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1.  Introduction
The Earth's magnetic field, comprising relative paleointensity (RPI) and directions, can be recorded by magnetic 
minerals during their deposition in the water column via the depositional remanent magnetization (DRM) and the 
post DRM (PDRM) mechanisms (Tauxe et al., 2006). Given the advantage of continuity, paleomagnetic results 
derived from sedimentary archives have been broadly used in deciphering the evolution of Earth's magnetic 
field and determining chronology (e.g., Channell et al., 2020; Lund et al., 2006; Nowaczyk et al., 2012; Pano-
vska et al., 2019; Stoner et al., 2002; Valet & Fournier, 2016). However, recovering reliable paleomagnetic data 

Abstract  Continuous paleosecular variations reconstructed from sedimentary archives have remarkably 
deepened our insights into the dynamics of the Earth's magnetic field as well as the chronological purpose. 
Nevertheless, to construct reliable sedimentary paleomagnetic records in diagenetic reducing sediments is 
challenging generally due to the pervasive magnetic mineral diagenesis. The relict magnetic minerals are 
residuals after diagenesis and probably able to record a depositional remanent magnetization, thus it is worthy 
to explore their paleomagnetic potentials. For this study, two Black Sea sediment cores covering the past 8 
ka were subjected to mineralogical and paleo- and rock magnetic analyses. Paramagnetic pyrite framboids 
are pervasive in the studied sediments deposited under anoxic bottom water conditions in the Black Sea. In 
addition, relict magnetic minerals of ferrous hemoilmenite, Fe-Mn and Fe-Cr spinels, and magnetite inclusions 
are also present in the studied cores. Compared to the previous published paleomagnetic results from the same 
cores over the last glacial period (20–30 ka) which are dominated by detrital (titano-)magnetite particles, the 
studied relict magnetic mineral samples exhibit a similar behavior in recording the depositional remanent 
magnetization. Furthermore, the obtained paleosecular variations spanning the past 8 ka reproduce the 
high intensity patterns observed in the regional archeomagnetic and volcanic datasets. Thus, the successful 
reconstruction of paleomagnetic secular variations from the anoxic Black Sea sediments greatly extend the 
application of paleomagnetism in sediments deposited in water with a reducing sub-surface environments from 
where paleomagnetic data are generally sparse.

Plain Language Summary  The Earth's magnetic field can be recorded by magnetic minerals during 
their deposition within a water column, and are later preserved in sediments. The geomagnetic field signal 
may be biased if the magnetic minerals are subsequently altered because of changes in bottom water redox 
conditions. However, relict magnetic minerals are resistant to ambient environmental changes and thus have 
great potentials to record reliable paleomagnetic signals. To attest this novel idea, we systematically investigated 
sediments form the Black Sea under strong anoxic bottom water conditions. Our results demonstrate that 
the relict magnetic minerals survived in the Black Sea sediments covering the past eight thousand years. By 
comparison with detrital (titano-)magnetite samples, we found that relict magnetic mineral samples have similar 
behavior in recording the geomagnetic field. Moreover, the geomagnetic field variations reconstructed from the 
Black Sea sediments are comparable with other validated regional datasets for the past eight thousand years. 
Therefore, our new study significantly extends the application of paleomagnetic methods in a wider range of 
sedimentary redox conditions.
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from sediments is challenging (e.g., Bilardello et al., 2013; Gilder et al., 2019; Katari & Tauxe, 2000; Selkin 
et al., 2000; Tauxe, 1993), one of the major issues is the magnetic mineral diageneses associated with changing 
ambient environments (Ebert et al., 2021; Roberts, 2015; Wiers et al., 2019). Following the formation of second-
ary magnetic minerals in sediments, a chemical remanent magnetization (CRM) is formed, contemporaneously 
overlapping with and/or replacing the original DRM (e.g., Channell & Xuan, 2009; Dekkers & Rochette, 1992; 
Hus, 1990; Rowan et al., 2009; Snowball, 1997; Snowball & Thompson, 1990). Specifically, depositional envi-
ronments during interglacial are featuring magnetic minerals diagenesis by reasons of abundant organic input 
and/or weak ventilations (Jianxing Liu et al., 2014; Larrasoaña et al., 2003; Roberts, 2015). Thus, paleomagnetic 
results derived from interglacial sediments are generally problematic (e.g., Just et al., 2019).

In reducing environments, detrital (titano-)magnetite undergoes dissolution and release Fe 2+ which can react 
rapidly with HS − from the water column to form iron sulfides (Canfield & Berner, 1987; Roberts, 2015). Instead, 
relict minerals of ilmenite, Fr-Cr and Fe-Mn spinels can resist against dissolution due to their low content of 
iron (Canfield et  al.,  1992). Accordingly, relict magnetic mineral assemblages, including the magnetic inclu-
sions protected by silicates, are residuals of detrital magnetic minerals after diagenesis and widely found in 
reducing environments (e.g., Chang et al., 2016; Hounslow, 1996; Just et al., 2012; Nowaczyk, 2011; Wilson & 
Roberts, 1999). The paleomagnetic significances of magnetic inclusions have been broadly investigated in igne-
ous rocks (e.g., Feinberg et al., 2005; Tarduno et al., 2006; Usui et al., 2015) and recently in sedimentary archives 
(Chang et al., 2021; Chen et al., 2017; Hong et al., 2019). It is found that magnetic inclusions are able to record 
the geomagnetic field, but have a lower efficiency in recording the DRM than other detrital magnetic minerals 
(Chang et al., 2021; Hong et al., 2019). Although ilmenite is paramagnetic at room temperature, ilmenite grains 
that contain submicron domains of a single domain (SD) ferrimagnetic hemoilmenite phase is likely responsible 
for the measured paleomagnetic signals (Lawson & Nord, 1984; Wilson & Roberts, 1999). In addition, Robin-
son et al. (2002) suggested that ilmenite can record magnetic signals by lamellar magnetism. Hounslow (1996) 
reported that ferrimagnetic Fe-Cr and Fe-Mn spinels are the dominant remanence carrying phases in the Lunde 
Formation, North Sea. And the Fe-Cr spinel is also a potential carrier of a natural remanent magnetization (NRM) 
and a source of magnetic anomalies in ultramafic complexes (Yu & Tikoff, 2020). From sediments which are 
dominated by ferrous ilmenites, (titano-)magnetite, Cr-Fe spinels, and impure magnetite, Scheidt et al. (2017) also 
reconstructed a reliable magnetic polarity stratigraphy. Hence, the relict magnetic minerals which can survive in 
reducing environments are promising to record the geomagnetic field in sediments where other detrital magnetic 
minerals were dissolved and no secondary magnetic minerals formed.

