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Abstract. Earthquake sequences add a substantial hazard beyond the solely declustered perspective of common prob-14

abilistic seismic hazard analysis (PSHA). A particularly strong driver for both social and economic losses are so-called15

earthquake doublets (more generally multiplets), i.e. sequences of two (or more) comparatively large events in spatial16

and temporal proximity. Without differentiating between foreshocks and aftershocks, we hypothesize three main influ-17

encing factors of doublet occurrence: (1) the number of direct and secondary aftershocks triggered by an earthquake;18

(2) the occurrence of independent clusters and seismic background events in the same time-space window; and (3)19

the magnitude size distribution of triggered events (in contrast to independent events). We tested synthetic catalogs20

simulated by a standard epidemic type aftershock sequence (ETAS) model for both Japan and Southern California.21

Our findings show that the common ETAS approach significantly underestimates doublet frequencies compared to22

observations in historical catalogs. In combination with that, the simulated catalogs show a smoother spatiotemporal23

clustering compared to the observed counterparts. Focusing on the impact on direct aftershock productivity and total24

cluster sizes, we propose two modifications of the ETAS spatial kernel in order to improve doublet rate predictions:25

(a) a restriction of the spatial function to a maximum distance of 2.5 estimated rupture lengths; and (b) an anisotropic26

function with contour lines constructed by a box with two semicircular ends around the estimated rupture segment.27

These modifications shift the triggering potential from weaker to stronger events and consequently improve doublet28

rate predictions for larger events, despite still underestimating historic doublet occurrence rates. Besides, the results29
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for the restricted spatial functions fulfill better the empirical Bath’s law for the maximum aftershock magnitude. The30

tested clustering properties of strong events are not sufficiently incorporated in typically used global catalog scale31

measures, such as log-likelihood values, which would favor the conventional, unrestricted models.32

Keywords: earthquake doublets, ETAS, productivity, anisotropy.33

Main author contact information: Christian.Grimm@stat.uni-muenchen.de34

Introduction35

Sequences of strong earthquakes within a relatively narrow time-space window can cause dramatic36

social and economic damage to our society. The financial losses produced by such multiplets are of37

particular interest to the risk assessment of governments and in the insurance industry. Recent ex-38

amples of short-term clusters containing several strong, damaging earthquakes are the Kumamoto39

(Japan, 2016) sequence with a magnitude MJMA = 7.3 mainshock preceded by MJMA = 6.4 and40

MJMA = 6.5 foreshocks within 28 hours (Zhuang et al., 2017), and the Ridgecrest (California,41

2019) sequence with a mainshock Mw = 7.1 preceded by a Mw = 6.4 event about 34 hours earlier42

(Hauksson et al., 2020).43

Most typically, sequences of strong and destructive foreshocks, mainshocks, and aftershocks44

occur within several hours or few days and can therefore be assumed to be controlled by a physical45

triggering mechanism. However, it is well-known that aftershock sequences can increase seismic-46

ity locally for years or even decades. In case that two strong events occur in spatial proximity47

but months apart, the second event may be an offspring of the on-going sequence of the first, or48

may have happened coincidentally due to independent background seismicity or as a part of an49

unrelated sequence.50

However, from a risk management perspective, the question of physical causality and the par-51

ticular interevent time seems rather irrelevant. In both cases, the repeated destruction may affect52
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the same governmental budgets and (re-)insurance contracts within a relatively short time and thus53

presents a comparably severe risk. Reliable predictions of the likelihood of any strong event cluster,54

both triggered and coincidental, are therefore an important task for risk managers in governments55

and the insurance industry.56

A suitable term for strong event clusters is given by so-called earthquake doublets, sometimes57

more generally referred to as multiplets. While exact specifications are highly inconsistent in the58

literature, they are generally defined as pairs (doublets) or sets (multiplets) of similarly strong59

earthquakes in spatiotemporal proximity (Felzer et al., 2004; Gibowicz and Lasocki, 2005; Kagan60

and Jackson, 1999; Lay and Kanamori, 1980).61

Kagan and Jackson (1999) defined doublets as pairs of earthquakes with magnitude Mw ≥ 7.5,62

that are no more than one rupture size apart and whose interevent time is less than their recurrence63

time derived from plate motion. They found that approximately 22% of worldwide events with64

Mw ≥ 7.5 occur in doublets, with a maximum interevent time of doublet pairs of almost 17 years.65

In contrast, Felzer et al. (2004) specified multiplets as a potential mainshock together with66

all aftershocks within 0.4 magnitude units, occurring during the following two days and within a67

spatial box centered in the mainshock’s epicenter. The distance of the mainshock’s epicenter to the68

sides of the box is set to 2.5 times the estimated fault length, which is justified by the hypothesis69

that aftershocks are generally expected to occur within two fault lengths, with an extra half a70

length accounting for location uncertainty. They demonstrated statistical evidence that foreshocks,71

aftershocks, and multiplets occur due to the same physical triggering mechanism and that the72

number of times that multiplets occur increases linearly with the number of aftershocks observed.73

Felzer et al. (2004) infer that certain regions in the world, such as Solomon Islands, show an74

increased multiplet rate due to higher aftershock rates and earthquake density, rather than unique75
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seismic fault structures that support the occurrence of multiplets.76

Gibowicz and Lasocki (2005) defined doublets as a pair of trigger-related earthquakes with no77

more than 0.25 magnitude units difference, applying magnitude-dependent stepwise spatial and78

temporal constraints of 40-90 kilometers and 200-450 days.79

Although the concept of earthquake triggering is well known and the potential of additional80

damage due to on-going seismic sequences has been shown in recent studies (Abdelnaby, 2012;81

Kagermanov and Gee, 2019; Papadopoulos et al., 2020), seismic hazard is typically computed82

considering only independent (i.e. mainshock) earthquakes, e.g. in probabilistic seismic hazard83

analysis (PSHA) approaches (Cornell, 1968; McGuire, 2008). PSHA traditionally not only ne-84

glects contributions to hazard from supposedly triggered sequences and therefore underestimates85

chances of doublet and multiplet occurrences, but it is also based on the highly subjective and86

influential selection of a declustering method (Marzocchi et al., 2014; van Stiphout et al., 2011;87

Zhang et al., 2018).88

A prominent and extensively studied method to analyse earthquake sequences is the epidemic89

type aftershock sequence (ETAS) model (Ogata, 1988, 1998). ETAS accounts for earthquake clus-90

tering in terms of a branching process and models the number of aftershocks as well as their spatial91

and temporal distribution depending on the magnitude of the trigger. The spatiotemporal event rate92

is formed by the sum of a triggered rate and a time-independent seismic background rate contri-93

bution (Chu et al., 2011; Jalilian, 2019; Kagan et al., 2010; Zhuang et al., 2002). ETAS model94

estimations can be used for both short-term aftershock forecasts and the simulation of long-term95

synthetic catalogs.96

The goodness of ETAS model fits is typically assessed by the log-likelihood function, Akaike’s97

information criterion (AIC), or the degree of spatial clustering, expressed by Ripley’s K-function98
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(Chu et al., 2011; Veen, 2006). Besides, visual tools such as spatial plots of the estimated condi-99

tional intensity and a comparison of the ETAS triggering function with observed aftershock rates100

in the historic catalog can be used (Chu et al., 2011). All of the above have in common that they as-101

sess the model fit on a global catalog scale, i.e., they test whether the synthetic catalogs sufficiently102

well represent the observed spatiotemporal clustering behavior in the full magnitude range.103

The log-likelihood and AIC measures are related to the joint probability of all earthquakes and104

thus mainly determined by the fit to the more numerous smaller magnitude events. This might105

be problematic concerning earthquake risk, which is mainly related to large events. For example,106

Hainzl et al. (2008, 2013) showed that the common ETAS assumption of isotropic aftershock107

triggering leads to a biased magnitude-scaling of the aftershock productivity where the trigger108

potential of small magnitudes is overestimated to better adapt to realistic anisotropic aftershock109

distributions. Therefore, it is also desirable to assess synthetic ETAS catalogs on their capability110

to predict realistic occurrence rates of large magnitude doublets and multiplets.111

In this paper, we present a new concept of assessing the quality of synthetic catalogs gener-112

ated by ETAS with respect to doublet and multiplet rates. We introduce three novel and more113

realistic designs of the ETAS spatial kernel that improve predictions of the respective rates: (1)114

an anisotropic spatial distribution, (2) an isotropic but finite spatial distribution, and (3) a finite115

anisotropic spatial distribution. We then test our new model approaches for 24 and 39 years lasting116

earthquake catalogs recorded in Japan and Southern California, respectively.117

In the following section, we derive a doublet and multiplet definition that is used in this paper118

and comprehensively discuss the main influencing factors for doublet and multiplet occurrences.119

Next, we briefly describe the utilized earthquake catalogs. We then describe the common ETAS120

model, define the tested variants of the spatial kernel and introduce the quality measures applied in121
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our analysis of model fits and simulation results. Finally, we present and discuss the results of all122

four studied ETAS model versions, and we interpret the findings related to the initial motivation in123

the Conclusion section.124

Earthquake doublets125

Definition126

For the sake of simplicity, in this work, we waive the term multiplet and define an earthquake127

doublet more generally as a pair or set of events with a magnitude difference of less than 0.4,128

occurring within one year (starting from the occurrence time of the earlier event) and within a129

circular radius of 2.5 times the estimated rupture length of the earlier event.130

