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1. Introduction
External forcing by energetic solar radiation such as extreme ultraviolet (EUV) irradiance and waves forcing from 
the lower atmosphere drive the ionospheric variations via multiple ways, including the solar ionization variability 
caused by the 11-year solar cycle and 27-day solar rotation. The forcing of the ionosphere by waves from below is 
mostly created by neutral atmospheric waves, such as gravity and planetary waves (e.g., Laštovička, 2006). These 
complex variations influence the ionospheric conductivity, which in turn impact the electric fields generated by 
the dynamo action of tidal winds in the ionosphere, and hence the solar quiet (Sq) current variation induced in the 
ionospheric E-region (e.g., Richmond, 1998; Weimer, 2005, 2013; Yamazaki et al., 2011, 2016). In the middle 

Abstract The solar quiet (Sq) ionospheric current variations exhibit spatial and temporal patterns that 
can be identified by the prevailing eigenmodes based on the empirical orthogonal function (EOF) analysis. In 
this study, the Sq current function over the American and European/African sectors are derived using ground 
magnetometer data from 2006 to 2019 based on the spherical harmonic analysis technique. Subsequently, 
we decomposed the Sq current function into eigenmodes by applying the EOF analysis, where the first three 
eigenmodes capture 96% of the overall Sq current variance. Additionally, these eigenmodes are utilized to 
model the Sq current function and compare its properties between the two longitudinal sectors. We observed 
that the EOF model could reconstruct the observed Sq current function with the first three eigenmodes in 
both longitudinal sectors. Moreover, the EOF model unveils a clear association of the Sq current function 
with several driven features, such as magnetic latitude, local time, season, and solar activity. Both longitudinal 
sectors had comparable Sq current patterns under varying solar activity, while their amplitudes varied. Besides, 
the newly developed model could reproduce a refined Sq current variability over the two longitudinal sectors 
as long as the observed Sq variations have sufficient duration. Our EOF model shows that the variations of the 
Sq current function with solar activity can be explained by the first three eigenmodes, which could be used as a 
basis for further numerical modeling of the Sq current variations.

Plain Language Summary Electromagnetic fields and currents in the E-region ionosphere induce 
solar quiet (Sq) geomagnetic variations responsible for Sq current variation. In order to fully explain the Sq 
current characteristics, including its spatial and temporal variability, it is necessary to continue to garner an 
understanding of its complexities. On the basis of the spherical harmonic analysis of the geomagnetic Sq 
variations, we computed the Sq current function over the American and European/African sectors. We next 
utilized empirical orthogonal function (EOF) analysis to decompose the Sq current function into dominant 
spatial geometries. Afterward, the EOF model of Sq current function was reconstructed using the first three 
eigenmodes, which captured 96% of the overall variance. Several patterns of the Sq current were uncovered, 
addressing some unanswered questions about the dominant mechanisms that drive their spatial, seasonal and 
inter-annual variability. This study suggests that the dynamics of Sq current variability can be conveyed by a 
few dominating eigenmodes, indicating that our model could well capture the Sq current variability and serve 
as a new observational baseline for further development of geomagnetic field models.
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and low latitude ionosphere, large-scale magnetospheric processes such the field aligned current (FAC) system 
also contribute to Sq current variation (e.g., Vanhamäki et al., 2020; Yamashita & Iyemori, 2002).

The morphology of the Sq current variation appears like oval-shaped horizontal current sheet in the ionosphere, 
forming two oppositely oriented loops on the dayside in each hemisphere: one anticlockwise in the northern hem-
isphere (NH) and one clockwise in the southern hemisphere (SH), with the foci of the loops located near noon in 
the middle latitudes (e.g., Owolabi et al., 2021; Pedatella et al., 2011; Richmond, 1998; Yamazaki et al., 2011). 
At the geomagnetic equator, where ions and electrons are magnetically coupled, the electric and magnetic fields 
intersect, resulting in a local increase in ionospheric conductivities and a large eastward flow of equatorial elec-
trojet (EEJ) current during the daytime (e.g., Alken & Maus, 2007). On occasion, during geomagnetically quiet 
periods, the EEJ current reverses its regular eastward course and flows westward due to changes in the atmospher-
ic tides that govern the global wind system at the ionospheric E-region; this phenomenon is referred to as counter 
electrojet (CEJ) current (e.g., Soares et al., 2018).