The highly variable paleosecular variations spanning the Holocene are characterized by a series of high and low 
intensity anomalies which were found in archeomagnetic and volcanic data (e.g., Ben-Yosef et al., 2009; Cai 
et al., 2021; Kovacheva et al., 2014; Shaar et al., 2016; Tarduno et al., 2015). At about 3 ka BP, the Levantine Iron 
Age Anomaly (LIAA) with high intensity and rapid secular variations was firstly reported from the Levant region 
(Ben-Yosef et al., 2009; Shaar et al., 2016) and later found around the Mediterranean region (Molina-Cardín 
et al., 2018; Osete et al., 2020; Rivero-montero, Gómez-Paccard, Kondopoulou, et al., 2021). An additional high 
field intensity at ∼1.2 ka BP with a double-oscillation feature was commonly observed in European archeomag-
netic results (e.g., Genevey et al., 2016; Gómez-Paccard et al., 2012; Kovacheva et al., 2014), though the maxima 
do not occur simultaneously in Western and Eastern Europe (Rivero-Montero, Gómez-Paccard, Pavón-Carrasco, 
et al., 2021). During the past millennia, low paleointensity anomalies were found in southern Africa (∼650 years 
BP; Tarduno et al., 2015), and southern Asia (∼750 years BP; Cai et al., 2021). Presently, the geomagnetic field 
intensity is decreasing driven by the growing South Atlantic Anomaly. Aiming to decipher the origin and evolu-
tions of these intensity fluctuations, as well as their relations with the Earth's core dynamics (Davies & Consta-
ble, 2017; Korte & Constable, 2018), it is essential to improve paleomagnetic data with increasing temporal and 
spatial coverages (Panovska et  al.,  2019). Specifically, sedimentary paleosecular variations (PSV) which are 
continuous and reach further back in time than archeomagnetic data can provide valuable information about the 
evolution of the Holocene geomagnetic field (Béguin et al., 2019).

Here, we present paleomagnetic results from two Black Sea sediment cores spanning the past 8 ka, coeval with the 
Holocene period. The Black Sea is the world's largest anoxic basin and is a semi-closed basin that was connected 
to the Marmara and Mediterranean Seas since about 9.5 ka (Badertscher et al., 2011; Bahr et al., 2008; Lamy 
et al., 2006; Soulet et al., 2011; Wegwerth et al., 2018). After the reconnection, the constant anoxic Black Sea 
bottom water favors diagenesis of a steady-state pattern (e.g., Berner, 1984), and pervasive pyrite framboids were 
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reported in the Black Sea sapropelic sediments since about 8.3 ka (Peckmann 
et al., 2001; Wilkin et al., 1996). With respect to the paramagnetic pyrite, the 
ferrimagnetic greigite which commonly cause biased paleomagnetic results 
(e.g., Rowan et al., 2009) have not been observed in previous studies in the 
Black Sea sapropels (e.g., Peckmann et al., 2001; Wilkin et al., 1997). In this 
study, detailed mineralogical and rock magnetic results demonstrate that the 
relict magnetic minerals are the magnetic carriers in the Holocene Black Sea 
sediments. In contrast, previous studies revealed that detrital (titano-)magnet-
ite minerals are in dominance in the last glacial (14–70 ka) Black Sea sedi-
ments (Jiabo Liu et al., 2019; Nowaczyk et al., 2012, 2018). By comparing 
paleomagnetic results with data on the same cores from the last glacial period 
(20–30 ka), as well as with other regional paleomagnetic records, potential 
implications of the PSV derived from relict magnetic mineral samples from 
the Holocene Black Sea sediments are discussed.

2.  Materials and Methods
2.1.  Sediments

At the Archangelsky Ridge, Black Sea, a total of 18 sediment cores were 
taken by German RV Meteor in 2007 (leg M72/5) and RV Maria S. Merian 
in 2013 (leg MSM33). During the last glacial, the Black Sea was a giant 
freshwater lake, and the glacial sediments characterized by (titano-)magnet-
ite minerals were used to reconstruct the PSV spanning from 14 to 70 ka 
(Jiabo Liu et  al.,  2020; Nowaczyk et  al.,  2013). After the Mediterranean 
Sea water ingression, finely laminated organic-rich sapropelic sediments 
and coccolith oozes were deposited in the Black Sea since about 8.3 ka 
(e.g., Bahr et al., 2005; Shumilovskikh et al., 2013). The studied Black Sea 
sapropels are characterized by variable carbonate (total inorganic carbon: 
1.1%–9.8%) and organic matter (total organic carbon: 0.1%–12.2%) contents 
(Wegwerth et al., 2018). Framboids of paramagnetic pyrite were commonly 
formed as a result of the organo-clastic sulphate (𝐴𝐴 SO

2−

4
 ) reduction and the 

sulphate reduction coupled to anaerobic oxidation of methane (SO4-AOM; 
e.g., Egger et al., 2016; Jørgensen et al., 2004; Neretin et al., 2004; Peckmann 
et al., 2001; Wilkin et al., 1996). According to the age models shown by Jiabo 
Liu et al. (2020), cores MSM33-55-1 and MSM33-54-3 (Figure 1) covering 

the Holocene period with relatively higher sedimentation rates (10.75 cm/kyr and 12.6 cm/kyr, respectively) than 
the other cores were subjected to detailed paleo- and rock magnetic investigations for this study. The whole paleo- 
and rock magnetic data from the cores MSM33-55-1 and MSM33-54-1 are presented in Jiabo Liu et al. (2019) 
and Nowaczyk et al.  (2018), respectively. Since the two cores have identical rock magnetic properties for the 
Holocene interval, further rock magnetic and mineralogical analyses were performed on selected samples only 
from core MSM33-55-1.