The temporal constraint of one year is derived from the typical length of a (risk) budget period131

or reinsurance contract. We limit our investigation to strong events with magnitude Mw ≥ 5.9,132

therefore allowing for doublet and multiplet partner events down to Mw ≥ 5.5.133

Doublets may either occur within a supposed triggered sequence (mainshock and aftershock)134

or among independent clusters. In order to avoid doublets built by two aftershocks, being both135

related to a stronger mainshock prior to them, we only count doublets where the earlier event is136

not contained in the time-space domain of a previous, stronger event. This is consistent with our137

motivation drawn from a risk management perspective, since the damage caused by an aftershock-138

aftershock doublet is likely to be overshadowed by the mainshock.139

Main influencing factors140

Assuming equal physical triggering mechanisms of foreshocks and aftershocks (Felzer et al.,141

2004), we propose the following three main factors for doublet occurrences:142
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(1) the aftershock productivity, i.e. the number of direct and secondary offsprings triggered by143

an earthquake,144

(2) the number of independent events in the same time-space window, i.e., the occurrence of145

clustered and background events that are unrelated to the triggering of the event under con-146

sideration, and147

(3) the magnitude size distribution of triggered and independent background events.148

It is evident that a higher amount of earthquakes within the time-space window of an investi-149

gated event increases the probability of a doublet occurrence. Therefore, an increased aftershock150

productivity and background activity (the first two factors above), increase the likelihood that a151

doublet partner is found. Clearly, the aftershock productivity has a much stronger effect than the152

time-homogeneous seismic background rate since it directly increases the local and short-term153

cluster size. It is important to mention that triggered and background seismicity are interacting154

like competing contributors to event rates in ETAS, so an increase of aftershock productivity is155

generally going along with a decrease of background seismicity and vice versa. The overlapping156

of the considered event sequence by a second, unrelated cluster evolving in the same time-space157

window increases the doublet probability substantially if the second cluster is approximately equal158

or larger.159

Regarding the magnitude size distribution (the third factor above), it is still controversially de-160

bated in the literature whether the magnitude size distribution of a triggered event depends on the161

magnitude of its trigger. While Felzer et al. (2004) assume that the magnitude size distribution of a162

triggered event follows a constant Gutenberg-Richter relationship and therefore is independent of163

the trigger’s magnitude, Nandan et al. (2019) find triggered magnitudes clustering around the trig-164
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gering magnitude by a kinked magnitude size distribution, which would mean that the triggering165

event tends to reproduce similar magnitudes with increased probability. In contrast to that, based on166

a stacking-approach analysis of Gutenberg-Richter a and b value time series, Gulia et al. (2018) ar-167

gue that the b-value on average shows a temporal 20-30% increase compared to the pre-mainshock168

time, with more significant increases for stronger events nearby the mainshock epicenter location.169

We point out that the kinked magnitude size distribution by Nandan et al. (2019) would increase170

chances of doublet and multiplet occurrence, whereas the temporal b-value increase suggested by171

Gulia et al. (2018) significantly lowers their likelihood.172

In this paper, however, we assume a unique magnitude size distribution for all events according173

to the Gutenberg-Richter relationship (Gutenberg and Richter, 1944) as done so in the vast majority174

of ETAS studies. Instead, we are focusing our study on the impact of the aftershock productivity175

in ETAS on doublet and multiplet occurrence rates.176

Selection of earthquake catalogs177

We perform our study in two regions with distinct tectonic environments and faulting types, Japan178

and Southern California. The seismicity in Japan is complex, hosting reverse faulting subduction179

zone events (particularly along the coast) with relatively flat dips and broader, more isotropically180

shaped spatial distributions of aftershock epicenters, as well as in-slab normal faulting earthquakes181

and crustal events with varying depths and mechanisms. Southern California has mostly steep182

faults with strike-slip rupturing mechanisms in a continental tectonic regime, promoting narrower,183

elongate distributions of epicenters.184
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Regional catalogs185

In the following, we describe the regional earthquake catalogs used for the estimations of the ETAS186

model. For each data set, we define a time-space target window, which is constructed by a time187

span and a geographical polygon. This window comprises the so-called target events that are used188

to fit the model. The additional complementary window is built by the preceding six months and a189

one-degree bounding box around the polygon in the geographic coordinate system. The so-called190

complementary events are not fitted by the ETAS model estimations but may contribute to the191

estimated trigger rate of events in the target domain.192

We downloaded the Japan earthquake catalog from the National Research Institute for Earth193

Science and Disaster Resilience (NIED) (see Data and Resources; Kubo et al. (2002)). The catalog194

provides both moment tensor magnitudes and Japanese Meteorological Agency (JMA) scale mag-195

nitudes. For our study, we chose the moment magnitude data, which is complete from Mc = 4.0196

according to the fit of the model of Ogata and Katsura (1993). We define the time-space target197

window from July 1, 1997, until October 31, 2020, and for a longitude-latitude range from 129°E198

to 144°E and from 28°N to 44°N, respectively. Figure 1(a) shows the selected event locations with199

the corresponding boundaries of the spatial polygon.200

The focal mechanism catalog for Southern California was obtained from the Southern Cali-201

fornia Earthquake Data Center (SCEDC) (see Data and Resources; Hauksson et al. (2012); Yang202

et al. (2012)). Magnitudes are provided in moment magnitude scale. The completeness magnitude203

is estimated to be Mc = 2.8 using the Ogata and Katsura (1993) model. We defined the target204

window from July 1, 1981, until December 31, 2019, and by a hexagonal polygon (Hutton et al.,205

2010) which is depicted in figure 1(b) together with all event locations.206
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Both catalogs provide nodal plane solutions for each event. Since the accuracy of focal mech-207

anisms cannot be guaranteed, especially for smaller magnitude events, we used the given sets only208

as additional candidates in our algorithm to determine the strike angle needed for the anisotropic209

ETAS model version (see section ”ETAS model”).210

Short-term incompleteness211

Short-term incompleteness in earthquake catalogs can be defined as the deficiency of events above212

the general completeness level Mc for a limited time after a relatively large event. The phe-213

nomenon appears to mainly result from the overlap of seismic records that are dominated by the214

coda waves of the preceding strong event and therefore let subsequent, weaker events remain un-215

detected (de Arcangelis et al., 2018).216

Short-term incompleteness in the underlying earthquake catalogs has been identified as a ma-217

jor source of bias in the ETAS estimation process (Hainzl, 2016a,b; Kagan, 2004; Page et al.,218

2016; Seif et al., 2017). For m ≥ 6 earthquakes in Southern California, Helmstetter et al. (2006)219

estimated the duration of temporary catalog incompleteness (in days) above a given magnitude220

threshold Mc as221

t = 10(m−4.5−Mc)/0.75. (1)

For instance, that means that a catalog with cut-off magnitude Mc is incomplete for about one day222

after an event with magnitude m = Mc + 4.5. The duration of incompleteness exceeds one minute223

for magnitudes m ≥Mc + 2.2.224

In our study, we assume that relation (1) is approximately valid for the region of Japan as225

well. Events occurred during periods of temporary incompleteness are not used for the maximum226

likelihood ETAS fit, but still contribute to the ETAS event rates of future target events, which227
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means, technically speaking, that they are downgraded from target to complementary events. To228

avoid excessive fragmentation of the target time window, we applied short-term incompleteness229

only to events with magnitudes m ≥ 6.2 for Japan and m ≥ 5.0 for Southern California, which is230

2.2 magnitude units above the respective catalog thresholds.231

Global ISC-GEM catalog232

For the comparison with more long-term regional and global doublet occurrence rates, we utilize233

the International Seismological Centre - Global Earthquake Model (ISC-GEM) Global Instrumen-234

tal Earthquake Catalogue with events from January 1, 1904 (see Data and Resources; Di Giacomo235

et al. (2018); Storchak et al. (2015)). Magnitudes are provided in moment magnitude scale. Ac-236

cording to the catalog description and Di Giacomo et al. (2018), the ISC-GEM catalog is step-wise237

complete from Mc = 7.5 (before 1918), Mc = 6.25 (from 1918 to 1959) and Mc = 5.5 (since238

1960). Significant continental earthquakes with magnitude 6.5 or larger are included before 1918.239

ETAS model240

The initial ETAS model implemented in this study is based on the R package ETAS as presented241

by Jalilian (2019) (see Data and Resources Section). It estimates the model parameters using a242

maximum likelihood approach and the stochastic declustering method introduced by Zhuang et al.243

(2002).244

In ETAS, the occurrence rate of an earthquake at a given time t and location (x, y) corresponds245

to the sum of two overlaying components: (a) the coincidental, time-independent background246

seismicity rate and (b) the sum of dynamic trigger rate contributions from all events occurred247

before time t (i.e. the event history Ht). The combined occurrence rate is therefore modeled by a248
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non-homogeneous Poisson process with intensity function249