Earlier studies based on various observations and modeling techniques, particularly those pertaining to empir-
ical curve fitting of Sq current variation have been conducted (e.g., S. S. Chen et al., 2020, 2021; Vanhamäki 
et al., 2020; Yamazaki et al., 2009, 2010, 2011). These studies explored the dynamics of the ionosphere and its 
interaction with the magnetosphere, in particular, examining the consequences of universal time (UT), season and 
day-to-day variations (e.g., S. S. Chen et al., 2021; Kirchhoff & Carpenter, 1976; Pfaff et al., 2020; Schlapp & 
Butcher, 1995; Yamazaki et al., 2016), including the effects of local neutral winds (e.g., Maute, 2017; Yamazaki 
et al., 2021). It was remarked that due to variations in the ionospheric conductivity and neutral winds, the Sq cur-
rent system exhibits hemispheric asymmetry, with its strength in the summer hemisphere being greater than that 
in the winter hemisphere. A large number of studies have been devoted in understanding the seasonal and solar 
activity variations of the Sq current (e.g., Matsushita & Maeda, 1965; Owolabi et al., 2021; Takeda, 2002; Takeda 
et al., 1986). For example, Yamazaki et al. (2011) found strong annual and semiannual changes of the Sq current 
in the northern and southern hemispheres, which Pedatella et al. (2011) also found in the European/African sector 
during solar minimum. A recent study by Chulliat et al. (2016) indicates a wave-4 structure in the longitudinal 
variation of total Sq current (𝐴𝐴 𝐴𝐴total ) intensity under high solar activity conditions having implications on seasonal 
variation, where the largest 𝐴𝐴 𝐴𝐴total is found in the equinox rather than in the winter season.

In addition, the solar cycle variability of the Sq current can be explained using an empirical orthogonal function 
(EOF) analysis that uses empirical orthogonal windows to estimate the major spatial and temporal patterns that 
do not require a priori specification of their geometry (e.g., Alken et al., 2017; G.-X. Chen et al., 2007; Cousins 
et al., 2015; Shore et al., 2016). This empirical model is appropriate for geomagnetic field modeling since it 
decomposes the signal into uncorrelated eigenmodes, resulting in eigenfunction expansion used to probe the 
time-varying Sq current (e.g., Alken et al., 2017; Owolabi et al., 2021). Different sources have been proposed for 
Sq current variations, including long-term variation in geomagnetic activity (e.g., de Haro Barbas et al., 2013), 
solar variability (e.g., Torta et al., 2009) and the secular variation of the geomagnetic field (e.g., Cnossen & 
Richmond, 2013; Soares et al., 2020). Since the Sq current conceals seasonal and non-seasonal effects in the un-
derlying background variations that are still not well understood, EOF analysis can give a set of dominant eigen-
modes that collectively identify patterns in Sq current system, which reflect the underlying background variations 
modulating the original signature. The EOF model of the Sq current by G.-X. Chen et al. (2007) captured the 
key aspects of the geomagnetic field variations, especially the horizontal field intensity (e.g., Alberti et al., 2020; 
Bhattacharyya & Okpala, 2015). A study by Alken et al. (2017) demonstrated that their EOF model reproduces 
realistic Sq and EEJ currents by utilizing 10 dominating eigenmodes.

As described by Shore et al. (2018), the EOF analysis was used to decompose the monthly geomagnetic field data 
into a hierarchy of spatial and temporal patterns. The leading eigenmodes were related to Sq current variations, 
while the residual eigenmodes encompassed disturbance polar (DP) currents, which are associated with the mag-
netospheric ring currents (e.g., Xu & Kamide, 2004). Based on the EOF analysis, Yamada (2009) demonstrated 
that dynamo activity drives electric fields and currents in the ionosphere. Until now, the spatial distribution of 
the Sq current based on the EOF analysis for different solar activity levels has not been well studied. A study by 
Pedatella et al. (2011) produced the Sq current pattern to highlight the mechanism for the seasonal and longitu-
dinal variations during the low solar activity years. The Sq current pattern during high solar activity needs to be 
identified due to its latitudinal and longitudinal dependency. We utilized ground magnetometer data from 2006 
- 2019 to produce continuous observations of the Sq current function using spherical harmonic analysis (SHA) 
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and examine its spatial as well as temporal variations under different solar activity levels over the American and 
European/African sectors. Subsequently, the EOF technique was used to reconstruct a two-dimensional (2-D) 
model of the Sq current under certain condition of solar flux, magnetic latitude, local time and season over the 
two longitudinal sectors using the dominant spatial geometries, as the EOF technique has been noticeably effec-
tive in characterizing the spatial and temporal variations (e.g., Alberti et al., 2020; Alken et al., 2017; Owolabi 
et al., 2021). First, we have attempted to find the similarities as well as differences in the spatial and temporal 
variations of the Sq current. Then we studied the distribution of the typical parameters of the Sq current over the 
two longitudinal sectors and discussed the source of their differences under different solar activity levels.