2.2.  Magnetic Extraction

Two magnetic extraction samples were prepared from depth 20.4 and 71.0 cm from core MSM33-55-1. Fresh 
sediments (∼2 cm 3) taken from paleomagnetic sample boxes (6 cm 3) were dissolved into about 50 cm 3 of ethanol. 
The resulting slurry was dispersed and whirled for 5 min using ultrasound. The procedures of extracting magnetic 
minerals followed Nowaczyk (2011) with the probe of type B, a complete 2 cm diameter magnet placed inside a 
plastic probe submerged into the diluted sediment slurry with ultrasound action for 2 min. After turning off the 
ultrasound, the probe was moved gently in the slurry for about 1 min. Then the probe was taken out and placed 
into a small vial. After gently taking the magnet out, the magnetically attracted material at the outside of the probe 
is washed off using ethanol. By repeating the extracting procedures 5–10 times, magnetic materials are accumu-
lating in the ethanol solution in the vial. For electron microscopic observations, 2–3 drops of the collected ethanol 
solution with magnetic material were dropped on the sample holders.

Figure 1.  Bathymetric map of the SE Black Sea. Sediment cores MSM33-
55-1 and MSM33-54-3 were taken along the center of the Archangelsky Ridge 
during RV Maria S. Merian expedition MSM33 in 2013. Sediment cores 
GeoB7608-1 and GeoB7622-2 were taken from the western Black Sea during 
RV Meteor expedition M51/4.
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2.3.  Scanning and Transmission Electron Microscope

Scanning electron microscope (SEM) imaging, together with energy dispersive X-ray spectroscopy (EDS) anal-
ysis, were performed on standard SEM stubs for bulk sediments (18 cm, 20.4 and 71.0 cm) and magnetic extrac-
tions (20.4 and 71.0 cm) from core MSM33-55-1. For SEM imaging, all samples of this study were sputtered 
with carbon (C). The electron backscatter mode was used for SEM observations. The SEM measurements for 
bulk sediments were performed using a Carl Zeiss SMT Ultra 55 Plus, generally with a voltage of 20 kV, an 
aperture of 120 μm, and a working distance of ∼12 mm. The measurements of bulk sediments were conducted at 
the Helmholtz Centre Potsdam, GFZ German Research Centre for Geosciences, Potsdam, Germany. With similar 
settings, magnetic extraction samples were analyzed using a Carl Zeiss Sigma 300 VP, equipped with a Bruker 
QUANTAX EDS at the department of Earth and Space Science, Southern University of Science and Technology 
(SUSTECH), Shenzhen, China.

The transmission electron microscope (TEM) foil was prepared from magnetic extractions from depth 20.4 cm 
from core MSM33-55-1 following Wirth  (2004,  2009). The TEM observations were performed using a FEI 
Tecnai G2 F20 X-Twin TEM with a Schottky field emitter as an electron source. The TEM was equipped with 
a Fishione high-angle annular dark-field detector (HAADF), and an EDAX X-ray analyzer. High-resolution 
lattice fringe images were used to calculate the diffraction pattern (fast Fourier transform, FFT) of minerals. The 
observed d-spacings and angles between adjacent planes were compared with the d-spacings and angles calcu-
lated from literature data. The TEM analyses were conducted at the GFZ, Potsdam, Germany.

2.4.  Dissolution Experiments

Bulk sediments from depth 20.4 and 71.0 cm from core MSM33-55-1 were freeze-dried for 24 hr at −50°C and 
vacuum conditions. Then the two samples (0.103 and 0.159 g) were ground to 200 mesh powder, and treated 
with 30 mL HCL solution (10 mol/L) for 24 hr in a 100 mL conical flask. The reactions were performed on a 
tabletop centrifuge with 150 revolutions per minute (rpm) at 35°C. After the reaction, samples were transported 
to a 50-mL tube for centrifugation at 4,500 rpm for 10 min. After removal of the supernatant fluid, the samples 
were washed with ultrapure water three times. More detailed procedures are described by Jiang et al. (2021). The 
obtained residuals and untreated samples were freeze-dried again and used for later rock magnetic measurements. 
For SEM observations, two magnetic extraction samples were prepared from the residuals following the magnetic 
extracting procedures described in Section 2.2.

2.5.  Paleo- and Rock Magnetism

Discrete samples from cores MSM33-55-1 and MSM33-54-3 were taken by using rectangular plastic boxes 
(inner dimension 20 × 20 × 15 mm) with a volume of 6 cm 3. The low-frequency magnetic volume susceptibility 
κLF was determined by using an AGICO Multi-function Kappabridge MFK1-A, applying a field of 200 Am. −1 
and a frequency of 976 Hz. Temperature-dependent κLF measurements up to 700°C in argon atmosphere were also 
performed by using the MFK1-A in combination with a CS-3 unit.

The NRM and the anhysteretic remanent magnetization (ARM) were measured with a cryogenic 2G Enterprises 
755 SRM long-core magnetometer. The NRM was alternating field (AF) demagnetized in steps of 0, 5, 10, 15, 20, 
30, 40, 50, 65, 80, and 100 mT. Characteristic remanent magnetization (ChRM) directions were determined by 
using principal component analysis (PCA) following Kirschvink (1980). Directional maximum angular disper-
sions (MAD) of individual samples are converted to α95 uncertainties following Heslop and Roberts  (2020). 
The ARM was imparted along the samples' z-axes with a static field of 0.05 mT and an AF field of 100 mT. 
AF demagnetization of the ARM was performed in steps of 0, 10, 20, 30, 40, 50, 65, and 80 mT. The slope of 
NRM versus ARM of common demagnetization steps along a straight line is defined as the relative paleointen-
sity (RPI). A 2 G Enterprises 660 pulse magnetizer was used to impart an isothermal remanent magnetization 
(IRM), with the IRM acquired in a field of 1,500 mT defined as the saturation IRM (SIRM). The samples' IRMs 
were measured with a Molyneux spinner magnetometer. All paleo- and rock magnetic measurements for discrete 
samples were conducted at the GFZ, Potsdam, Germany.