λ(t, x, y|Ht) = µh(x, y) +
∑
i:ti<t

κA,α(mi) gc,p(t− ti) fD,γ,q(x, y, i) (2)

where µ is the total rate of m ≥ Mc background events in the whole region and h(x, y) denotes250

the spatial probability density function of the background seismicity.251

The term within the sum describes the trigger rate contribution of an event i, occurred at time252

ti < t and location (xi, yi) with magnitude mi, to the rate of m ≥Mc events at time t and location253

(x, y).254

The aftershock productivity function255

κA,α(mi) = A exp(α(mi −Mc)) (mi ≥Mc; A,α > 0) (3)

describes the average number of direct aftershocks (offsprings) triggered by an event i with mag-256

nitude mi. Such an exponential growth of the productivity is in good agreement with observations257

(see e.g. the summary provided by Hainzl and Marsan (2008)).258

The temporal trigger function259

gc,p(t− ti) = (t− ti + c)−p (t ≥ ti; c, p > 0) (4)

is the well-known empirical Omori-Utsu law for the decay of aftershock rates with increasing time260

t after the occurrence time ti of the triggering event i (Utsu et al., 1995). The c-value defines the261

delay of the onset of the power-law decay and is typically much less than 1 day. It is likely related262

to short-time incompleteness of earthquake catalogs after mainshocks (Hainzl, 2016a). The p value263
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is in the range 0.8– 1.2 in most cases (Utsu et al., 1995).264

Finally, the spatial trigger function fD,γ,q(x, y, i) is conventionally designed as an isotropic265

probability density function (pdf) and models the decay of aftershock rates depending on the dis-266

tance of (x, y) to the epicenter of the triggering event, (xi, yi). The ETAS model with an isotropic267

spatial kernel is the hereinafter called isotropic reference model M0.268

However, the assumption of an isotropic distribution is considered to be a weak point in many269

publications throughout the literature (Bach and Hainzl, 2012; Hainzl et al., 2008, 2013; Ogata,270

1998, 2011; Ogata and Zhuang, 2006; Seif et al., 2017; Zakharova et al., 2017; Zhang et al., 2018,271

2020). To name a few, Zhang et al. (2018) emphasize that isotropy may be specifically unsuitable272

for subduction zone events above a magnitude of approximately Mw = 7.5 since estimated rupture273

lengths and widths are diverging increasingly. They suggest a uniform spatial density in the rupture274

area with power-law decay outside. Moreover, since ETAS usually neglects the depth dimension,275

increasing dip angles can already lead to a clearly elongate and thus anisotropic projection shapes276

of the rupture plane for even smaller events. Another prominent design is the elliptic Gaussian277

distribution introduced by Ogata (1998) and further studied by Ogata and Zhuang (2006) and278

Ogata (2011).279

In the above references, anisotropic models are generally found to lead to more accurate ETAS280

model estimates. In particular, Hainzl et al. (2008, 2013) emphasize that the assumption of isotropy281

can lead to an underestimation of the aftershock productivity parameter α, resulting in underpre-282

dicted cluster sizes of stronger events. Given our particular interest in strong events, this gives the283

motivation to apply an anisotropic alternative in this study.284

Besides, in preliminary analyses of a standard ETAS model, we observed that small events are285

typically assigned a much wider reach of spatial triggering relative to their estimated rupture size286
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than large events. We hypothesize that this might similarly promote disproportionate triggering287

of smaller events, since it might be easier for the ETAS algorithm to model unique spatial cluster288

patterns by the overlapping spatial kernels of a large number of smaller events than by the rather289

inflexible spatial shapes of fewer, but stronger events.290

Therefore, in this paper, we propose two modifications of the conventional, isotropic reference291

modelM0: Firstly, we apply an anisotropic spatial kernel constructed around the surface-projection292

of the estimated rupture segment, which is assumed to be parallel to the strike and passing through293

the epicenter. Secondly, we introduce a magnitude-dependent spatial restriction threshold to the294

spatial kernel that prevents events from triggering outside of the specified surrounding area.295

In the following, we introduce the finite and infinite isotropic and anisotropic kernels. Next,296

we present the algorithm to estimate the rupture length as well as the strike angle and epicenter297

position along the rupture line in the anisotropic model case. Then we define the set of four models298

that were tested in this study. Ultimately, we account for a re-scaling of the aftershock productivity.299

Isotropic versus anisotropic spatial kernel300

Consider a triggering event iwith magnitudemi and epicenter location (xi, yi). Furthermore, in the301

isotropic case, let ri(x, y) be the point-to-point distance of a point (x, y) to the epicenter location302

of event i. We define the standard isotropic spatial kernel following Jalilian (2019) by303

fD,γ,q(x, y, i) :=
q − 1

D exp(γ(mi −Mc))

(
1 +

πri(x, y)2

D exp(γ(mi −Mc))

)−q
(5)

with spatial parameters q > 1 and D, γ > 0. Note that the characteristic length of the power-304

law decay,
√
D exp(γ(mi −Mc))/π, scales with the trigger magnitude which accounts for the305
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observed exponential increase of the rupture dimensions with earthquake magnitude (Wells and306

Coppersmith, 1994).307

For the anisotropic case, let li be the estimated rupture length of event i and ri(x, y) denote308

the nearest point-to-segment distance of a point (x, y) to the estimated rupture segment of event i.309

Then we construct the anisotropic spatial kernel by310

fD,γ,q(x, y, i) :=
q − 1

D exp(γ(mi −Mc))

(
1 +

2 l(mi) ri(x, y) + πri(x, y)2

D exp(γ(mi −Mc))

)−q
. (6)

with the same parameter constraints q > 1 and D, γ > 0.311

The anisotropic kernel (6) is a generalisation of the isotropic kernel (5) for rupture lengths312

l(mi) > 0. In contrast to the isotropic function, the contour lines of the anisotropic kernel are313

not centered around the epicenter but constructed as a box with two semicircular ends around the314

estimated rupture line of the triggering event. Both kernels are probability density functions (pdf)315

over infinite space.316

Spatial restriction317

We can restrict the spatial extent of both the isotropic and anisotropic spatial kernel by setting318

fD,γ,q equal to 0 if the respective distance term exceeds a certain magnitude-dependent threshold319

r̃(mi), i.e.320

f̃D,γ,q(x, y, i) =


fD,γ,q(x,y,i)

FD,γ,q(mi)
if ri(x, y) ≤ r̃(mi)

0 otherwise.

(7)
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where f̃D,γ,q(x, y, i) is normalized by the integral of fD,γ,q(x, y, i) over the area up to the cutoff321

distance r̃(mi) in order to retain a pdf,322

FD,γ,q(mi) =


1−

(
1 + πr̃(mi)

2

D exp(γ(mi−Mc))

)1−q
(isotropic model)

1−
(

1 + 2 l(mi) r̃(mi)+πr̃(mi)
2

D exp(γ(mi−Mc))

)1−q
(anisotropic model).

In this study, we use a threshold which is proportional to the magnitude-dependent rupture323

length l(mi) of event i, i.e. r̃(mi) = k · l(mi), in order to correlate the spatial trigger extent to the324

estimated rupture dimension.325

Figure 2 visualizes the shapes of isotropic and anisotropic spatial kernels, restricted to a dis-326

tance of r̃(mi) = 2.5 · l(mi), for the exemplary magnitudes m = 5.0 and m = 7.5, using initial327

spatial parameter guesses D = 2.0, γ = 2.1 and q = 1.5.328

Estimation of rupture length, strike, and position of rupture line329

The anisotropic spatial kernel defined in (6) requires an estimation of the ruptured segment, in330

particular its central location, the length, and the strike angle in order to locate the rupture line331

segment of an earthquake.332

In order to obtain magnitude-dependent estimates of the subsurface rupture lengths l of all333

events, we use the scaling relations334

log10(l(m)) =


−2.37 + 0.57m reverse faulting

−2.57 + 0.62m strike-slip faulting

(8)

where, for the sake of simplicity, we selected the reverse faulting scaling relations for subduction335
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environments, provided by Blaser et al. (2010), for all events in the Japan catalog and the strike-336

slip faulting equations for continental regimes, given by Wells and Coppersmith (1994), for all337

Southern Californian events.338

The strike angles are selected such that the corresponding rupture line fits well to the cloud339

of potential aftershocks. Therefore, we test the given focal mechanism data in the earthquake340

catalogs and compute the summed trigger rates for the subsequent events like in equation (2),341

assuming initial parameter guesses:342

(A0, α0, c0, p0, D0, γ0, q0) = (0.02, 1.6, 0.02, 1.0, 2.0, 2.1, 1.5) .

