Description of dataset "Subaquatic ambient seismic noise recordings acquired in the region of Inuvik and Tuktoyaktuk, Northwest Territories, Canada"

Trond Ryberg¹, Christian Haberland¹, & Paul Overduin², William Cable²

¹ GFZ German Research Centre for Geosciences, D-14473 Potsdam, Germany

Abstract

This dataset contains subaquatic passive seismic recordings taken in September 2021 at 88 locations off Tuktoyaktuk Island as well as in a small lake ("Lake 3") between the villages of Tuktoyaktuk and Inuvik, Northwest Territories, Canada. The measurements were part of the "Mackenzie Delta Permafrost Field Campaign" (mCan2021) within the "Modular Observation solutions for Earth Systems" (MOSES) program. Data is from a seismic intermediate-bandwidth seismic sensor lowered for few minutes to the bottom of the sea and lake, respectively, and from underwater short-period sensors deployed for a few days. The aim of the study was to determine the depth of the subaquatic permafrost (local lake and oceanic locations). Raw data is provided in proprietary "Cube" format and standard mSEED format.

Coordinates: 69.456N/ 133.003W and 68.776850N/ 133.540817W

Keywords: Submarine permafrost, ambient seismic noise, H/V measurements, Mackenzie Delta

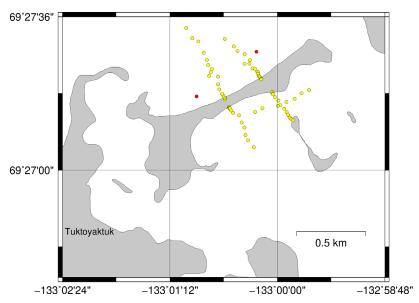
1. Introduction

Ambient seismic noise measurements at the shallow sea bottom proved to be useful for estimating the spatial distribution and depth of submarine permafrost, in particular in combination with H/V analysis (ratio of horizontal and vertical components of noise recordings; Overduin et al., 2015). The data contained in this data set (ambient seismic noise data at the shallow sea floor off Tuktoykatuk Island and in a lake ~100 km south of it ("Lake 3"), Northwest Territories, Canada) were acquired during the 2021 "Mackenzie Delta Permafrost Field Campaign" (mCan2021), a test campaign within the "Modular Observation solutions for Earth Systems" (MOSES) program. The dataset is complementing/extending the dataset obtained by Ryberg et al. (2019). See also Cable et al., 2019. Also, CH4 and CO2 measurements, electrical resistivity and temperature investigations had been carried out in the study area.

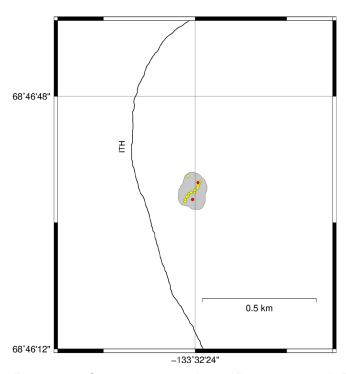
2. Data Acquisition - Experiment, schedule, acquisition parameters

2.1 Experiment design and schedule

Subaquatic ambient seismic noise measurements were carried out around Tuktoyaktuk Island and in a small lake between the villages of Tuktoyaktuk and Inuvik (Northwest Territories, Canada). In total 88 measurements points were taken in September 2021 (see Figure 1 & 2, Table 1 in supplement and file *HV.dat* in the data – see below). The measurements were taken point by point from small boats. At each point the sensor was lowered to the lake or sea bottom, where it stayed for several minutes (see Table 1 in supplement). Additionally, long-term recordings (few days) were taken at 4 locations by shallow water ocean bottom seismometers (OBS).


2.2 Instrumentation

To record the ambient seismic wave field the "Mobile Ocean Bottom Seismometer" (MOBSI) system was used (see Figure 3). The system consists of 1) an intermediate bandwidth seismic sensor (type Nanometrics Trillium Compact 20 s seismometer) housed — together with a Omnirecs/DiGOS Cube digitizer - in a watertight casing, 2) a manual winch with 100 m steel cable, and 3) a surface data acquisition unit with a small computer. The MOBSI system allows real-time quality data control as well as control of the tilt of the sensor.


Furthermore, we used 4 shallow water seismic recording units (OBS, based on Omnirecs/DIGOS.