2. Data Selection and Method of Analysis
2.1. Geomagnetic Field and Solar Flux Data

Hourly data of horizontal intensity (H), declination (D), and vertical intensity (Z) obtained from 2006 to 2019 were 
evaluated for Sq geomagnetic variations. The ground magnetometer data were collected from 125 stations spread 
across the American and European/African sectors, which were operated by the Athabasca University Themis 
UCLA Magnetometer Network (AUTUMNX); MAGnetic Data Acquisition/Circum-pan Pacific Magnetometer 
Network (MAGDAS/CPMN; Yumoto & the MAGDAS Group, 2006); Low Latitude Ionospheric Sensor Network 
(LISN); African Meridian B-Field Education and Research (AMBER; Yizengaw & Moldwin, 2009); Interna-
tional Real-time Magnetic Observatory Network (INTERMAGNET; Kerridge, 2001); Embrace Magnetometer 
Network (Embrace MagNet; Denardini et al., 2018); Canadian Array for Realtime Investigations of Magnetic 
Activity (CARISMA; Mann et al., 2008); South American Meridional B-Field Array (SAMBA; Boudouridis & 
Zesta, 2007); West African Magnetometer Network (WAMNET; Alken et al., 2013); and World Data Center for 
Geomagnetism (WDC), Edinburgh (Figure 1a). We obtained 5 International Quiet Days (IQDs) data from the 
Helmholtz Center Potsdam, German Research Center for Geosciences GFZ webpage. To analyze the Sq current 
variations, the F10.7 flux data in solar flux units (sfu), 1 sfu = 10−22 Wm−2 Hz−1, were obtained from the GSFC/
SPDF OMNIWeb interface. The quasi-magnetic latitude was computed using the main field model (IGRF-2013 
version) at the epoch of 2015 provided by the International Association of Geomagnetism and Aeronomy (IAGA).

Figure 1. (a) Geographic location of 125 geomagnetic observatories used in this study. The green and orange dots represent magnetometer stations located over the 
American and European/African sectors, respectively. The geomagnetic and geographic equators are indicated by the blue curve and dashed black line. (b) Solar activity 
proxy, F10.7 flux (red dots), its 81-day moving average, F10.7A (black dots) and effective solar flux, 𝐴𝐴 𝐴𝐴10.7eff (green line) from 2006 to 2019. The 𝐴𝐴 𝐴𝐴10.7eff is obtained 
by taking the mean of F10.7 flux with F10.7A. The vertical gray lines represent the end of each year.
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2.2. Basis of SHA and Sq Current Computation

For each station, H, D and Z components are selected from the geomagnetic field records based on 5 IQDs for 
every month from 2006 to 2019. This condition gives a total of 840 IQDs, which has been found to be satisfactory 
and forms the database used to derive the Sq geomagnetic variations. To resolve the spatial complexities of the 
Sq current variation, the records of H, D and Z components outside 3° < | 𝐴𝐴 𝐴𝐴 | ≤ 60° geomagnetic latitudes are 
excluded from the analysis. Here, 𝐴𝐴 𝐴𝐴 is the geomagnetic latitude. Next, we obtained the hourly average of ΔH, ΔD 
and ΔZ components by deducting the baseline values of H, D and Z at LT ≤ 2 or LT ≥ 23 from the correspond-
ing component (LT = local time in hours). Then, SHA is performed on ΔH, ΔD and ΔZ components at each 
geomagnetic colatitude based on dominant harmonics rank m in the range 0 ≤ m ≤ 4 to calculate the spherical 
harmonic coefficients. Consequently, the Sq current functions over the two longitudinal sectors were obtained 
for each IQD at every hour of LT and geomagnetic colatitude, respectively based on Equation 1 (e.g., Owolabi 
et al., 2021; Yamazaki & Maute, 2017). 
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𝑛𝑛 (cos 𝜑𝜑) is the associated Legendre function 

of geomagnetic colatitude, 𝐴𝐴 𝐴𝐴 and 𝐴𝐴 𝐴𝐴 are the degree and order at which the series of harmonics function is truncated, 
� = 6,371 km is the Earth's radius, 𝐴𝐴 𝐴𝐴 is the radius vector from the center of the Earth, 𝐴𝐴 𝐴𝐴 is the LT in hours, and 𝐴𝐴 𝐴𝐴 is 
the geomagnetic colatitude of the observatory obtained by 𝐴𝐴 𝐴𝐴 = 90 − 𝜃𝜃 . We chose 𝐴𝐴 𝐴𝐴 = 4 as the maximum spherical 
harmonic expansion to eliminate larger errors caused by higher harmonic terms and to resolve the large-scale 
structure of the Sq current variation (e.g., Takeda, 1999). The 𝐴𝐴 𝐴𝐴𝑚𝑚

𝑛𝑛  and 𝐴𝐴 𝐴𝐴𝑚𝑚𝑛𝑛  are empirical constants denoting the 
Gaussian coefficients, whose sources are external to the Earth.