Freeze-dried bulk sediments (18.0 cm, 20.4 cm, 71.0 cm and 80.2 cm), and the residuals (20.4 and 71.0 cm) after 
the dissolution experiments from core MSM33-55-1 were subjected to detailed rock magnetic measurements. 
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IRM acquisition curves were obtained by applying 61 logarithmically spaced field steps from 2 mT to 1 T. The 
IRM component analyses were calculated using the software “pyIRM”, based on a Gaussian mixture model, 
available on https://github.com/botaoxiongyong/pyIRM. The protocol and calculation of irregular spaced first 
order reversal curve (irFORC) and transient hysteresis-free FORC (tfFORC) diagrams were performed following 
Zhao et al. (2015, 2017). All FORC diagrams were calculated with a smooth factor (SF) of 3 using the software 
"XFORC" (Zhao et al., 2015, 2017). The FORC, hysteresis curves and IRM acquisition curves were measured on 
a LakeShore vibrating sample magnetometer (VSM) 8600 at the SUSTECH, Shenzhen, China.

Low-temperature magnetic properties were measured using a Quantum Design Magnetic Property Measurement 
System (MPMS) at the Helmholtz-Zentrum Berlin (HZB), Germany. Magnetic extractions from sediments from 
80.2 cm were cooled to 5 K in either zero field (ZFC) or in a 5 T field (FC). A low-temperature SIRM was 
obtained by applying a 5 T field at 5 K. Then ZFC and FC curves were measured in a zero field during warming 
from 5 to 300 K with a step of 5 K/min.

3.  Results
3.1.  Age Models

For the past 10 ka, the ages of studied Black Sea sediment cores were determined by correlating Ca/Ti rations to 
that of cores GeoB7608-1 (Bahr et al., 2005) and GeoB7622-2 (Lamy et al., 2006) dated by AMS  14C from the 
western Black Sea (Figure 1). In Figure 2, Ca/Ti ratios from the studied cores and the Black Sea stack (Jiabo Liu 
et al., 2020) follow a similar pattern to that of the cores GeoB7608-1 and GeoB7622-2. The Black Sea stack of 
Ca/Ti ratio using 100-year bins were derived from X-ray fluorescence (XRF) scanning of 14 Black Sea sediments 
cores (Ca/Ti ratios of all individual cores refer to the supplementary in Jiabo Liu et al., 2020). The obtained ages 
are further constrained by an ash layer Z2 at about 3.6 ka (Höflmayer, 2012) identified in cores GeoB7622–2 
(Lamy et al., 2006) and M72/5–25GC1 (Cullen et al., 2014). The onset of sapropelic sedimentation at about 8.3 
ka (e.g., Badertscher et al., 2011; Bahr et al., 2008; Lamy et al., 2006) is indicated by a greyish bar in Figure 2. 
More detailed correlations and age depth models of the studied cores are provided by Nowaczyk et al. (2020) for 
the Holocene and by Jiabo Liu et al. (2020) for the Pleistocene sediments.

3.2.  Relict Magnetic Minerals

In studied Black Sea sediments, pyrite framboids with diameters ranging from a few to about dozens of microm-
eters are commonly found in samples from different depths from core MSM33-55-1 (Figures  3a–3c). After 
magnetic extraction, relict magnetic minerals of hemoilmenite, Fe-Mn and Fe-Cr spinels, and magnetic inclu-
sions are found in SEM observations (Figure 3d–o). Corresponding EDS spectra results of the relict magnetic 
crystals are shown in Supporting Information S1. The relative percentage of elements Fe, Ti, Mg, Al, Si, Mn and 
Cr, and Ti/Fe ratios are shown in Figure S1 in Supporting Information S1. The measured EDS spectra results of 
samples shown in Figure 3 are characterized by Ti/Fe ratios ranging from 0.4 to 2 which is similar to hemoilmen-
ite (e.g., Dillon & Franke, 2009; Gehring et al., 2008). In addition, minor concentrations of Mn and Mg observed 
in the EDS spectra of hemoilmenite (Gehring et al., 2008) are also found in raw samples of this study.

In the magnetic extractions, magnetic inclusions hosted in silicates can be found in both SEM (Figure 3j) and 
TEM observations (Figure 4). In Figure 4, the EDS analyses on the silicate particle indicate peaks of Iron (Fe), 
Oxygen (O), and Silica (Si; Figure 4c), which is coinciding with that of magnetite inclusions (e.g., Chang, Roberts, 
et al., 2016; Jiang et al., 2021). In Figures 4b and 4a lattice fringe image is shown for one magnetite inclusion. 
The diffraction pattern (FFT) of the lattice fringe yields values of 36.0°, 35.0°, 54.5°, and 54.5° between adjacent 
lattice planes (Figure 4d), which is indicative of magnetite in [01-1] zone axis orientation.

The magnetic inclusions are protected by host silicates and can survive HCL treatment. Jiang et al. (2021) show 
that sediments dissolved in 10 mol/L HCL solution for 24 hr can efficiently remove biogenic and unprotected 
magnetic phases and preserve silicate hosted magnetic inclusions. In studied Black Sea sediments, SEM images 
of magnetic extractions from residuals after HCL treatment indicate the survivals of hemoilmenite skeletons, 
Cr-Fe spinels, and magnetic inclusions (Figure S2 in Supporting Information  S1). Compared to the hemoil-
menite particles from untreated sediments (Figure 3), the hemoilmenite skeletons from HCL treated residuals 

https://github.com/botaoxiongyong/pyIRM
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are characterized by holes and cracks (Figure S2 in Supporting Information  S1). Additionally, EDS spectra 
results indicate that Ti/Fe ratios are getting slightly higher after HCL treatment (Figure S1b in Supporting 
Information S1).

With respect to the untreated samples, the residuals after HCL treatment from two Black Sea sediment samples 
exhibit significant decrease in magnetization (Figure 5 and Table 1). About half weight of the studied samples 
were left after the HCL treatment, but the residuals of the two samples only account for 13.4% and 22.0% of the 
total SIRM (Table 1). Thus, it is very likely that the observed holes and cracks in hemoilmenite skeletons under 
SEM (Figure S2 in Supporting Information S1) from HCL treated residuals were occupied by other ferrimagnetic 
minerals. Note the hysteresis curves were corrected to better observe the components from ferrimagnetic contri-
butions (Figure 5b). The raw hysteresis loops (Figure 5a) indicate strong linear response of magnetic moment 
(M) to the applied field (B) before and after the dissolution, which is due to substantial contributions of the 
paramagnetic pyrite and silicates.