Additionally, we go through all strikes from 0° to 175° in 5° steps and compute the initial trigger343

rates accordingly. From all candidates, we choose the one that leads to the maximum sum of344

occurrence rate contributions to future events and therefore is in best agreement with presumed345

offsprings. Note that, since we do not consider the rupture’s dip, strikes above 180° coincide with346

the tested set of angles. Once we have optimized the strikes via the above approach, we additionally347

test five different positions of the rupture line relative to the corresponding epicenter location of348

the trigger event. Thus, we allow the epicenter to lie either right at the start, center, or end of the349

rupture line; or a quarter or three quarters along the rupture line.350

The above-mentioned selection algorithm clearly represents a manipulation of the initial model351

conditions. In fact, the so-selected strike angles show only moderate agreement with the originally352

provided strikes. Compared to using only nodal plane solutions given in the catalogs, we observed353

negligible effects for Japan and moderately increasing estimates of the aftershock productivity354

in Southern California, where potential aftershocks were more likely to scatter along a clearly355
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identifiable line. In any case, the impact of optimized strike selection was much smaller than the356

effect of the introduced spatial restrictions or the anisotropic shape of the spatial kernel itself.357

Mismodeling of the spatial aftershock distribution leads to biased model estimates (Hainzl358

et al., 2008). To minimize this problem, we refrained from directly using the strike values pro-359

vided in the catalogs due to the large uncertainties in the source inversions. Instead, the optimized360

selection of strike angles assures that the event’s rupture line passes through the cloud of its poten-361

tial aftershocks, which we visually confirmed for individual sequences.362

Choice of four model designs363

In this paper, we analyze four different variants of the ETAS model regarding their ability to predict364

realistic doublet and multiplet rates. Table 1 lists the model design specifications made for each365

approach.366

The reference model M0 represents the standard isotropic design in equation (5) with event-367

specific spatial restriction368

r̃0(mi) = 100 · l(mi).

The restriction r̃0(mi) is only of technical nature and has negligible impact on results while consid-369

erably improving code performance by avoiding the computation of extremely distant inter-event370

triggering relations over the entire catalog size. Hereinafter, we will therefore refer to models with371

spatial extent r̃0(mi) as unrestricted.372

Using the same isotropic kernel (5), in model M1 we test the spatial restriction373

r̃1(mi) = min{2.5 · l(mi), 1}
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where the lower limit of one kilometer guarantees a minimum spatial extent to the smallest events374

in the catalog. The aim of the restricted extent of the spatial kernel is to avoid wrong associations375

of distant events as aftershocks. It gives more triggering power to the stronger events (that may376

trigger in a larger area) and takes away triggering potential from the weaker events. The metric377

of 2.5 rupture lengths goes back to the assumption in Felzer et al. (2004) that aftershocks are378

expected to mainly occur within this distance, including a buffer of half a rupture length for location379

uncertainties.380

Model M2 builds upon the anisotropic spatial kernel (6) with optimized strikes and relative381

rupture locations and is unrestricted (r̃0(mi)).382

Finally, model M3 tests the anisotropic spatial kernel with restriction r̃1(mi).383

Note that, for the sake of consistency, we applied the anisotropic spatial kernels to all events384

disregarding their magnitude in models M1 and M3. For small rupture lengths, however, the shape385

is similar to an isotropic kernel.386

Subsequent re-scaling of ETAS functions387

Note that the temporal trigger function (4) is not a pdf since its integral over infinite time typically388

amounts to a number larger than 1 (for p > 1) or infinity (for p < 1). Therefore, the excessive389

density in (4) down-scales the estimates of parameter A in the productivity function (3).390

In favor of better interpretability of the model results, it is useful to cut off the temporal trigger391

function (4) at the length of the entire catalog T (in days) and normalize it by the integral over the392

time range from 0 to T , i.e.393

Gc,p(T ) =
1

1− p
(
(T + c)1−p − c1−p

)
.
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Accordingly, we re-scale the absolute aftershock productivity parameter A by394

Ã = A Gc,p(T ). (9)

395

Quality measures396

In this section, we introduce the quality measures used to assess and compare the goodness of the397

selected models. We start with a short description of the log-likelihood value and branching ratio,398

designed to assess the goodness of fit and the detected trigger portion on a global catalog scale.399

These properties are widely used in ETAS analysis but have the disadvantage that they do not400

provide any detailed information on how well the model represents the critical triggering behavior401

of particularly strong earthquakes, which is of interest in this study.402

Therefore, we add tools to more specifically evaluate the models’ capability of representing403

strong event clusters. First, the expected, magnitude-dependent cluster size is derived. Next, we404

outline the ETAS forward simulation procedure for both single sequences and synthetic catalogs405

based on the model estimates. Then, we suggest visual and semi-quantitative measures (e.g. Bath’s406

law, degree of temporal and spatial clustering) that help understand clustering properties in the407

simulated catalogs. Finally, we describe the evaluation of doublet probabilities from simulated408

catalogs and sequences.409
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Log-likelihood function and integrated event rate410

The set of ETAS parameters, θ = (µ,A, α, c, p,D, γ, q), is optimized by maximizing the log-411

likelihood function (LLF)412

l(θ|HT ) =
N∑
j=1

ln(λθ(tj, xj, yj|Htj))− Λθ(T,S|HT) (10)

where the first term sums up the logarithmic event rates (2) at the exact times tj and locations413

(xj, yj) of the N target events that occurred in the time-space window specified for each catalog.414

The second term415

Λθ(T,S|HT) =

∫
T

∫∫
S
λθ(t, x, y|Ht)dxdydt (11)

represents the total event rate integrated over the (step-wise) target time window T and the target416

space window S based on the estimated background seismicity rate and the triggering-induced417

rate resulting from contributions of both target and complementary events in the original catalog.418

In other words, Λθ(T,S|HT) represents the expected total number of events to occur within the419

modeled target time-space domain (Jalilian, 2019; Ogata, 1988, 1998).420

In general, a larger LLF value l(θ|HT ) implies a better fit to the event occurrence in the original421

catalog. Note that the LLF value is comparable only for identical data inputs, i.e. model runs for422

Japan and Southern California cannot be cross-compared. Since all model approaches are based423

on the same number of free parameters, the information from the AIC criterion is redundant and424

therefore not shown.425
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Branching ratio426

We modeled the magnitude size distribution by the pdf derived from the Gutenberg-Richter rela-427

tionship, i.e.428

ρ(m) =


βexp(−β(m−Mc)) if m ≥Mc

0 otherwise,

(12)

thus assuming Mmax =∞ as the maximum magnitude for each region. The maximum-likelihood429

estimator for parameter β is430

β̂ =
N∑N

i=1(mi −Mc)

where N is the number of fitted events and mi denotes the respective event magnitudes (Jalilian,431

2019). Applied to the magnitudes of all target events in our regional catalogs, we obtained β̂JPN =432

2.36 for Japan and β̂CAL = 2.73 for Southern California.433

The branching ratio measures the mean direct aftershock productivity of an arbitrary event,434

averaged over the entire magnitude range. It is computed by the integral of the estimated aftershock435

productivity with parameters alpha and re-scaled Ã weighted by the pdf of the magnitude size436

distribution ρ(m), i.e. (Jalilian, 2019; Seif et al., 2017)437

νbranch =

∞∫
mc

Ã eα(m−Mc)ρ(m)dm =
Ã β

β − α
(13)

for α < β.438

22



Cluster size439

Based on the estimates of the (direct) aftershock productivity function (3) and the branching ratio440

(13), we obtain the expected cluster size441

N̂c(m) =
Ã eα(m−Mc)

1− νbranch
(14)

including secondary triggering by use of the geometric series (Helmstetter and Sornette, 2003).442

ETAS forward simulation process443

For every model and region, we used the fitted ETAS parameters to forward-simulate both single444

synthetic sequences and entire catalogs. We generated single trigger sequences to study the results445

without the impact of background seismicity and independent clusters. Each of these sequences446

is initiated by a mainshock of varying magnitude, starting from Mw = 5.5 and incrementally447

increasing in tenths of a magnitude unit. For each region and model, a set of 5,000 sequences was448

simulated for each mainshock magnitude.449

Additionally, we simulated 10,000 realizations of an entire synthetic catalog, including back-450

ground seismicity and simultaneously evolving trigger sequences. As a time-space window for the451

simulations, we chose the identical constraints for which the ETAS models were fitted (see section452

Selection of earthquake catalogs), including the semi-year complementary time window as an ini-453

tialization period of pre-existing seismicity. The background seismicity rate is distributed over the454

spatial window by a superposition of bivariate, isotropic Gaussian kernels, centered in the original455

event occurrences (Jalilian, 2019).456

In both types of simulations, the number of offsprings is drawn from a Poisson distribution with457

23



an expected value equal to the magnitude-dependent aftershock productivity estimate. We used the458

inversion method to sample the spatial and temporal distance of an offspring to the trigger and then459

sampled uniformly from the respective contour line of the spatial distribution. The magnitudes460

of both triggered and independent events were sampled from the Gutenberg-Richter distribution461

(eq. 12) with β as estimated for the respective region.462

Since the original Japan catalog contains the extreme Tohoku earthquake (March 11, 2011;463

according to the catalogMw = 8.7) that is very unlikely to be sampled from the Gutenberg-Richter464

distribution, we manually added the Tohoku event to all synthetic catalogs for Japan.465

Bath’s law466

An important property of an earthquake cluster is the magnitude difference between the mainshock467

and the strongest aftershock, as it can serve as an indicator of how much hazard is added by the468

on-going triggering of a sequence.469

Historical observations show that this magnitude difference is, on average, approximately 1.2470

magnitude units independently of the absolute magnitude of the trigger event, which is referred to471

as Bath’s Law (Helmstetter and Sornette, 2003; Shearer, 2012; Vere-Jones, 1969).472