2.3. Description of EOF Analysis and Modeling Algorithm

In this study, the EOF eigenmodes are obtained by solving the eigenvalue problem based on the Eigen decom-
position theorem. We constructed a 2-D model of 𝐴𝐴 𝐴𝐴 (𝑡𝑡𝑡 𝑡𝑡) function for different solar activity levels to identify 
coherent quantities extracted (as in Equation 2), which are relevant to the phenomenon of 𝐴𝐴 𝐴𝐴 (𝑡𝑡𝑡 𝑡𝑡) function over 
the two longitudinal sectors. We considered the leading eigenmodes in reconstructing the 2-D model of 𝐴𝐴 𝐴𝐴 (𝑡𝑡𝑡 𝑡𝑡) 
function because they provide an efficient basis for expressing the Sq current function and are also optimal in 
the least squares sense. This is due to the orthonormality of the eigenvectors and the magnitude ordering of the 
eigenvalues that indicates the significance of each term in the expansion. This phenomenon clearly demonstrates 
the advantage of the EOF modeling approach proposed in this paper. The data set may be represented as 2-D 
matrix 𝐴𝐴 𝐴𝐴 ′(𝑑𝑑𝑑 𝑑𝑑) in Equation 2.

𝐽𝐽 ′(𝑑𝑑𝑑 𝑑𝑑) =
𝑞𝑞
∑

𝑘𝑘=1

Amp𝑘𝑘 (𝑑𝑑) ∗ EOF𝑘𝑘(𝑑𝑑) 𝑘𝑘 = 1𝑑 2𝑑 3...𝑑 𝑞𝑞 (2)

where 𝐴𝐴 EOF𝑘𝑘 represents an orthogonal function independent of time, 𝐴𝐴 Amp𝑘𝑘 is the time-dependent principal com-
ponent (PC) amplitude of each EOF eigenmode, k varies from 1 to the maximum number of eigenmodes (q) 
contained in the Sq current function, with eigenmodes arranged in order of decreasing variance, 𝐴𝐴 𝐴𝐴  = 1, 2, 3…, 
840 is the number of IQDs from January 2006 to December 2019, 𝐴𝐴 𝐴𝐴 = 1, 2, 3, . . . , 𝐴𝐴 𝐴𝐴 (𝐴𝐴 𝐴𝐴 = station × 24) denotes 
spatial positions or basis functions in certain order of stations and LT. It is important to know that the dimension 
that we sum over gives q × q product matrix with q eigenmodes, where q equals 1632 and 1368 eigenmodes in the 
American (68 stations × 24) and European/African (57 stations × 24) sectors, respectively. The first three EOF 
eigenmodes capture 96% of the overall variance and statistically significant, with the residual EOF eigenmodes 
contributing only 4%-a difference that is statistically insignificant (e.g., Owolabi et al., 2021). It is evident that 
the first three EOF eigenmodes are significant because their eigenvalues are well separated. Therefore, we focus 
on the first three eigenmodes. Regression analysis is performed to reconstruct the Sq current dynamics by fitting 
the annual, semiannual, and terannual changes in 𝐴𝐴 Amp𝑘𝑘 (k = 1, 2, 3) since its seasonal variation has annual, sem-
iannual and terannual components influenced by solar activity variations.
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where 𝐴𝐴 𝐴𝐴0 is the mean value of EOF eigenmodes over the entire series, leap years were accounted for by adding 
a 0.25-factor to the 365-day calculation, 𝐹10.7𝑝 is the F10.7 flux of the previous day, 𝐴𝐴 𝐴𝐴10.7eff = (F10.7 + 
F10.7A)/2, F10.7A is the 81-day sliding mean of daily F10.7 flux and DOY is the date number from January 1 
of each year for the quiet days, which all depends on solar activity. Using 𝐴𝐴 𝐴𝐴10.7eff , previous studies have shown 
that most solar EUV flux lines can be correctly scaled to incorporate solar cycle variation. As shown by Liu 
et al. (2006), 𝐴𝐴 𝐴𝐴10.7eff can better present the variations of solar EUV irradiance since the nonlinearity of the solar 
EUV flux is reduced and the correlation is slightly stronger with 𝐴𝐴 𝐴𝐴10.7eff . Hence, we used the 𝐴𝐴 𝐴𝐴10.7eff as a relia-
ble proxy for solar activity variation to fit the EOF model on individual days and LT (e.g., Richards et al., 1994). 
As shown in Figure 1b, the F10.7 flux, which represents the degree of solar activity, exhibits variation throughout 
a 14-year period of study. The first three parameterized eigenmodes in the American (European/African) sec-
tors have a regression coefficient of 0.76 (0.78), 0.90 (0.94) and 0.60 (0.44) with PC amplitudes, respectively 
(Figures 2 and 3). The time series of the Sq current parameters such as the northern Sq intensity, southern Sq 
intensity and 𝐴𝐴 𝐴𝐴total from the two longitudinal sectors were obtained under high (𝐴𝐴 𝐴𝐴10.7eff = 160 sfu ), moderate 
(𝐴𝐴 𝐴𝐴10.7eff = 120 sfu ) and low (𝐴𝐴 𝐴𝐴10.7eff = 80 sfu ) solar activity levels, respectively.