Figure 2.  Ages of cores MSM33-55-1 and MSM33-54-3 for the Holocene period (0-10 ka) are determined by correlating Ca/
Ti ratios to those of cores GeoB7608-1 (Bahr et al., 2005) and GeoB7622-2 (Lamy et al., 2006) from the western Black Sea 
(Figure 1). The AMS  14C ages with 1σ error bars from core GeoB7622-2 are shown on the top. The Black Sea stack of Ca/Ti 
ratio (Jiabo Liu et al., 2020) is plotted with 1σ standard deviation band. The ash Z2 indicates the Minoan Santorini eruption 
at about 3.6 ka (Höflmayer, 2012). The start of the sapropelic sedimentation in the Black Sea is marked by a gray bar at about 
8.3 ka (e.g., Kwiecien et al., 2008; Major et al., 2006).
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3.3.  Rock Magnetic Properties

In Figure 6, detailed rock magnetic results exhibit comparable patterns among four bulk samples selected from 
core MSM33-55-1. Temperature-dependent κLF curves (κ-T) in Figure 6a display very low values during heating 
(red curve), whereas remarkably high values during cooling (blue curve) after about 580°C, which denotes the 
formation of magnetite after heating. Due to the abundant pyrite framboids in studied samples, the pattern of κ-T 
curves is mainly caused by the thermochemical alteration of pyrite. In the right column of Figure 6a, low-tem-
perature FC-ZFC curves are shown for the magnetic extraction sample from 4.8 ka. During warming, the ZFC 
curve exhibit a minimum at about 12 K and then a steep increase with a peak at about 40 K. The FC curve shows a 

Figure 3.  Scanning electron microscope (SEM) images, backscatter mode, of (a–c) bulk sediments and (d–o) magnetic extractions from core MSM33-55-1. (a–c) 
Pyrite framboids are pervasive in bulk sediments. (d–o) Relict magnetic minerals are mainly hemoilmenite, Fe-Mn and Fe-Cr spinels, and magnetite inclusions. 
Corresponding energy-dispersive X-ray spectroscopy (EDS) data of crystals from (e-o) are shown in Supporting Information.
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sharp decrease between 5 and 12 K. The ZFC curve of studied sample is similar to that of hemoilmenite particles 
(Gehring et al., 2008), though the FC-ZFC curve reported by Gehring et al. (2008) was measured with a direct 
current filed of 10 mT. Gehring et al. (2008) suggested that the peak of FC-ZFC at about 45 K is due to the onset 
of spin glass-like states in the hemoilmenite.

In Figure 6b, IRM acquisition curves are decomposed into three components based on different magnetic mineral 
coercivities. In all studied samples, the dominant components plotted as red lines contribute to more than 80% 
of the total IRM. Besides, the dominant components are characterized by a narrow distribution (dispersion 
parameter = 0.18–0.19) and low median field (20–25 mT), which are generally related to magnetite (e.g., He 
et al., 2020). The irFORC (Figure 6c) and tfFORC (Figure 6d) diagrams are used to indicate the domain states 
of magnetic minerals. The irFORC distributions of studied samples have a positive peak along the Bc axis up to 
∼50 mT and spreading the Bi > 0 axis up to ∼30 mT, and a negative region along the Bi < 0 axis. This pattern 
is typically found in samples bearing SD magnetite (e.g., Chang, Roberts, et al., 2016; Jiang et al., 2021). The 
tfFORC diagrams also show positive peaks along the Bc axis (Figure 6d) which are also a key indicator of the 
presence of SD particles (Zhao et al., 2017). In addition to magnetic inclusions, the ferrimagnetic minerals hosted 
in hemoilmenite should be responsible for the measured low magnetic coercivities and SD behavior.

3.4.  Paleomagnetic Results

Detailed AF demagnetization graphs of selected samples from cores MSM33-55-1 and MSM33-54-3 spanning 
the past 9 ka are shown in Figure 7. For all samples, vector end-points migrate straight to the origin, with only 
minor vicious magnetization removed during the first AF step (Figure 7). ChRM directions, inclinations in red, 
and declinations in blue are generally determined between AF steps of 30 and 50 mT. The derived inclinations 
are slightly shallower than the expected inclination of 61° (red dashed line) calculated from a geocentric axial 
dipole field. Without horizontal directional information during coring, declinations are adjusted to a mean value 
of 0° for every individual cores. In NRM decay curves, the NRM intensities are generally decreasing to zero after 
the AF step of 50 mT. Additionally, gyro-remanent magnetization (GRM), which is typically found in greigite 
bearing samples (e.g., Ebert et al., 2021; Nowaczyk et al., 2020), is not observed in the studied samples.

Figure 4.  Transmission electron microscope (TEM) analyses of one magnetic inclusion bearing silicate from core MSM33-
55-1. (a) Bright-field TEM image of the silicate particle. (b) Lattice fringe image of an inclusion inside the silicate. (c) EDS 
spectrum of the host silicate. (d) The diffraction pattern (fast Fourier transform, FFT) of the inclusion shown in (b).
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In Figure  8, the paleo- and rock magnetic results recorded by the relict 
magnetic minerals for the past 8 ka are plotted together with the previous 
published datasets for the 8–30 ka interval (Jiabo Liu et al., 2019; Nowaczyk 
et al., 2018). Before ∼14 ka, the Black Sea sediments are dominated by detri-
tal (titano-)magnetite minerals with sporadically formed greigite, mostly in 
micro-environments. The greigite bearing samples, indicated by SIRM/κLF 
ratios >10 kAm −2 (Nowaczyk et al., 2012, 2020) are plotted as empty gray 
symbols. In sediments deposited between about 14 and 8 ka, greigite and 
pyrite were formed in sediments because of the seawater penetration from 
overlying sediments after the seawater ingression (e.g., Neretin et al., 2004; 
Strechie et al., 2002). In Figure 8a, the decrease of κLF after about 14 ka is due 
to the successive dissolution of detrital (titano-)magnetite and the subsequent 
formation of paramagnetic pyrite. With respect to greigite and/or (titano-)
magnetite samples from 8 to 30 ka, the relict magnetic minerals from 0 to 
8 ka are characterized by very low κLF and remarkably high ARM/SIRM 
values, indicating smaller grain sizes. Note that the κLF amplitudes in the 0–8 
ka interval are strongly influenced by the presence of paramagnetic pyrite 
framboids and silicates which may also bias the SIRM/κLF ratios. Between 8 
and 20 ka, rock magnetic properties of the studied cores are severely affected 
by secondary ferrimagnetic greigite which can also compromise paleomag-
netic results. Thus, we only compare the relict magnetic mineral samples 
from 0 to 8 ka to the (titano-)magnetite samples from 20 to 30 ka.