² Alfred Wegener Institute Helmholtz Centre for Polar and Marine Research, D-14473 Potsdam, Germany

Cube digitizer and a 3-component 4.5Hz short-period geophone in a watertight casing) for recordings of several days (equipped with anchor and buoys; Figure 4). Exact timing of these units was provided by synchronizing the internal clock to a GPS device before and after the measurements.

Figure 1: Study area close around Tuktoyaktuk Island, Northwestern Canada. Yellow circles denote the locations of ambient noise measurements with MOBSI (short time), red circles those from long-term deployments.

Figure 2: Study area at "Lake3" at the Inuvik-Tuktoyaktuk Highway (ITH), Northwestern Canada. Yellow circles denote the locations of ambient noise measurements with MOBSI (short time), red circles those from long-term deployments. Grey line is the IT.

Η

2.3 Acquisition parameters

For data acquisition a sample frequency of 100 samples per second at gain 4 for MOBSI and 200 samples per second at gain 32 for the OBS were used. Data from MOBSI was marked as valid if the tilt of the seismic sensor was below 5° (operational range of intermediate-period sensor). The time windows, i.e. when the data was marked as valid (also known location), are listed in Table 1 and can be used for further processing (extraction etc.).

2.4 Coordinates & deployment depths

Positions were taken by handheld GNSS with an estimated accuracy of 3 to 5 m. Water depth was determined by an echo sounder, taken by a bathy-boat (Cable, 2022, in preparation) or from the near-by resistivity measurements (Overduin et al., 2202, In preparation).

Figure 3: "Mobile Ocean Bottom Seismometer" (MOBSI) system: cable drum (right), broad band seismic sensor & data logger (middle) and control unit/computer (left). Modified from Ryberg et al., 2018.

Figure 3: Shallow water ocean bottom seismometer. The cylinder containing the recorder and sensor is mounted on a metal grid.

fCab

3. Data Processing

For the data contained in this data set, no processing has been performed except for the format conversion using the GIPPtools (Lendl, 2021).

4. Data Description

This data set contains raw data in original Cube format and as in standard MSEED format (FDSN, 2012). Directory /raw contains raw data in original Cube format (continuously), directory /mseed contains the converted MSEED data (three files types c0???2109??????pri? for the three components; pri0 indicating the vertical component, and pri1 and pri2 the two un-oriented horizontal components, respectively). Table with coordinates etc. can be found in file /info/HV.dat.

5. Data Availability/Access

Data is archived at the *GIPP Experiment and Data Archive* where it is freely available for further use <u>after the end of the embargo period on October 31, 2023</u> under a "Creative Commons Attribution 4.0 International Licence" (CC-BY 4.0). When using the data, please give reference to this data publication. Recommended citation is:

Ryberg, T., Haberland, C., Overduin, P., &. Cable, W. (2022) Subaquatic ambient seismic noise recordings acquired in the region of Inuvik and Tuktoyaktuk, Northwest Territories, Canada. GFZ Data Services. http://doi.org/10.5880/GIPP.202199.1

Acknowledgments

The measurements were financed by GFZ and AWI. Measurements were part of the 2018 "Mackenzie Delta Permafrost Field Campaign" (mCan2021), a test campaign within the "Modular Observation solutions for Earth Systems" (MOSES) program. We thank James Keevik for providing the boat services in Tuktoyaktuk as well as our whole mCan2021 field group for support and company. We acknowledge the efforts of the staff of the Geophysical Instrument Pool Potsdam GIPP for preparing the instrument.

References

- Cable, W., Haberland, C., Ryberg, T. and Overduin, P.P. (2019) CHAPTER 7 Mobile Ocean Bottom Seismometer (MOBSI). In: Boike, J. and Dallimore, S.R. (ed.), 2019. Summary of 2018 Mackenzie Delta Permafrost Field Campaign (mCAN2018), Northwest Territories; Geological Survey of Canada, Open File, pp. 29 33; https://doi.org/10.4095/315704
- Cable, W. (2022) Bathymetry from two Arctic lakes in the Mackenzie Delta, Northwest Territories, Canada. Dataset, in preparation.
- FDSN (2012): SEED Reference Manual Standard for the Exchange of Earthquake Data. SEED Format Version 2.4, Publisher: IRIS.
- Lendl, C. (2021). GIPPtools (2021.168). Zenodo. https://doi.org/10.5281/zenodo.4972595
- Overduin, P. P., Haberland, C., Ryberg, T., Kneier, F., Jacobi, T., Grigoriev, M. N. and Ohrnberger, M. (2015): Submarine permafrost depth from ambient seismic noise, Geophysical Research Letters, 42 (18), pp. 7581-7588. https://doi.org/10.1002/2015GL065409
- Overduin, P., Erkens, E., Ryberg, T., & Haberland, C. (2022) Marine ERT surveys acquired in the region of Tuktoyaktuk Island, Northwest Territories, Canada. Data set. In preparation.
- Ryberg, T., Cable, W., Overduin, P., & Haberland, C. (2019) Ambient seismic noise data from the shallow sea floor off Tuktoyaktuk, Canada. GFZ Data Services. http://doi.org/10.5880/GIPP.201899.1