3. Observational Results and Discussion
Based on the EOF analysis described in Section 2.3, an EOF model is developed to identify and extract the 
spatial and temporal variability prevailing in the Sq current function for different solar activity conditions over 
the American and European/African sectors. Figures 2 and 3a–3c display the first three EOF eigenmodes of the 
Sq current variations as a function of geomagnetic latitude and LT from 2006 to 2019 over the two longitudinal 
sectors. Their corresponding time-dependent PC amplitudes are also shown in Figures 2 and 3d–3f. In the higher 
eigenmodes, large-scale magnetospheric currents such as the cross-tail current, the ring current, magnetopause 
current as well as unresolvable partial ring current may be present (e.g., Xu & Kamide, 2004), hence the higher 
EOF eigenmodes will not be discussed in this study. We observed that PC1 is significantly dependent on solar 
activity, while PC2 and PC3 are not strongly dependent on solar activity, but they do have significant annual, 
semiannual and interannual oscillations with varied amplitudes. As shown in Figures 2a and 3a, the EOF1 eigen-
mode of Sq current over the two longitudinal sectors exhibits similar pattern with their intense vortices on the 
sunlit side in both hemispheres, which confirms the daily variation of ionospheric conductivities (e.g., Pedatella 
et al., 2011; Yamazaki et al., 2011).

Certain interesting features emerge from Figures 2b and 3b. In particular, the EOF2 eigenmode pattern is char-
acterized by the meridional currents across the magnetic equator in the morning sector and oppositely directed 
currents in the afternoon sector. The EOF3 eigenmode is also characterized by meridional currents across the 
magnetic equator, but the maximum current appears around the noon sector (Figures 2c and 3c). When compar-
ing the EOF2 eigenmode in both longitudinal sectors, the most important distinction is that their peak locations 
are different; one is in the northern hemisphere while the other one is in the southern hemisphere. As seen in 
Figure 1a, in the American sector, the magnetic equator is mainly in the SH, while in the European/African sector, 
it is mainly in the NH. Thus, for example, equatorial winds drive NH Sq currents in the American sector, while 
they drive SH Sq currents in the European/African sector. These apparent imbalances appear to be the result of 
many variables, including ionospheric conductivity, geomagnetic field, and neutral winds (e.g., Campbell, 1981; 
Stening, 1991). Over the American sector, the SAMA-induced deviation in the geomagnetic equator alters the 
Pedersen and Hall conductivities, giving larger ionospheric conductivity distributions for a weaker magnetic 
field, causing the longitudinal variation in the Sq current. A detailed account of the seasonal and longitudinal var-
iations of the Sq current can be found in several previous publications (e.g., Pedatella et al., 2011; Stening, 1971; 
Stening & Winch, 2013). The geomagnetic equator declination angle is about −20° over the eastern coast of 
South America. Such a high magnetic declination affects the seasonal distribution of EEJ and Sq currents (e.g., 



Journal of Geophysical Research: Space Physics

OWOLABI ET AL.

10.1029/2021JA029903

6 of 14

Abdu et al., 2005; Shume et al., 2010). Another important factor is the day-to-day changes in the neutral wind and 
electric fields, which could vary greatly between longitudinal sectors and influence the dynamo electric fields 
and currents. For both sectors, the overall LT-latitude patterns of the EOF2-EOF3 eigenmodes, which serve as 
regional patterns of annual and semiannual oscillations exhibit sunrise and sunset variations.