In Figure 9, the paleointensity and inclination recorded by relict magnetic 
mineral samples from 0 to 8 ka are compared to those of (titano-)magnetite 
samples from 20 to 30 ka, and to predictions from the model GGF100k (Pano-
vska et al., 2018) at the Black Sea site (42°N, 37°E). For this study, the RPI 
stacked from 16 Black Sea cores (BS stack, Jiabo Liu et al., 2020; Nowaczyk 
et  al.,  2013) covering the interval 20–30 ka was scaled to the intensity F 
predicted from the GGF100k model, following F = 20 + RPI*66.67. The 
same protocol is applied to the RPI from cores MSM33-55-1 and MSM33-
54-3 (Figures 9a and 9b). The mean field intensities F (𝐴𝐴 𝐹𝐹  ) with 1σ distri-
bution from the studied records and the GGF100k are shown for the 0–8 ka 
(left panel) and the 20–30 ka (right panel) intervals in Figure 9e and listed in 
Table 2. For 20–30 ka, the 𝐴𝐴 𝐹𝐹  amplitudes of the BS stack exhibit distributions 
similar to the GGF100 ka (Figure 9e), which denotes a reasonable conversion 
from RPI values to absolute F amplitudes. Based on the GGF100k model, 
the predicted F amplitudes at the Black Sea site are generally higher and 
more variable during 0–8 ka than during 20–30 ka (Figure  9e). Although 
with slightly different 𝐴𝐴 𝐹𝐹  values, the two studied cores show comparable 𝐴𝐴 𝐹𝐹  
values and 1σ distributions with the GGF100k for the 0–8 ka, as well as for 
the 20–30 ka. The inclinations of studied cores show identical amplitudes 
between the 0–8 ka (Figure 9f) and the 20–30 ka (Figure 9g) intervals. With-
out validated excursion events in the discussed time windows, the mean incli-
nations (∼55°) of studied cores slightly deviate from the expected inclination 
(∼61°) from a geocentric axial dipole field. The inclination shallowing factor 
f followed Bilardello and Kodama (2010) are 0.80 and 0.78 for the 0–8 ka and 
the 20–30 ka intervals, respectively.

4.  Discussion
In the modern Black Sea, when traveling through the water column, detri-
tal magnetic minerals are dissolved, subsequently forming pyrite framboids 
driven by SO4-AOM (Jørgensen et al., 2004; Peckmann et al., 2001; Raiswell 

Figure 5.  Rock magnetic properties of the untreated sediments and HCL 
treated residuals from core MSM33-55-1. (a) Raw hysteresis loops. (b) 
Corrected hysteresis loops for ferrimagnetic minerals. (c) Isothermal remanent 
magnetization (IRM) acquisition curves.

Age 
(BP)

Depth in 
core (cm)

Mass fraction 
(wt%)

SIRM  
(mA·m 2/kg)

SIRM 
fraction (%)

1.5 ka 20.4 46.8 1.07 13.4%

4.0 ka 71.0 55.1 1.82 22.0%

Note. The fractions of mass and saturated isothermal remanent magnetization 
(SIMR) are in proportion to the original untreated samples.

Table 1 
Summary of the Magnetic Characteristics of HCL Treated Residuals From 
Core MSM33-55-1
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& Canfield, 1998; Riedinger et al., 2017). The pyrite framboids are pervasive in studied Black Sea sediments 
covering the past 8 ka (Figure 3), but the paramagnetic pyrite does not carry a permanent magnetic remanence. In 
the studied Black Sea sediments, it is found that the relict hemoilmenite with ferrimagnetic minerals, Fe-Cr and 
Fe-Mn spinels, and magnetic inclusions are the magnetic carriers.

The ability of recording a DRM by relict magnetic minerals, specifically the magnetic inclusions, have been 
increasingly investigated recently since they are resistant to diagenesis. Besides, the magnetic inclusions in marine 
sediments are commonly reported as SD or vortex state size range (Chang et al., 2016; Jiang et al., 2021) and can 

Figure 6.  Rock magnetic results of samples from core MSM33-55-1. (a) Temperature-dependent κLF curves plotted with heating curves in red and cooling curves in 
blue. In the right column, low-temperature SIRM warming curves are shown for one sample. (b) IRM acquisition curves plotted with hollow circles are decomposed 
into three components indicated by green, red, and blue lines. (c) irregular FORC (irFORC) and (d) transient hysteresis-free FORC (tfFORC) diagrams were calculated 
with a smooth factor (SF) of 3 and their distributions ρ were normalized by their respective maximum ρmax. κLF - magnetic susceptibility; (S)IRM - (saturated) 
isothermal remanent magnetization; FORC- first order reversal curve.
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significantly contribute to the paleomagnetic signals (Chang et al., 2021; Hong et al., 2019). The DRM recorded 
by magnetic inclusions is strongly dependent on the size of host silicate minerals (Chang et al., 2021). Magnetic 
inclusions hosted in larger host silicates have a weaker response to a geomagnetic torque than small particles, 
which leads to lower paleomagnetic recording efficiency compared to biogenic magnetite and other detrital 
magnetic minerals (Chen et al., 2017; Hong et al., 2019). In contrast, the hemoilmenite and iron spinels carry only 
a weak magnetization. In the anoxic sediments from the Niger deep-sea fan, Dillon and Franke (2009) suggested 
that (titano-)magnetite is most likely replaced by paramagnetic iron sulfide, and ilmenite–hematite solid solution 
series are the prevailing contributor to the magnetization. The abundant hemoilmenite and iron  spinels are also 