For observed and synthetic catalogs, we approximate the magnitude difference by applying the473

time-space constraints of our doublet definition to any event under consideration and computing474

the magnitude difference between the considered event and the strongest of all events that occurred475

in the specified time-space domain. Clearly, this selection can include independent background476

events or events occurred in unrelated clusters. In order to constrain the Bath law statistics to477

mainshocks, we skip earthquakes that are supposed aftershocks (i.e. that are contained in the time-478

space range of a previous, stronger event) or foreshocks (i.e. that contain a stronger event in their479
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own time-space domain).480

For synthetic sequences, we apply the same filtering algorithm to each simulated sequence with481

its known initiating magnitude.482

Coefficient of variation483

We measure the degree of temporal clustering of event occurrences by decomposing the time do-484

main into a monthly grid and computing the variation of the numbers of events falling into the time485

intervals. In order to account for varying overall catalog sizes, we use the coefficient of variation486

(CV), which is a measure of the relative dispersion of a random distribution sampleX standardized487

by its mean. It is computed as CV =

√
V ar(X)

Mean(X)
, where V ar(X) denotes the variance of the sample488

X .489

Ripley’s K490

The degree of spatial clustering of the event locations can be expressed by Ripley’s K function491

(Ripley, 1976; Veen, 2006). The K-function computes the average number of additional event492

locations within a distance h of any given event, normalized by the overall number of events per493

space unit N
A

, i.e.494

K(h) =
A

N2

∑
i

∑
j 6=i

1 (r(i, j) ≤ h) (15)

where 1 is the indicator function.495

If the investigated catalog was produced by a homogeneous Poisson process with no spatial496

clustering inherent, K(h) would be asymptotically normal with K(h) ∼ N
(
πh2, 2πh

2A
N2

)
(Chu497

et al., 2011). The more K(h) exceeds πh2, the more clustered the event locations are. Values of498

K(h) < πh2 signify inhibition.499
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Doublets probability500

The most important measure for our study’s purpose is the probability that an event is part of an501

earthquake doublet according to our definition. Similarly to the Bath law evaluation, we searched502

all events within the specified time-space window spanned by the earthquake under consideration503

in the synthetic catalogs. We counted the earthquake as a doublet event if any of the potential504

partners fulfill the magnitude criterion.505

Similarly, for synthetic sequences, we applied the above algorithm to the known sequence506

initiating events.507

Results and Discussion508

In the following, we discuss the results obtained from the four tested models. We start by com-509

paring the ETAS estimation results on a global catalog and model scale by looking at the log-510

likelihood values, the branching ratios, the general shapes of the fitted spatial kernels, and the511

average cluster sizes depending on the trigger magnitude. Then we move on to the analysis of the512

synthetic results from simulated sequences and catalogs. Herein, we first analyze the consistency513

of simulation results with Bath’s law and observed magnitude differences in the original catalogs,514

respectively. We continue with an analysis of the degree of temporal and spatial clustering in sim-515

ulated catalogs compared to the original event sets. Finally, we evaluate doublet frequencies in516

simulated catalogs and compare them to historical observations.517

Model fit518

Table 2 lists the results from models M0, M1, M2 and M3 for both regions, Japan and Southern519

California, including the log-likelihood function values and the branching ratios.520
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Regarding the log-likelihood values l(θ|HT ), in both regions, we observe the order M1 >521

M3 > M0 > M2. We can conclude that, according to the log-likelihood measure, the anisotropic522

shape of the spatial kernel leads to an improved performance, while the spatial restriction detracts523

the quality of the model fits.524

One reason for the better performance of the anisotropic models can be found in the optimiza-525

tion process used to define the strike. In fact, the advantage of the anisotropic over the isotropic526

models was moderately reduced when we ran the models with the originally provided strike angles527

rather than the optimized ones. However, also in the case of original strikes, the anistropic models528

were superior with regard to the log-likelihood value.529

On the other hand, more generally, the anisotropic shape of the spatial kernel leads to an530

improved adaptation to the aftershock clouds for most events. For two exemplary magnitudes531

m = 5.0 and m = 7.5, figure 3(a) and (b) depicts the cumulative distribution functions of the spa-532

tial kernels against the normalized distance to the event location (for isotropic models) or rupture533

segment (for anisotropic models). We can see that in both regions, the anisotropic models show534

a significantly narrower shape, which suggests that the estimated rupture segments fit the poten-535

tial aftershock clouds better than the isotropic point sources and therefore tend to bring possible536

offsprings closer to the trigger source. While in the Japan models, this narrowing effect is charac-537

terized by the dramatic decrease of parameter D, in the Southern California results it is modeled538

by the increase of parameter q.539

Note that the characteristic length of the power-law decay,
√
Dexp(γ(mi −Mc))/π, has unit540

km2, so it really has the dimension of an area. Therefore, its exponential increase does not fully541

compensate for the faster exponential growth of the one-dimensional rupture length estimates in542

equation (8). Consequently, especially the anisotropic spatial distributions tend to get narrower543

27



relative to the rupture length with increasing trigger magnitude, as observable in figure part (b).544

We conclude from this that the anisotropic kernel gains relevance in the upper magnitude ranges.545

Moreover, we observe that Southern Californian models generally fit narrower shapes than Japan’s546

models. This agrees with the predominant faulting style. In California, strike-slip events on ap-547

proximately vertical faults dominate, while shallow-dipping mechanisms are common in Japan,548

widening the epicentral aftershock distributions.549

The generally inferior log-likelihood values of the restricted models can be explained by the550

additional constraint imposed to the model by the limitation of the extent of the spatial kernels.551

Any decline of flexibility inevitably leads to a lesser (or equal) overall model performance.552

In this context, we observe that the parameter estimates of Ã, which represent the average num-553

ber of aftershocks triggered by an event with threshold magnitudem = Mc, are substantially lower,554

in Japan even more than halved, when comparing a restricted model to the according unrestricted555

model. On the other hand, the restricted models lead to highly increased estimates for parameter556

α signifying an acceleration of the exponential increase of aftershock productivity with growing557

trigger magnitudes. Figure 4 displays the exponential relation of the expected cluster sizes accord-558

ing to equation (14), i.e. including direct and secondary aftershocks, to the initiating mainshock559

magnitude on a logarithmic scale. While the restricted models start at a lower base, they cross the560

lines of unrestricted models at about magnitude Mcross = 5.6 for Japan models and Mcross = 4.4561

for Southern California models. In other words, events with m ≥ Mcross are expected to trigger562

more aftershocks, on average, in restricted models than in unrestricted models.563

Since the vast majority of events in the original catalogs have magnitudes m < Mcross, we564

may expect that the observed shift of aftershock productivity from small to large events leads to,565

in total, fewer identified trigger relations in restricted models. Indeed, the restricted models reveal566
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smaller branching ratios and, contrarily, larger background rates. Therefore, we may conclude that567

the spatial restriction eliminates some trigger relations between more distant events with relatively568

small magnitudes, that are consequently either associated to the background seismicity or to an-569

other, stronger trigger event with larger spatial extent. In particular, the latter case provides an570

explanation for the greater estimates of parameter α. Furthermore, under the realistic assumption571

that there were more trigger relations in reality than identified in the models, the absolute loss572

of identified trigger relations to background seismicity would explain the inferior log-likelihood573

values.574

We further notice in figure 4 and table 2 that, in Southern California models, the anisotropy575

of the spatial kernels has far more impact on expected cluster sizes than in Japan models. Note576

that cross-comparisons of cluster sizes between the two regions are only valid if the cluster sizes577

of Southern California are down-scaled by exp(−1.2α) accounting for the difference of 1.2 of the578

magnitude thresholds. The clustering is on a generally comparable level, despite we note a more579

gradual growth due to smaller α estimates for restricted models in Southern California.580

Bath law581

Figure 5 depicts the mean magnitude differences between an earthquake and the strongest event582

following in the specified time-space domain in simulated catalogs in comparison to those in the583

respective original catalog. The corresponding algorithm is outlined in the section Quality mea-584

sures. The top-left panel (a) presents the results for the unrestricted models M0 and M1 in Japan.585

Both models appear to estimate almost identical magnitude differences, with a significant slope for586

increasing reference magnitudes of the triggering event. On average, the simulated catalogs seem587

to continuously overestimate the magnitude difference for magnitudes m > 6.8 compared to the588
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original data set, with some data points located even outside of the 10%− 90%− confidence inter-589

val for model M1. The divergence between the results of the simulated catalogs and sequences can590

be explained by the impact of independent events, that are not contained in the pure sequences. The591

effect intensifies with increasing magnitudes due to the exponential growth of the spatial window592

size.593

According to the top-right panel (b), Japan’s restricted models show a better agreement with594

the original catalog. There are no data points for magnitudes m ≥ 6.8 outside of the 10% −595

90%− confidence interval for model M3. The slope of the curves is smaller, which suggests better596

accordance with Bath’s law hypothesis that the magnitude difference is independent of the trigger597

magnitude. The smaller divergence between catalog and simulation results emphasizes that the598

improvement is caused by the increase of the average cluster sizes for the investigated magnitude599

ranges, as shown in figure 4. This increases the chance of strong aftershocks, and at the same time,600

it reduces the relative impact of independent events in the considered time-space domain.601