It is important to know that the combination of the first three EOF eigenmodes and their PCs results in the Sq cur-
rent variations shown in Figures 4a and 4b, respectively. In this Figure, the Sq current flows parallel to the stream-
lines with 20kA between each line. On the sunlit side, a well-defined anticlockwise current vortex in the NH and a 
clockwise current vortex in the SH of American sector. The Sq current vortex is higher in the SH and lower in the 
NH, where the NH vortex actually leads the SH vortex by nearly 0.8 hr with a mean focus located at about ±40° 
magnetic latitude (Figures 2a and 4a). The north-south asymmetry of the geomagnetic field can contribute to the 

Figure 2. Spatial and temporal variations for eigenmodes 1–3 of the empirical orthogonal function (EOF) analysis of the Sq current in the American sector. (a) EOF1 
eigenmode with a contour interval of 0.01. Also shown are (b) EOF2 and (c) EOF3 eigenmodes. The amplitudes of their corresponding principal components (PC1-
PC3) are shown in panels (d–f), respectively. The regression coefficients (r) are shown in each panel.
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LT displacement of the Sq current vortices (e.g., Le Sager & Huang, 2002; Takeda & Yamada, 1989). Likewise, 
over the European/African sector, the LT separation of both vortices is about 2.5 hr with the mean focus located 
at about ±38° magnetic latitude (Figures 3a and 4b). This is consistent with previous work reported in the East 
Asian/Australian sector (e.g., Yamazaki et al., 2011). Comparing Figures 4a and 4b, we notice that the northern 
current vortex expels into the SH in the morning sector and the southern current vortex penetrates less intensely 
into the NH in the afternoon sector (e.g., Fukushima, 1994). Such a deep cross-equatorial Sq current flow is not 
evident in the American sector (Figure 4a). The causes of the deep penetration of the northern current vortex 
into SH in the morning sector and vice versa in the afternoon sector over European/African sector need further 
study. Although, studies have shown that cross-equatorial current is partially generated by inter-hemispheric FAC 
system (e.g., Richmond & Roble, 1987; Takeda, 1990; Yamashita & Iyemori, 2002). The intensity and direction 

Figure 3. Similar to Figure 2 except for the European/African sector.
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of the inter-hemispheric FAC system vary with the longitude (e.g., Park et al., 2011, 2020), which can contribute 
to the difference in the north-south asymmetry of the Sq current system between the two longitudinal sectors.

As illustrated in Figure 4 (panels c and d), the first three EOF eigenmodes, which show the contribution of each 
latent factor to the Sq current variation over the American (European/African) sector, take up 85.06% (82.08%), 
9.07% (12.59%) and 2.16% (1.75%) of the total variance of the Sq current, respectively. The PCs corresponding 
to EOF2 and EOF3 eigenmodes exhibit an oscillation around zero as shown in panels (e and f) of Figures 2 
and 3, respectively. When a PC value is negative, clockwise/anticlockwise current vortices (panels (b–c) of Fig-
ures 2 and 3) will change to anticlockwise/clockwise vortices, respectively. It can be seen in Figures 2d and 3d 
that PC1 exhibits seasonal variation and is dependent on solar activity (Figure 1b), while PC2 and PC3 exhibit 
annual and interannual variations, respectively (panels (e–f) of Figures 2 and 3). The temporal behavior of EOF1 
eigenmodes (Figures 2d and 3d) demonstrates a relatively strong dependence on solar activity. As can be seen, 
the EOF eigenmodes are distinct in both longitudinal sectors, particularly for the EOF2 and EOF3 eigenmodes, 
which may be explained by the offset of the magnetic equator with respect to the geographic equator. In principle, 
the spatial and temporal patterns of the Sq current over the American (Figure 2) and European/African sectors 
(Figure 3) retain 96% of the total Sq current variance, suggesting that the temporal evolution of the dynamical 
interaction represents periodic behavior of Sq current variations. The first three eigenmodes describe the effects 

Figure 4. The Sq current average from 2006 to 2019 over the American and European/African sectors are shown in panels (a and b), respectively. The corresponding 
percentage of variance explained accounted for by each of the first 5 most eigenmodes are shown in panels (c and d), respectively. The index number of the empirical 
orthogonal function (EOF) eigenmodes, where the first EOF eigenmode is well separated from the rest is ordered from largest to smallest.
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on the geomagnetic field of the Sq ionospheric current. The residual, which indicates the long-term trend of the 
Sq current is attributed to the magnetospheric ring current (e.g., Xu & Kamide, 2004). Thus, the EOF model of 
Sq current can help in the understanding of the external magnetic field variations.