Figure 7.  Alternating Field (AF) demagnetization results of samples from cores MSM33-55-1 (left panel) and MSM33-54-3 (right panel) spanning the past 9 ka. In 
vector endpoint diagrams, square and circle symbols indicate data in East versus South plane and Horizontal versus Down plane, respectively. The symbols in blue 
and red colors denote data used to determine characteristic (ChRM) directions. The red dashed line indicates the inclination of 61° at the study site expected from a 
geocentric axial dipole field. The declinations are shown after corrected to a mean value of 0° for individual cores. In natural remanent magnetization (NRM) decay 
curves, solid circles denote the AF steps of ChRM determinations.
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found in the studied anoxic Black Sea sediments (Figure 3). The HCL dissolution experiments revealed that the 
dissolved ferrimagnetic minerals hosted in the holes and cracks of hemoilmenite skeletons likely account for high 
fractions (∼80%, Table 1) of the total SIRM. In addition, the magnetic properties of the Black Sea sediments 

Figure 8.  Paleo- and rock magnetic results from cores MSM33-55-1 and MSM33-54-3 spanning the past 8 ka (this study) 
compared to those from 8 to 30 ka (Jiabo Liu et al., 2019; Nowaczyk et al., 2018). (a) Magnetic susceptibility κLF implies 
the bulk content of magnetic minerals. (b) SIRM/κLF ratios >10 kAm −1 are indicative of greigite bearing samples in the 
glacial Black Sea sediments. (c) High ARM/SIRM ratios denote fine sized magnetic minerals. (d) Relative paleointensity 
(RPI) is determined by the slope between NRM and ARM. Directions of (e) inclination and (f) declination are plotted with 
α95 uncertainties. The horizontal dotted lines in inclination (61°) and declination (0°) are the expected directions from a 
geocentric axial dipole field at the study site. ARM - anhysteretic remanent magnetization.
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are characterized by SD behavior and low magnetic coercivities (Figure 6), which likely represent the magnetic 
inclusions and the ferrimagnetic minerals hosted in hemoilmenite particles.

Data from studied Black Sea cores show that the field intensity 𝐴𝐴 𝐴𝐴𝐵𝐵𝐵𝐵 derived from relict magnetic mineral samples 
(0–8 ka) are comparable to the values derived from (titano-)magnetite samples (20–30 ka), indicating that both 

Figure 9.  Comparison of the Holocene (0–8 ka) and the last glacial (20–30 ka) paleosecular variations from cores MSM33-
55-1 and MSM33-54-3. (a) and (b) Intensity F of studied cores and the Black Sea stack (BS stack, Liu et al., 2020) aligned 
to the referenced F predicted from the GGF100k model (Panovska et al., 2018). (c) and (d) Inclination curves shown together 
with a horizontal dashed line of the dipole inclination of 61°. (e) Comparison of mean F (𝐴𝐴 𝐹𝐹  ) of the Black Sea record and that 
of the GGF100k field models for 0–8 ka and 20–30 ka intervals (also list in Table 2). (f) and (g) show the Fisher statistics 
of paleomagnetic directions from the Black Sea cores. The black stars and dotted circles mark the mean direction and its α95 
uncertainty, respectively. The red triangle indicates the direction of a geocentric axial dipole field.

Time interval Magnetic carriers Core 𝐴𝐴 𝐹𝐹𝐵𝐵𝐵𝐵 (μT)𝐴𝐴 𝐹𝐹𝐺𝐺𝐺𝐺𝐺𝐺 (μT)𝐴𝐴 𝐹𝐹𝐵𝐵𝐵𝐵∕𝐹𝐹𝐺𝐺𝐺𝐺𝐺𝐺 

0–8 ka Relict magnetic minerals MSM33-55-1 54.33 50.13 1.08

MSM33-54-3 52.87 1.05

20–30 ka (titano-)magnetite particle MSM33-55-1 36.80 40.55 0.91

MSM33-54-3 36.27 0.89

Black Sea stack 41.73 1.03

Note. RPI - relative paleointensity.

Table 2 
Summary of Mean Field intensity F of the Converted Black Sea RPI Record (𝐴𝐴 𝐹𝐹𝐵𝐵𝐵𝐵 ) and the Predicted F From GGF100k  
(𝐴𝐴 𝐹𝐹𝐺𝐺𝐺𝐺𝐺𝐺 ) Field Model (Panovska et al., 2018) for the Holocene (0–8 ka) and the Last Glacial (20–30 ka) Periods
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types of remanence carriers can reproduce the features of 𝐴𝐴 𝐴𝐴𝐺𝐺𝐺𝐺𝐺𝐺 predicted from the data-constrained GGF100k 
field model (Figure 9e). With respect to the 20–30 ka interval, the ��� / 𝐴𝐴 𝐹𝐹𝐺𝐺𝐺𝐺𝐺𝐺 ratio shows higher values for the 
0–8 ka (Table 2). This is likely due to the different efficiencies in recording the DRM between relict magnetic 
minerals and (titano-)magnetite minerals. Nevertheless, the inclinations from 0 to 8 ka and 20–30 ka intervals 
have identical mean values (∼55°) and shallowing factors ( f = ∼0.79). Besides, the shallowing factor of studied 
cores are similar to that of natural magnetite-bearing samples ( f = 0.54–0.79; Bilardello & Kodama, 2010). 
Although the efficiency of the studied relict magnetic mineral assemblage in recording the DRM is not yet 
known, the paleo- and rock magnetic results indicate they are comparable to other detrital (titano-)magnetite and 
are able to properly record the paleomagnetic field variations.

The derived records of F and inclination from cores MSM33-55-1 and MSM33-54-3 covering the past 8 ka also 
resemble comparable patterns with those of the GEOMAGIA50 datasets (Brown et al., 2015) and the predictions 
from the CALS10k.2 (Constable et al., 2016) and GGF100k (Panovska et al., 2018) field models (Figure 10). 
Nevertheless, an apparent time lag of about 0.5 ka of the studied Black Sea PSV records can be observed, which 
we attribute to the effect of lock-in depth of the PDRM (e.g., Roberts & Winklhofer, 2004). The studied sediments 
are characterized by mean sedimentation rates of about 10.75 cm/kyr and 12.6 cm/kyr in the past 8 ka. Due to 
progressive sediment consolidation and dewatering, the DRM was probably locked in about 5 cm (equivalent 
to about 0.5 ka) below the surface mixed layer. The time lag of about 0.5–0.7 ka was further confirmed by a 
cross-correlation analysis between the studied Black Sea records and the GGF100k model (Figure S3 in Support-
ing Information S1). By shifting the data from the studied cores to 0.5 ka younger ages, indicated by red arrows 
in Figure 10, the obtained records of F and inclinations become congruent with the predictions of the CALS10k.2 

