.01 156± 87 6899 0.10

Hector Mine
ETAS 0.8± 0.2 0.118± 0.025 0.64± 0.04 840± 261 1.43± 0.02 0.96± 0.02 13072 0
ETASI 1.3± 0.2 0.017± 0.022 0.96± 0.02 336± 73 1.33± 0.02 1.23± 0.01 199± 77 13503 0.11

Baja California
ETAS 0.4± 0.3 0.054± 0.005 0.46± 0.01 35± 21 1.26± 0.01 0.81± 0.01 26212 0
ETASI 0.1± 0.4 0.008± 0.001 0.97± 0.00 25± 18 1.09± 0.01 0.94± 0.01 77± 1 26618 0.06

Ridgecrest
ETAS 0.1± 0.2 0.029± 0.005 0.66± 0.01 38± 21 1.24± 0.01 0.79± 0.01 22424 0
ETASI 0.2± 0.1 7.9e-4±5.7e-4 1.18± 0.01 2± 17 1.17± 0.01 1.00± 0.01 27± 53 23138 0.13
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Figure Captions

Fig. 1: Illustration of the theoretical relations Eq. (3) and Eq. (4) for incomplete catalogs: (a)
The apparent rate R as a function of the true rate R0 for three different blind times
Tb (solid lines), where the dotted line refers to a complete recording. (b) The shape
of the apparent frequency-magnitude F (m) for Tb = 60 s and three different values of
R0. Here the dotted line refers to the true underlying Gutenberg-Richter distribution
(Eq. 5) with b = 1.

Fig. 2: Example of the ETASI approach for an ETAS simulation with µ = 1.0 d−1, α = 1.0,
c = 0.001 d, p = 1.2, b = 1, Mmin = 2.0, and Mmax = 7.0, where a blind time of
Tb = 60 s was used to remove non-detectable earthquakes and create the analogs of real
catalogs: (a) Event magnitudes versus time, where points and crosses indicate detected
and missed events, respectively. The inset shows the same for logarithmic times relative
to the mainshock, where the dashed line represents the empirical completeness function
for California (Eq. 12). The small panels (b)-(d) show the contour plots of the difference
of the Likelihood-value, LLmax−LL, as a function of two parameters, while the other
parameters are fixed to the actual ETAS parameters. Crosses mark the true values.

Fig. 3: The inversion results for 100 different synthetic sequences, corresponding to the exam-
ple shown in Fig. 2(a). The boxes extend from the lower to upper quartile values of
the estimated parameters, with a horizontal line at the median, while the bars indicate
the full range of the results. The horizontal dashed lines refer to the true parameter
values. The right plot shows the corrected information gain per earthquake (IGPEc)
of ETASI relative to the ETAS model.

Fig. 4: Illustration of the six selected sequences from California. For each of them, the upper
panel shows the magnitude versus time plot of the sequence, while the bottom plot
shows the corresponding epicenter distribution, where the central big point marks the
epicenter of the corresponding mainshock, which is named in the title together with
its magnitude and occurrence time.

Fig. 5: Results of the model fit to the selected sequences in California, shown in Fig. 4, where
each row belongs to the mainshock named in the right plot. The left column shows the
earthquake rate (with the scale on the left side) as a function of the logarithmic time
after the mainshock. Here, black crosses refer to the observed rates, while lines indicate
the mean rates for the optimized models: standard ETAS (bold gray) and apparent
R (thin solid), respectively actual R0 (thin dashed) rates of the ETASI model. For
information, the recorded event magnitudes and the empirical completeness-relation
Eq. (12) (black dashed line) are also plotted (scale on the right). In all examples,
a gap of small magnitude events is visible immediately after the mainshock. In the
right column, black crosses show the estimated b-values for non-overlapping bins with
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100 aftershocks as a function of time. The horizontal error defines the events’ time
interval, and the vertical one refers to plus/minus one standard deviation of the b-value
uncertainty. In the same plot, the solid curve indicates the apparent b-values related
to the ETASI magnitude distribution (Eq. 11). The horizontal dashed line marks the
estimated true b-value, while the dotted horizontal line indicates the estimated b-value
assuming completeness all time long.