As the Sq current depends strongly on solar activity and consequent solar cycle variation, we obtain the Sq current 
at 12:00 LT for minimum (𝐴𝐴 𝐴𝐴10.7eff = 80 sfu ) moderate (𝐴𝐴 𝐴𝐴10.7eff = 120 sfu ) and maximum (𝐴𝐴 𝐴𝐴10.7eff = 160 sfu ) 
solar conditions as shown in Figure 5. Under solar minimum conditions, the northern Sq current has a June 

Figure 5. Seasonal variation of Sq current at 12:00 LT derived from the empirical orthogonal function model under different solar activity conditions as indicated on 
the panels. (a–c) Sq current variation obtained over the American sector. (d–f) Same as panels (a–c) except for the European/African sector.
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solstice peak and the weakest at the December solstice, with some intermediate values at the Equinox, while the 
southern Sq current exhibits a semiannual variation with a peak around the Equinoctial months and weakest in 
the solstitial months. For moderate solar activity, the northern and southern current intensities exhibit annual and 
semiannual variations in the northern and southern hemispheres, respectively, that is, the amplitude of the north-
ern current intensity peaks in June solstice while the amplitude of the southern current intensities increases the 
Equinox. Under solar maximum conditions, the NH Sq current also shows a semiannual variation, which is espe-
cially evident in the American sector. In low and equatorial latitudes, the weakest magnitude appears at the June 
solstice, but the magnitude of the December solstice is not the weakest. At middle latitudes, the annual variation 
appears to be clearer than the semiannual component. The annual variation is associated with the Sq amplitude 
being greater during summer than winter at middle latitudes, whereas the semiannual component is typically 
associated with the Sq amplitude being greater during equinoctial months than other times at low and equatorial 
latitudes (Pedatella et al., 2011; Yamazaki & Maute, 2017). As expected, displayed high value of the Sq current 
in the American sector, and its temporal distribution obviously differs across the two longitudinal sectors, further 
confirming the longitudinal differences of the geomagnetic Sq field (e.g., Pedatella et al., 2011). Several other 
confounding factors may contribute to the observed spatial and temporal variability of Sq current. The effects of 
hemispheric conductivity differences on Sq current and resultant magnetic field perturbations have been explored 
extensively (e.g., Pedatella et al., 2011). In both hemispheres, seasonal variations in thermospheric wind patterns 
and ionization levels are considered to be responsible for these properties (e.g., Yamazaki et al., 2011).

Earlier, Campbell and Matsushita (1982) compared the seasonal variation of the NH Sq current in the American 
sector during the solar minimum year of 1964 and the solar maximum year of 1958, respectively. They noted 
that the Sq current exhibited an annual variation in 1964 but a semiannual variation in 1958. The enhanced/re-
duced semiannual variation of the NH Sq current under solar maximum/minimum conditions is consistent with 
our results. The Sq current asymmetry is more pronounced in the European/African sector compared with the 
American sector. The prevailing northern annual variation that peaks in the June solstice can be attributed to a 
higher conductivity caused by increased insolation in the dynamo region during the June solstice, which results 
in stronger Sq current during this period (e.g., Pedatella et al., 2011; Takeda, 1999, 2002). At 𝐴𝐴 𝐴𝐴10.7eff = 160 sfu , 
the Sq current at 12:00 LT exhibits semiannual variation in both hemispheres, and the intensities in equinoxes are 
much greater than in solstices (e.g., Takeda, 2002; Yamazaki et al., 2011).

Solar activity dependence of the Sq current parameters such as the northern Sq current intensity, southern Sq in-
tensity and 𝐴𝐴 𝐴𝐴total over the two longitudinal sectors are depicted in Figure 6. In this Figure, we observed that 𝐴𝐴 𝐴𝐴total de-
fined as the total currents flowing in the dayside vortex in each hemisphere has a clear dependence on the location, 
season, solar activity levels with greater peaks in equinoxes over the two longitudinal sectors. For example, there 
is a significant seasonal asymmetry between the equinox and solstice despite a similar amount of heating coming 
from the Sun in both longitudinal sectors (e.g., Chulliat et al., 2005). This demonstrates that the dominant tidal 
winds responsible for the 𝐴𝐴 𝐴𝐴total is at their strongest at the equinoxes. Possible physical mechanism is the semian-
nual variation of the Sq current resulting from the diurnal wind semiannual change (e.g., Yamazaki et al., 2009). 
Pedatella et al. (2011) pointed out that the seasonal and longitudinal variations of the Sq current exhibit amplitude 
modulations which appear to be related to the influence of nonmigrating tides. Such a behavior is largely due 
to the geomagnetic main field effects caused by ionospheric conductivity differences and the offset between the 
geographic and geomagnetic equators (e.g., Takeda, 1999; Yamazaki et al., 2011). In addition, the northern Sq 
current changes semiannually, which is most pronounced during high solar activity (𝐴𝐴 𝐴𝐴10.7eff = 160 sfu ) with 
peaks in April and October (Figure 6b), agreeing with prior research (e.g., Takeda, 1999). The equinoctial peaks 
of the 𝐴𝐴 𝐴𝐴total intensity is also evident during the moderate solar activity (𝐴𝐴 𝐴𝐴10.7eff = 120 sfu ). The pattern is similar 
to that observed during the high solar activity (𝐴𝐴 𝐴𝐴10.7eff = 160 sfu ), except that the slight change in magnitude. 
For 𝐴𝐴 𝐴𝐴10.7eff = 80 sfu , the northern Sq current intensity shows annual variation with peak around the solstices in 
both longitudinal sectors.