The results for Southern California, depicted in panels (c) and (d), show similar trends. Ap-602

proximately half of the historic events have magnitude differences outside of the 10% − 90%−603

confidence interval in both models. In general, Southern California models estimate considerably604

larger and faster-growing magnitude differences than Japan models, reaching up to 2 magnitude605

units for the maximum magnitude Mw = 7.5. This observation can be explained by the more606

moderate increase of cluster sizes due to smaller estimates of α. Comparing the two regions, we607

conclude that the restricted models work better and lead to more pronounced improvements in608

Japan than in California.609
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Spatial and temporal clustering610

Figure 6 analyses the degree of temporal and spatial clustering in synthetic catalogs compared611

to the respective original catalog. For these plots only, we generated the synthetic catalogs with612

magnitudes sampled from the empirical magnitude distribution observed in the respective original613

catalogs, instead of using the Gutenberg-Richter distribution (12) with estimated parameter β.614

The reason is that, by using magnitudes sampled from (12), we observed a deficiency of ex-615

tremely strong events in the synthetic catalogs compared to the original catalogs, which suggests616

that (12) tends to underestimate the tail of the empirical magnitude size distribution in the obser-617

vational data. Consequently, the synthetic catalogs would lack some influential trigger events, that618

would otherwise cause sporadic peaks in the spatio-temporal distribution of event occurrences.619

The top-left panel (a) depicts boxplots of the CV of event occurrence numbers in monthly time620

intervals of synthetic catalogs for Japan. We observe that, on average, the variance of monthly621

event occurrences in simulations is by factors smaller than in the original catalog, displayed by the622

horizontal black line. However, the restricted models tend to produce considerably more temporal623

variation, with some pronounced outliers, than the unrestricted models. The same observation is624

made for Southern California in the top-right panel (b). Furthermore, the CVs seem to correlate625

with the expected cluster sizes of strong events, shown in figure 4. For instance, the anisotropy of626

the spatial kernel leads to a stronger increase of both productivity parameter α and the temporal627

clustering in Southern California than in Japan.628

Panel (c) demonstrates that the observed smoothing of temporal event occurrences is not a629

pure side-effect of catalog simulations. Exemplary for model M3 in Japan, we plotted the curve of630

monthly event occurrences in the original catalog against the expected number of event occurrences631
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predicted by the ETAS event rate. More precisely, the latter is computed as the total ETAS event632

rate (see Λθ(T,S|HT) in equation (11)), step-wise integrated over the monthly intervals instead of633

the entire target time window T, which provides us an estimate of the expected number of events634

occurring in the considered month. This monthly forecast is thus purely based on the fit of the635

model parameters and the original, non-simulated history of events.636

On the one side, the integrated rate clearly underpredicts event occurrences in peak months; on637

the other hand, it overrates the seismicity in relatively calm months. This contrast is an immedi-638

ate consequence of the log-likelihood-based model estimation algorithm, which requires that for639

the optimal set of parameters, the ETAS rate, integrated over the entire time-space target window,640

equalizes the exact number of target events. Thus, once underestimating the pronounced peaks641

in the most active months, the rate needs to compensate for this inaccuracy by predicting larger642

occurrence rates in rather inactive months, which ultimately leads to a clear smoothing of the tem-643

poral occurrence curve. We hypothesize that this compensation is caused by an overprediction of644

both the background seismicity and the triggering potential of small events and an underprediction645

of the triggering power of strong events.646

Finally, the bottom-right panel (d) sheds light on the degree of spatial clustering, measured647

by Ripley’s K function (15). For the sake of clearer visualization, we only present the spatially648

most strongly clustered models M3 in both regions. Nevertheless, we observe that, in both regions,649

spatial clustering is underestimated compared with the respective original catalogs. Generally,650

event occurrences in Southern Californian seem less intensely clustered in space than in Japan.651

The kink in the curves, which in the case of Southern California even suggests inhibition, is a652

boundary effect due to the limited polygon areas.653
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Earthquake doublets654

Finally, figure 7 analyzes the occurrence rates of doublets in the simulated catalogs and sequences.655

The top-left panel (a) compares the percentage that an event finds a doublet partner depending on656

its magnitude for the four models and both simulated sequences and catalogs in Japan. Note that,657

for the sake of clarity, the data is smoothed by aggregating magnitude intervals.658

We observe that the restricted models show substantially larger doublet chances than the unre-659

stricted models, which is consistent with our previous findings regarding the larger cluster sizes,660

the larger degree of temporal and spatial clustering, and the lower average magnitude differences661

to the strongest event in the time-space domain spanned by an event. Also, doublet percentages662

decrease with growing magnitudes, which accompanies the earlier observation of increasing Bath663

law magnitude differences.664

It is also worth mentioning that the proportion of events that find a doublet partner is consider-665

ably larger within a simulated catalog than in a synthetic sequence. This implies that independent666

seismic background events or unrelated clusters generate a non negligible fraction of doublets.667

The top-right panel (b) shows this aspect in more detail for models M0 and M3 in Japan. Con-668

ditional on realized doublet pairs, it shows the inverse proportions of doublets consisting of two669

events from the same cluster and doublets composed by two independent events. The correspond-670

ing triggering relationship is known in simulations. For small triggering magnitudes, in-cluster671

doublets make up a much larger proportion. The share declines with increasing trigger magnitude,672

however much stronger for model M0 than for model M3. In the case of model M0, indepen-673

dent doublets get even more likely than in-cluster doublets for triggering magnitudes larger than674

Mw = 7.6.675
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These observations can be explained by the more rapid exponential growth of the area of the676

spatial window than the aftershock productivity and expected cluster sizes. According to the scal-677

ing relations (8), the area of the spatial window covering the surrounding of two and a half rupture678

lengths is π(2.510−2.37+0.57m)2. Consequently, the area grows by factor (100.57)2 = 101.14 ≈ 13.8679

which is faster than the magnitude-dependent growth of aftershock productivity and expected clus-680

ter sizes, exp(α), for all α < 2.62. Following this line of argument, we can explain the growing681

impact of independent and unrelated events, with increasing trigger magnitudes. The curves for682

model M3 are more robust, since the larger aftershock productivity and expected cluster sizes, re-683

sulting from greater estimates of parameter α, better balance out the growth of the spatial window,684

compared to M0.685

The bottom panels (c) and (d) of figure 7 compare the doublet rate predictions for the Japan686

models M0 and M3 to analogously measured doublet percentages in historic catalogs. As bench-687

marks, we use the original NIED Japan catalog used for the ETAS model estimation, as well as a688

regional and a global extract from the ISC-GEM catalog. Respecting the step-wise completeness689

levels in the ISC-GEM catalog, we counted doublets for events with magnitudes Mw ≥ 5.9 from690

the year 1960 and for events with magnitudes Mw ≥ 6.7 starting in 1918. In particular, this allows691

for a reliable search of doublet partners with a maximum magnitude difference of 0.4Mw units.692

Due to the relatively small sample sizes in historical data, we grouped the events in the four mag-693

nitude intervals [5.9, 6.0], [6.1, 6.2], [6.3, 6.6] and [6.7,∞). Due to its limited time (24 years), the694

regional NIED catalog provides only between 18 and 37 events in the respective magnitude inter-695

vals and therefore has limited statistical significance, especially in the higher magnitude ranges.696

Furthermore, we obtained 70 to 105 events in the regional extract for Japan of the ISC-GEM cata-697

log from 1918, and 1362 to 2219 events in the entire ISC-GEM data set. In the simulated catalogs,698
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we isolated all events with magnitude Mw = 8.7 from the last interval, since they would dominate699

the statistic because of the manual sampling of the Tohoku event.700

Panel (c) demonstrates that model M0 tends to underestimate the doublet occurrence probabil-701

ities observed in the three benchmark catalogs. The simulations accurately fit two out of four data702

points of the original NIED catalog, which however is an uncertain statistic due to its small sample703

size. The more stable curves of the long-term Japan and global benchmark catalogs are mostly704

located outside of the 10-90% confidence interval.705

Model M3, shown in panel (d), moves considerably closer to the long-term benchmark catalog706

curves and appears to provide a rather adequate prediction of doublet probabilities compared to707

the original NIED event set. The 10-90% confidence interval covers all data points of the global708

catalog, and two out of four samples from the long-term Japan data set.709

Both models show a downtrend of doublet rates with increasing magnitudes, which reveals710

itself particularly in the small fraction of doublets initiated by the sampling of the Tohoku event.711

In contrast, the probability of doublet occurrences seems magnitude-independent, at least in the712

lower three magnitude ranges, for the ISC-GEM catalog extracts, which reminds us of the self-713

similarity of earthquake clustering observed according to Bath’s law. The comparison, however,714

is unavoidably biased due to the subjective specification of our time-space domain in the doublet715

definition and because of the fact that we do not prohibit doublets produced by independent events716

not belonging to the same triggered sequence.717

The historical observations for Southern California do not provide a sufficient database for718

benchmarking. We only observed seven events in the overall magnitude range from Mw ≥ 5.9719

in the original catalog, with two of them being a doublet (both in magnitude range [6.1, 6.2]).720