Appendix 1: Table listing all measurement points, coordinates, depth etc. (also contained in file HV.dat in the data set, directory /info

HV# G	PSpnt.	oldpnt	rec	H2O-ft	H20	PF long	lat	type locatio	n start measurement	stop measurement	comment
HV12	6	1	11			0.45 -133.540					get depth from GE tracks/bathyboat/CTD
HV13	7	0	12			x -133.539					get depth from GE tracks/bathyboat/CTD
HV14	8	10	15			X -133.539	567 68.77655	0 M I	3 2021-09-14T20:39:23.000	2021-09-14T20:45:41.000	get depth from GE tracks/bathyboat/CTD
HV15	9	20	16			X -133.539	667 68.77645	0 M I	3 2021-09-14T20:48:37.655	2021-09-14T20:52:54.395	get depth from GE tracks/bathyboat/CTD
HV16	10	30	17			X -133.539	750 68.77636				get depth from GE tracks/bathyboat/CTD
HV17	11	40	18			X -133.540	017 68.77628	3 M I	3 2021-09-14T21:07:12.465	2021-09-14T21:11:41.445	get depth from GE tracks/bathyboat/CTD
HV18	12	50	19			X -133.540	067 68.77618	3 M I	3 2021-09-14T21:14:26.000	2021-09-14T21:16:12.000	get depth from GE tracks/bathyboat/CTD
HV19	13	60	20			X -133.540	417 68.77620	0 M I	3 2021-09-14T21:25:38.000	2021-09-14T21:27:02.000	get depth from GE tracks/bathyboat/CTD
HV20	14	70	21			X -133.540	700 68.77613	3 M I	3 2021-09-14T21:36:25.000	2021-09-14T21:38:10.000	get depth from GE tracks/bathyboat/CTD
HV21	15	80	22			X -133.540	783 68.77606	7 M I	3 2021-09-14T21:45:59.000	2021-09-14T21:49:20.115	get depth from GE tracks/bathyboat/CTD
HV22	16	90	23				933 68.77601				get depth from GE tracks/bathyboat/CTD
HV23	17	100	24				.083 68.77591				get depth from GE tracks/bathyboat/CTD
HV24	18	110	25	•			117 68.77583				get depth from GE tracks/bathyboat/CTD
HV25	S01	B13	1		4.51	X -133.013			1 2021-09-18T21:21:15.811		
HV26		B14/15	2	20	6.1	X -133.012			1 2021-09-18T21:36:41.000		
HV27	S03	B21	3	0	0		733 69.45466		1 2021-09-18T21:46:36.000		
HV28	S04	X	4	0	0	1.5 -133.009			1 2021-09-18T21:54:12.011		
HV29	S05	B20	5	0	0	X -133.009			1 2021-09-18T22:05:55.391		
HV30	S06	B19	6	0.66	0.2	X -133.009			1 2021-09-18T22:15:10.000		
HV31		B18	7		0.54	X -133.010			1 2021-09-18T22:21:50.000		
HV32	S08	B17	8		0.56	X -133.010			1 2021-09-18T22:31:47.000		
HV33	S09	B16	9		5.49	X -133.011			1 2021-09-18T22:50:00.321		
HV34		B15	10		5.79	X -133.012			1 2021-09-18T23:05:51.000		
HV35	S11	B14	11	19 0	5.79	X -133.012			1 2021-09-18T23:17:07.000		
HV36 HV37	Q01	X	12 13		0.66	1.42 -133.009 X -133.008			1 2021-09-19T18:41:29.478		
HV37	Q02 Q03	X X	14		0.86	X -133.008			1 2021-09-19T18:49:26.848 1 2021-09-19T18:57:42.298		
HV39	Q03	X		3.61	1.1	X -133.008			1 2021-09-19110:37:42.296 1 2021-09-19T19:06:48.548		
HV40	Q04 Q05	X	16	4.33		X -133.008			1 2021-09-19119:00:40.340 1 2021-09-19T19:15:58.928		
	Q03	X	17		2.56	X -133.008			1 2021-09-19119:13:36.926 1 2021-09-19T19:33:02.188		