In Figure 5c, and a strong semiannual variation in the southern Sq current intensity is observed in both longitu-
dinal sectors with maximum value in the solstice, and an annual variation with maximum values near the solstice 
during the moderate and low solar activity conditions. Similar variations in the amplitude of 𝐴𝐴 𝐴𝐴total with solar ac-
tivity levels has been reported in the Asian/Australian sector (e.g., Yamazaki et al., 2011). Thus, the details of the 
solar cycle as well as seasonal analyses of 𝐴𝐴 𝐴𝐴total differ longitudinally (e.g., Pedatella et al., 2011). Previous studies 
have suggested that the semiannual change of Sq currents can be explained by the seasonal variation of migrating 
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tides (e.g., Yamazaki & Maute, 2017). Overall, our results suggest that the EOF approach could capture patterns 
of spatial and temporal variability of Sq current function by extracting distinct patterns in the Sq current function. 
This mathematical technique could help discover how external solar forcing is reflected in the ionosphere. Ex-
tending the EOF investigation to long-term global geomagnetic field data could help understand the longitudinal 
structure and physical mechanisms involved.

4. Conclusion
We have constructed an EOF model of Sq current function under different solar activity conditions based on the 
ground magnetometer data over the American and European/African sectors for the years 2006–2019. The EOF 
model, which captured 96% of the total Sq current variance, is characterized by large-scale spatial and temporal 
patterns. The EOF model reconstruction unveils a significant dependence of the Sq current on solar activity, 
magnetic latitude, local time and season, suggesting a contribution from the EUV, and ionosphere-thermosphere 
coupling. In both longitudinal sectors, similar Sq current patterns were present under different solar activity 
conditions, although we observed some differences in their Sq current amplitudes. Besides, the newly developed 
model could reproduce a refined Sq current variability over the two longitudinal sectors as long as the observed 
Sq variation data have sufficient duration, which could help in assessing the space weather effects. However, 
this model only accounts for the influence of solar activity, season, magnetic latitude and local time over the 

Figure 6. Seasonal variation of the averaged Sq current parameters derived from the empirical orthogonal function model in the American sector (red line) and 
European/African sector (blue line) during high (left), moderate (middle) and low (right) solar activity levels. The first-row panels show the total Sq current intensity. 
The second and third row panels represent the northern and southern current intensities, respectively.
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two longitudinal sectors, while there exist other driven sources requiring further investigation. In effect, a more 
detailed study would be required using space-ground conjugate magnetometer observations to further elucidate 
the large-scale Sq current variation and dynamics in relation to solar activity conditions. This understanding is 
necessary for effective prediction of the Sq current variations, and efforts are underway to fully characterize how 
the longitudinal structure of the Sq current system varies with solar activity.

Data Availability Statement
This study utilizes ground magnetometer data from various sources, including the LISN (http://lisn.igp.gob.
pe/jdata/database/), AMBER (http://magnetometers.bc.edu/index.php/downloads), INTERMAGNET (https://
www.intermagnet.org/data-donnee/download-eng.php) AUTUMNX (http://autumn.athabascau.ca/magdata/L1/), 
WDC (http://www.wdc.bgs.ac.uk/catalog/master.html), CARISMA (http://www.carisma.ca/carisma-data-reposi-
tory), SAMBA (http://magnetometers.bc.edu/index.php/downloads), EMBRACE (http://www2.inpe.br/climaes-
pacial/SpaceWeatherDataShare/), WAMNET (http://www.bcmt.fr/wamnetnetwork.html) and MAGDAS/CPMN 
networks. The MAGDAS/CPMN geomagnetic data are available upon request from Dr. Akimasa Yoshikawa at 
the International Center for Space Weather Science and Education, Kyushu University, Fukuoka, Japan (yoshi@
geo.kyushu-u.ac.jp). The geomagnetic coordinates are calculated through the IAGA website's quasi dipole coor-
dinate calculator (http://www.geomag.bgs.ac.uk/data_service/models_compass/coord_calc.html). The F10.7 flux 
and Kp indices are archived on the NASA Goddard Space Flight Center's SPDF/GSFC website (https://omni-
web.gsfc.nasa.gov/form/dx1.html). The Helmholtz Center Potsdam in Germany, known as the GFZ, collects and 
stores records on the IQDs (https://www.gfz-potsdam.de/Kp-index/).
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