In the regional extract of the ISC-GEM catalog since 1918, we found an overall number of 15721
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events, with one of them being doublets (in the third magnitude range). In the latter, this would722

signify a chance of 6.7% that an event finds a doublet partner, which is less than half of the global723

percentages shown in the bottom-line panels of figure 7. However, the Californian models predict724

a chance of only 3% (model M3) or even 1.6% (model M0) for doublet occurrences.725

Sensitivity of results726

The results described above, especially the estimated doublet probabilities, are clearly dependent727

on the rather subjective definition of the temporal and spatial constraints of 365 days and 2.5 rup-728

ture lengths as well as the magnitude window of 0.4 Mw units. In accordance with intuition,729

sensitivity tests have shown that a decrease of one of the three criteria led to lower doublet proba-730

bilities in both the simulated and historical data, and vice versa. However, the relative behavior of731

the four models under consideration, among each other and in comparison with historical catalogs,732

and therefore the central conclusions, remain the same.733

Summary and Conclusion734

We compared seismicity generated with four variants of the ETAS model to earthquake catalogs735

for Japan and Southern California. More precisely, we tested isotropic and anisotropic as well as736

unrestricted and restricted spatial kernels. The central objective of this study was to find out which737

of the four models best describes the clustering of particularly strong events and leads to the most738

realistic predictions of the occurrence probabilities of earthquake doublets. Rather subjectively, we739

defined a doublet as a pair of an earthquake with any other event occurring during the next 365 days740

and within a distance of 2.5 rupture lengths to the considered event, with a magnitude difference741

of no more than 0.4 units. By assuming an identical magnitude size distribution for triggered and742
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independent events, we analyze the impact of aftershock productivity and cluster sizes on cluster743

properties and doublet occurrences.744

The results indicate that the conventional, unrestricted isotropic model poorly represents clus-745

ters triggered by particularly large magnitude earthquakes. We found that this model estimates746

too large magnitude differences between a strong earthquake and the largest event in the specified747

time-space window, that it tends to highly underestimate the degree of temporal and spatial clus-748

tering by smoothing out the occurrence times and locations, and that it tends to underestimate the749

chances of doublet occurrence. This stands in contrast to global catalog scale measures such as750

the log-likelihood value, which do not incorporate these weaknesses, and that would attest to the751

conventional model a comparatively high quality.752

The anisotropic spatial kernel improves the overall fit of the model but cannot noticeably alle-753

viate the weaknesses of the unrestricted model variants. Perhaps, it shows its strengths primarily754

in combination with UCERF3-ETAS type models where crustal fault structures, subduction zones755

and multi-segment ruptures are incorporated on a detailed level (Field et al., 2017).756

By shifting triggering potential from smaller to larger events and therefore increasing cluster757

sizes of strong trigger events, the restriction of the spatial kernel to 2.5 rupture lengths promotes758

more realistic estimations of the magnitude difference to the strongest following event and of the759

doublet probability, compared to historical observations. The temporal and spatial variability of760

event occurrences rises, additionally indicating more pronounced clustering. However, the im-761

provements in the representation of strong earthquake clusters are at the expense of a decline of762

the log-likelihood value since trigger relations in the smallest magnitude ranges get lost.763

Again, the anisotropic model variant improves the overall fit of the model but has negligible764

impact on the temporal and spatial clustering and the doublet’s occurrence.765
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We conclude that global catalog scale measures such as the log-likelihood value or the AIC766

criterion are not an adequate tool for evaluating ETAS model fits if the representation of strong767

event clusters is of particular interest. It is in the nature of these measures, that they show better768

performance when more trigger relations are detected. Consequently, a model that is given more769

freedom, such as the unrestricted variants, will always outperform the more conditioned variants,770

such as the restricted variants in our study. However, this may lead to trigger relations between771

events that are, from a standpoint of reason, improbable. In other words, the conventional model772

does a good job in identifying triggered events, but it does a relatively poor job in assigning the773

aftershocks to their most realistic triggers, which goes to the benefit of the smaller events.774

Certainly, this deficiency can be partly explained by the well-known and extensively studied775

biases in the use of the ETAS model, such as earthquake location uncertainty, the catalog cut-776

off magnitude, and short-term incompleteness. In our study, we have accounted for the latter by777

applying blind periods after strong events according to Helmstetter et al. (2006).778

The spatial restriction tested in our models, however, demonstrates that we can improve after-779

shock to trigger assignments and therefore strengthen the aftershock productivity of strong events780

by giving the ETAS model more guidance in terms of conditions. Given the assumption of an781

identical magnitude size distribution for triggered and independent events, aftershock productivity782

becomes the dominant driver for cluster properties. The larger the size of a cluster, the smaller783

the magnitude difference to the strongest following event and the larger the chance of a doublet784

to occur. At the same time, a larger cluster size decreases the relative relevance of independent785

seismicity in the considered time-space window around an earthquake.786

Even the restricted models reveal a persistent underestimation of the cluster properties of large787

earthquakes. We hypothesize that, in reality, the exponential growth of the aftershock productivity788
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with increasing trigger magnitudes should be even larger. This would also increase the underrep-789

resented clustering of events both in time and space.790

Future work should emphasize the importance of a correct representation of strong event clus-791

ters by the ETAS model. Using only goodness of fit measures operating on a global catalog scale792

provides an inherent risk that a poor representation of extreme clusters remains undetected.793

This work has analyzed the impact of aftershock productivity and cluster sizes on the occur-794

rence of earthquake doublets. It has, however, neglected the influence of potentially varying mag-795

nitude size distributions, that may lead to a correlation of triggering and triggered magnitudes796

(Gulia et al., 2018; Nandan et al., 2019) and may therefore result in modified doublet occurrence797

probabilities. Positively correlated magnitudes could therefore contribute to closing the gap be-798

tween simulated and observed doublet frequencies. Another, however more profound, research799

topic is the further evaluation of the impact of faulting types, event characteristics (e.g. dip, rake,800

and depth, etc.), and local geophysical parameters (e.g. strain rates, heat flow, tectonic plate veloc-801

ities etc.) on the aftershock productivity and ultimately strong event clustering. This could also802

close the current gap in most seismic hazard models and lead to a better risk assessment by consid-803

ering modeled damage based on more realistic, synthetic catalogs, including increased earthquake804

clustering and doublet occurrences.805

Data and Resources806

The National Research Institute for Earth Science and Disaster Resilience (NIED)807

earthquake mechanism catalog for Japan (Kubo et al., 2002) was downloaded from808

www.fnet.bosai.go.jp/event/search.php?LANG=en (last accessed on January 3, 2021). The South-809

ern California Earthquake Data Center (SCEDC) focal mechanism catalog (Hauksson et al., 2012)810
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was searched using scedc.caltech.edu/data/alt-2011-yang-hauksson-shearer.html (last accessed on811

January 3, 2021). Global earthquake data were obtained from the International Seismological812

Centre - Global Earthquake Model (ISC-GEM) Global Instrumental Earthquake Catalogue (Di813

Giacomo et al., 2018) at www.isc.ac.uk/iscgem/download.php (last accessed on January 3, 2021).814

The ETAS model code used for this research was initially based on the CRAN R package815

repository ETAS (Jalilian, 2019) available at https://CRAN.R-project.org/package=ETAS (last ac-816

cessed on January 3, 2021). The package is based on the original Fortran implementation etas8p,817

available at http://bemlar.ism.ac.jp/zhuang/software.html (last accessed on January 3, 2021).818
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Table 1: Overview of the specifications of the four ETAS model variants tested in this paper.

Model spatial design restriction factor strike estimation epicenter location
M0 isotropic 100 - -
M1 anisotropic 100 optimized optimized
M2 isotropic 2.5 - -
M3 anisotropic 2.5 optimized optimized

51



Table 2: Overview of model fit results for Japan and Southern California. The parameter D has
been scaled to DM=4.0 = D exp(γ(4.0−Mc)) in order to make results cross-comparable between
regions (for Japan DM=4.0 = D since Mc = 4.0).