Fig. 6: (a) Dependence of the ETASI fit quality as a function of the assumed c-value, where
points mark the optimal value c0. The quality is measured by the corrected information
gain per earthquake (IGPEc) relative to the optimal solution. The region with a rather
insignificant loss of the fit quality (IGPEc> −0.01) is marked in gray. The horizontal
dashed lines refer to the best fits of the standard ETAS model. (b) The estimated
blind times as a function of the mainshock date, where the vertical bars refer to the
standard errors provided in Tab. 2. Last mainshocks have a significantly smaller Tb-
value, indicating an improved detection.
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Figure 1: Illustration of the theoretical relations Eq. (3) and Eq. (4) for incomplete catalogs:
(a) The apparent rate R as a function of the true rate R0 for three different blind times
Tb (solid lines), where the dotted line refers to a complete recording. (b) The shape of the
apparent frequency-magnitude F (m) for Tb = 60 s and three different values of R0. Here the
dotted line refers to the true underlying Gutenberg-Richter distribution (Eq. 5) with b = 1.
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Figure 2: Example of the ETASI approach for an ETAS simulation with µ = 1.0 d−1,
α = 1.0, c = 0.001 d, p = 1.2, b = 1, Mmin = 2.0, and Mmax = 7.0, where a blind time
of Tb = 60 s was used to remove non-detectable earthquakes and create the analogs of real
catalogs: (a) Event magnitudes versus time, where points and crosses indicate detected
and missed events, respectively. The inset shows the same for logarithmic times relative
to the mainshock, where the dashed line represents the empirical completeness function for
California (Eq. 12). The small panels (b)-(d) show the contour plots of the difference of the
Likelihood-value, LLmax −LL, as a function of two parameters, while the other parameters
are fixed to the actual ETAS parameters. Crosses mark the true values.
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Figure 3: The inversion results for 100 different synthetic sequences, corresponding to the
example shown in Fig. 2(a). The boxes extend from the lower to upper quartile values of
the estimated parameters, with a horizontal line at the median, while the bars indicate the
full range of the results. The horizontal dashed lines refer to the true parameter values. The
right plot shows the corrected information gain per earthquake (IGPEc) of ETASI relative
to the ETAS model.
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Figure 4: Illustration of the six selected sequences from California. For each of them,
the upper panel shows the magnitude versus time plot of the sequence, while the bottom
plot shows the corresponding epicenter distribution, where the central big point marks the
epicenter of the corresponding mainshock, which is named in the title together with its
magnitude and occurrence time.
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Figure 5: Results of the model fit to the selected sequences in California, shown in Fig. 4,
where each row belongs to the mainshock named in the right plot. The left column shows
the earthquake rate (with the scale on the left side) as a function of the logarithmic time
after the mainshock. Here, black crosses refer to the observed rates, while lines indicate the
mean rates for the optimized models: standard ETAS (bold gray) and apparent R (thin
solid), respectively actual R0 (thin dashed) rates of the ETASI model. For information, the
recorded event magnitudes and the empirical completeness-relation Eq. (12) (black dashed
line) are also plotted (scale on the right). In all examples, a gap of small magnitude events
is visible immediately after the mainshock. In the right column, black crosses show the
estimated b-values for non-overlapping bins with 100 aftershocks as a function of time. The
horizontal error defines the events’ time interval, and the vertical one refers to plus/minus
one standard deviation of the b-value uncertainty. In the same plot, the solid curve indicates
the apparent b-values related to the ETASI magnitude distribution (Eq. 11). The horizontal
dashed line marks the estimated true b-value, while the dotted horizontal line indicates the
estimated b-value assuming completeness all time long.
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Figure 6: (a) Dependence of the ETASI fit quality as a function of the assumed c-value,
where points mark the optimal value c0. The quality is measured by the mean information
gain per event, IG = (LL(c)−LL(c0))/N . The region with a rather insignificant loss of the
fit quality (IG> −0.01) is marked in gray. The horizontal dashed lines refer to the best fits
of the standard ETAS model. (b) The estimated blind times as a function of the mainshock
date, where the vertical bars refer to the standard errors provided in Tab. 2. Last mainshocks
have a significantly smaller Tb-value, indicating an improved detection.
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