Figure 10.  (a) The field intensity (f) and (b) inclination reconstructed from two Black Sea cores compared to regional and 
global records for the past 8 ka. The volcanic and archeomagnetic datasets from GEOMAGIA50 (Brown et al., 2015) are 
shown in blue for sites inside the 10° circle around the Black Sea site (42°N, 37°E), and in pink for sites from the Levant 
region. The F and inclination at the study site predicted from models of GGF100k (Panovska et al., 2018) and CALS10k.2 
(Constable et al., 2016) are shown by solid purple and red lines, respectively. The Levantine Iron Age Anomaly (LIAA) firstly 
reported from the Levant region (Shaar et al., 2016) is marked by a gray bar.
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and the GGF100k field models. In contrast to the GEOMAIGA datasets, F and inclination of this study exhibit 
weaker variable fluctuations which is interpreted to result from sedimentation rates and lock-in effects.

The most prominent feature of the Holocene geomagnetic field at the Mediterranean region is the LIAA at about 
3 ka BP (Shaar et al., 2016). At the Levant region, the LIAA exhibited high field intensity and large directional 
deviations (Ben-Yosef et al., 2009; Shaar et al., 2016). With an offset of about 0.5 ka, the LIAA is characterized 
by moderate peaks of F and inclination in the Black Sea records. For one reason, the studied Black Sea records 
are smoothed. For another, the intense flux patche associated with the LIAA was growing and decaying mostly 
restricted to the Levant region (Korte & Constable, 2018), thus the extremely high intensity was not observed at 
the Turkey-Georgia area (Rivero-montero, Gómez-Paccard, Kondopoulou, et al., 2021), close to the coring sites 
of this study.

The Black Sea data also exhibit a peak of intensity and a large shift of inclination at about 1.8 ka. After shifting 
about 0.6 ka indicated by red arrows, this pattern can be correlated with the high intensity feature at about 1.2 
ka BP which are commonly found at Europe (Genevey et al., 2016). In high-resolution archeomagnetic datasets 
mainly from central Europe and the Balkan Peninsula, the high intensity feature exhibit two peaks and is regarded 
as a double-oscillation at about 1.2 ka (Kovacheva et al., 2014; Rivero-Montero, Gómez-Paccard, Pavón-Car-
rasco, et al., 2021). But from Iberian Peninsula and east Europe (Rivero-montero, Gómez-Paccard, Kondopoulou, 
et al., 2021), the double-oscillation is not well recognized and the intensity curves indicate a single peak which 
is alike the studied Black Sea record. Nevertheless, the Black Sea records only have limited temporal resolution, 
to identify the double-oscillation feature at the Black Sea area needs future work yielding high-resolution PSV 
records.

Another noteworthy feature of the Black Sea PSV record is the lowest inclination at bout 6.5 ka. Between 7 ka 
and 5 ka, the inclinations of Black Sea records are much shallower than that of the CALS10k.2 and the GGF100k 
models, though they exhibit consistent intensity lows for this time interval. The directional data from GEOMA-
GIA50 database are fairly sparse for the 7–5 ka period. Nonetheless, with a shift of 0.5 ka, the shallowest inclina-
tions of the Black Sea records can be overlapped with the GEOMAGIA50 datasets at bout 6 ka. Besides, shallow 
inclinations centered at about 6.5 ka BP are also observed in archeomagnetic results from Bulgaria (Kovacheva 
et al., 2014). Thus, we infer that the shallow inclinations at about 6.5 ka in the studied Black Sea records are true 
features of the paleomagnetic field.

Though hampered by limited temporal resolution, the obtained paleomagnetic results from the Holocene anoxic 
Black Sea sediments represent reliable paleomagnetic variations which resembled the LIAA and other features 
of high intensity and steep inclinations in the past 8 ka. Our study demonstrates that it is possible to recover 
reliable paleomagnetic results from anoxic sediments. A major issue of investigating the Earth's magnetic field 
is unevenly distributed paleomagnetic data (Panovska et al., 2019). Changing redox water conditions of bottom 
water following climate variations on all time scales, can lead to magnetic mineral diagenesis in sediments and 
bias the DRM record. Especially during warm periods, for example, the most recent Holocene, general high input 
of organic matters turned lakes, marginal seas, and continental shelves into sub-/an-oxic water environments (e.g., 
Björck, 1995; Jianxing Liu et al., 2014; Wegwerth et al., 2018). The relict magnetic minerals are widely existing 
and resist to reductive dissolution under sulphidic conditions (Chang et al., 2016; Hounslow, 1996; Hounslow 
et al., 1995; Nowaczyk, 2011; Wilson & Roberts, 1999). Thus, they are potential targets of future paleomagnetic 
studies in various reducing geological realms.

5.  Conclusions
This study evidenced that relict ferrous hemoilmenite, Fe-Cr and Fe-Mn spinels, and magnetic inclusions are 
the magnetic carriers in the Holocene Black Sea sediments deposited under anoxic bottom water conditions. We 
could show that the DRM recorded by the relict magnetic minerals is comparable to that recorded by detrital 
(titano-)magnetite samples in two Black Sea sediment cores. Moreover, the PSV derived from the two Black Sea 
cores reliably recorded the dynamic patterns of the regional geomagnetic field for the past 8 ka as predicted by 
data-based field models. Thus, this study demonstrate that carefully performed future paleomagnetic studies on 
sediments from various marginal seas, continental shelves, and lakes with reducing bottom-water condition can 
contribute to analyses of global geomagnetic field dynamics over geological time.
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Data Availability Statement
Standard rock magnetic data from all investigated cores taken during expedition M72/5 of German RV Meteor are 
available via GFZ Data Services, Nowaczyk et al. (2021a), https://doi.org/10.5880/GFZ.4.3.2021.002. Standard 
rock magnetic data from all investigated cores taken during expedition MSM33 of German RV Maria S. Merian 
are available via GFZ Data Services, Nowaczyk et al. (2021b), https://doi.org/10.5880/GFZ.4.3.2021.003.
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