Outcomes
Japan Southern California

M0 M1 M2 M3 M0 M1 M2 M3

l(θ|HT ) -21063 -18626 -22684 -19814 28444 30266 27144 30003
νbranch 0.52 0.52 0.45 0.45 0.60 0.57 0.54 0.53
µ (day−1) 0.51 0.54 0.61 0.64 0.18 0.19 0.21 0.21
Ã 0.26 0.24 0.12 0.11 0.34 0.27 0.25 0.22
α (mag−1) 1.21 1.28 1.78 1.84 1.18 1.41 1.48 1.59
c (days) 0.015 0.017 0.013 0.014 0.011 0.012 0.013 0.012
p 1.02 1.05 1.00 1.03 1.07 1.08 1.08 1.09
DM=4.0 (km2) 2.274 0.194 2.466 0.117 0.441 0.584 0.403 0.849
γ (mag−1) 1.72 1.73 2.05 2.48 1.37 1.78 1.86 1.95
q 1.43 1.20 1.60 1.21 1.48 1.71 1.19 1.95
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List of Figures991

1 Event locations in the two utilized earthquake catalogs, including both target and992

complementary events. Red polygons represent the respective spatial target win-993

dow. (a) Events in NIED catalog for Japan,Mw ≥ 4.0, target period from 07/01/1997994

until 10/31/2020, complementary period from 01/01/1997 until 06/30/1997; (b)995

Events in SCEDC catalog for Southern California, Mw ≥ 2.8, target period from996

07/01/1981 until 12/31/2019, complementary period from 01/01/1981 until 06/30/1981997

2 Visualization of the spatial kernels restricted to a distance of r̃(mi) = 2.5 · l(mi):998

(a) isotropic kernel for magnitude m = 5.0, (b) anisotropic kernel for magnitude999

m = 5.0, (c) isotropic kernel for magnitude m = 7.5 and (d) anisotropic kernel for1000

magnitude m = 7.5. The 3D pdfs result from equation 7, using the initial spatial1001

parameter guesses D = 2.0, γ = 2.1 and q = 1.5.1002

3 Cumulative distribution functions of spatial kernels for trigger magnitudes (a)m =1003

5.0 and (b) m = 7.5. Solid lines show Japan (JPN) models. Dashed lines repre-1004

sent Southern California (CAL) models. The x-axis is defined as the distance to1005

the point source location (for isotropic models M0 and M2) or rupture line (for1006

anisotropic models M1 and M3), normalized by the rupture length estimate for the1007

respective region.1008

4 Expected cluster sizes according to equation (14). The x-axis states the magnitude1009

of the sequence-initiating mainshock event. The y-axis is on logarithmic scale and1010

denotes the average number of cluster members. Solid lines show Japan (JPN)1011

models, starting from catalog cut-off magnitude Mc = 4.0. Dashed lines represent1012

Southern California (CAL) models, starting from catalog cut-off magnitude Mc =1013

2.8 and ending at the assumed maximum magnitude m = 7.5.1014

5 Approximations of the average magnitude difference between a considered main-1015

shock event and the strongest event following in the specified time-space window,1016

for (a) unrestricted models M0 and M1 in Japan (JPN), (b) restricted models M21017

and M3 in JPN, (c) unrestricted models M0 and M1 in Southern California (CAL)1018

and (d) restricted models M2 and M3 in CAL. Solid lines show catalog simula-1019

tions, dashed lines represent sequence simulations. The shaded range visualizes1020

the 10% − 90% confidence interval of the respective catalog simulation. Black1021

dots represent observations in the underlying original catalogs, and are sized ac-1022

cording to the number of points stacked. The horizontal dotted line is consistent1023

with the Bath’s law prediction of a magnitude difference of 1.2 units independent1024

of the absolute size of the trigger magnitude.1025
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6 Boxplot representation of the coefficients of variation (CV) of monthly numbers of1026

event occurrences in the simulated catalogs, based on the four estimated models,1027

for (a) Japan and (b) Southern California. The black horizontal line represents the1028

CV of the respective original earthquake catalog. The red ’+’-symbols represent1029

outliers. (c) Comparison of monthly event occurrences between the original Japan1030

catalog (black line) and the ETAS rate for Japan’s modelM3, integrated piece-wise1031

for the monthly integrals, based on trigger contributions of the original history of1032

events. (red line). (d) Analysis of the degree of spatial clustering by Riley’s K1033

function. Solid lines represent results for synthetic catalogs, generated by model1034

M3 for Japan (JPN) and Southern California (CAL). Dashed lines show results for1035

the respective original earthquake catalogs. The dotted black line represents Ri-1036

ley’s K function values for a homogeneous Poisson process. Values above indicate1037

clustering, values below signify inhibition.1038

7 (a) Percentages of doublet occurrences, depending on the considered event mag-1039

nitude, for the four model variants in Japan. Solid lines represent simulated cat-1040

alogs. Dashed lines show simulated sequences. Magnitudes are aggregated in1041

0.2-magnitude unit steps from Mw = 5.9 to Mw = 7.1, then in 0.3-unit steps up to1042

Mw = 8.0, followed by one interval for all magnitudes above. (b) Proportions of1043

doublet pairs generated by (i) independent seismic background events or unrelated1044

clusters (dash-dotted lines) or (ii) events of the same cluster (solid lines). Results1045

are presented for models M0 and M3 in Japan. (c,d) Comparison of the doublet1046

occurrence frequencies in synthetic catalogs (blue lines) to historic catalogs (black1047

lines), for (c) model M0 and (d) model M3, both Japan. Shaded ranges represent1048

10/90% confidence interval (CI) of the synthetic catalogs. Events are aggregated1049

in the magnitude intervals labeled on the x-axis. Tohoku events are extracted in1050

simulated catalogs.1051
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Fig 1: Event locations in the two utilized earthquake catalogs, including both target and com-
plementary events. Red polygons represent the respective spatial target window. (a) Events in
NIED catalog for Japan, Mw ≥ 4.0, target period from 07/01/1997 until 10/31/2020, comple-
mentary period from 01/01/1997 until 06/30/1997; (b) Events in SCEDC catalog for Southern
California, Mw ≥ 2.8, target period from 07/01/1981 until 12/31/2019, complementary period
from 01/01/1981 until 06/30/1981
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Fig 2: Visualization of the spatial kernels restricted to a distance of r̃(mi) = 2.5·l(mi): (a) isotropic
kernel for magnitude m = 5.0, (b) anisotropic kernel for magnitude m = 5.0, (c) isotropic kernel
for magnitude m = 7.5 and (d) anisotropic kernel for magnitude m = 7.5. The 3D pdfs result
from equation 7, using the initial spatial parameter guesses D = 2.0, γ = 2.1 and q = 1.5.
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Fig 3: Cumulative distribution functions of spatial kernels for trigger magnitudes (a) m = 5.0 and
(b) m = 7.5. Solid lines show Japan (JPN) models. Dashed lines represent Southern California
(CAL) models. The x-axis is defined as the distance to the point source location (for isotropic
modelsM0 andM2) or rupture line (for anisotropic modelsM1 andM3), normalized by the rupture
length estimate for the respective region.
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Fig 4: Expected cluster sizes according to equation (14). The x-axis states the magnitude of the
sequence-initiating mainshock event. The y-axis is on logarithmic scale and denotes the average
number of cluster members. Solid lines show Japan (JPN) models, starting from catalog cut-off
magnitude Mc = 4.0. Dashed lines represent Southern California (CAL) models, starting from
catalog cut-off magnitude Mc = 2.8 and ending at the assumed maximum magnitude m = 7.5.
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Fig 5: Approximations of the average magnitude difference between a considered mainshock event
and the strongest event following in the specified time-space window, for (a) unrestricted models
M0 and M1 in Japan (JPN), (b) restricted models M2 and M3 in JPN, (c) unrestricted models
M0 and M1 in Southern California (CAL) and (d) restricted models M2 and M3 in CAL. Solid
lines show catalog simulations, dashed lines represent sequence simulations. The shaded range
visualizes the 10% − 90% confidence interval of the respective catalog simulation. Black dots
represent observations in the underlying original catalogs, and are sized according to the number
of points stacked. The horizontal dotted line is consistent with the Bath’s law prediction of a
magnitude difference of 1.2 units independent of the absolute size of the trigger magnitude.
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Fig 6: Boxplot representation of the coefficients of variation (CV) of monthly numbers of event
occurrences in the simulated catalogs, based on the four estimated models, for (a) Japan and (b)
Southern California. The black horizontal line represents the CV of the respective original earth-
quake catalog. The red ’+’-symbols represent outliers. (c) Comparison of monthly event occur-
rences between the original Japan catalog (black line) and the ETAS rate for Japan’s model M3,
integrated piece-wise for the monthly integrals, based on trigger contributions of the original his-
tory of events. (red line). (d) Analysis of the degree of spatial clustering by Riley’s K function.
Solid lines represent results for synthetic catalogs, generated by model M3 for Japan (JPN) and
Southern California (CAL). Dashed lines show results for the respective original earthquake cat-
alogs. The dotted black line represents Riley’s K function values for a homogeneous Poisson
process. Values above indicate clustering, values below signify inhibition.
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Fig 7: (a) Percentages of doublet occurrences, depending on the considered event magnitude, for
the four model variants in Japan. Solid lines represent simulated catalogs. Dashed lines show
simulated sequences. Magnitudes are aggregated in 0.2-magnitude unit steps from Mw = 5.9 to
Mw = 7.1, then in 0.3-unit steps up to Mw = 8.0, followed by one interval for all magnitudes
above. (b) Proportions of doublet pairs generated by (i) independent seismic background events
or unrelated clusters (dash-dotted lines) or (ii) events of the same cluster (solid lines). Results are
presented for modelsM0 andM3 in Japan. (c,d) Comparison of the doublet occurrence frequencies
in synthetic catalogs (blue lines) to historic catalogs (black lines), for (c) model M0 and (d) model
M3, both Japan. Shaded ranges represent 10/90% confidence interval (CI) of the synthetic catalogs.
Events are aggregated in the magnitude intervals labeled on the x-axis. Tohoku events are extracted
in simulated catalogs.
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