HV42	Q07	X	18	8.2		X -133.008			1 2021-09-19119:33.02.100		
HV43	Q08	X	21		3.05	X -133.000			1 2021-09-19T19:57:38.618		
HV44	Q09	X	23		3.14	X -133.006			1 2021-09-19T20:15:23.000		
	Q10	X	24	10.4			150 69.45276		1 2021-09-19T20:32:26.978		
	Q11	X	26	11.3		x -133.005			1 2021-09-19T20:43:25.000		
HV47		X	27		3.90	X -133.005			1 2021-09-19T21:11:46.628		
	Q13	X	28		4.82		383 69.45148		1 2021-09-19T21:24:56.708		
	Q14	X	29	0		1.39 -133.000			2 2021-09-20T00:38:37.228		
	Q15	X	30	1.38		>1.5 -133.001			2 2021-09-20T00:51:09.508		
HV51	Q16	X	31	4.66	1.42	X -133.000	850 69.45498	3 M Tuk SE E	2 2021-09-20T01:02:20.558	2021-09-20T01:07:19.688	depth from echo sounder
HV52	Q17	X	32	3.51	1.07	X -133.000	850 69.45495	0 M Tuk SE E	2 2021-09-20T01:10:37.378	2021-09-20T01:15:19.758	depth from echo sounder
HV53	Q18B	X	33	7.8	2.34	X -133.000	450 69.45475	0 M Tuk SE E	2 2021-09-20T01:39:11.000	2021-09-20T01:43:30.988	depth from echo sounder
HV54	Q19	X	34	8.3	2.53	X -132.999	817 69.45453	3 M Tuk SE E	2 2021-09-20T01:51:40.728	2021-09-20T01:55:59.708	depth from echo sounder
HV55	Q20B	X	35	8.5	2.59	X -132.999	433 69.45425	0 M Tuk_SE_E	2 2021-09-20T02:02:48.148	2021-09-20T02:07:15.448	depth from echo sounder
HV56	Q21	X	36	11.2	3.41	X -132.998	700 69.45400	0 M Tuk_SE_E	2 2021-09-20T02:14:44.638	2021-09-20T02:19:00.198	depth from echo sounder
HV57	Q22	X	38	8	2.44	X -132.998	267 69.45378	3 M Tuk_SE_E	2 2021-09-20T02:24:48.118	2021-09-20T02:34:24.000	depth from echo sounder
	Q23	X	39	4.7			933 69.45356		2 2021-09-20T02:40:56.168		
HV59		X	40	5.5		X -132.998			2 2021-09-20T02:47:15.048		
HV60	Q24	X	41	1.97	0.6	X -132.99			2 2021-09-20T02:59:57.558		
HV61	-	X	42	2.62	0.8	X -132.99			2 2021-09-20T03:07:59.928		
HV62		X	43	0	0	>1.5 -132.997			2 2021-09-20T03:15:03.548		
HV63		X	44	0	0	>1.5 -132.997			2 2021-09-20T03:22:20.128		
HV64		B02		12.7			083 69.45806		2 2021-09-20T16:01:43.188		
	U02	B03	46		3.35		083 69.45755		2 2021-09-20T16:23:25.398		
HV66	U03	B04	47	12.7	3.87	X -133.005	133 69.45716	/ M Tuk_NE_E	2 2021-09-20T16:37:25.000	2021-09-20T16:39:00.000	depth from echo sounder

```
X -133.004617 69.456633 M Tuk NE B2 2021-09-20T16:52:08.758 2021-09-20T16:56:22.398 depth from echo sounder
HV67 U04
            B05 48 6.9 2.10
HV68 U05
            B06 49 2.36 0.72
                                  X -133.003750 69.456417 M Tuk NE B2 2021-09-20T17:02:22.458 2021-09-20T17:07:44.558 depth from echo sounder
                                  X -133.003567 69.456367 M Tuk NE B2 2021-09-20T17:13:09.388 2021-09-20T17:17:30.398 depth from echo sounder
HV69 U06
                 50 3.12 0.95
HV70
    U07
            B08
                 51 2.07 0.63
                                  X -133.003550 69.456250 M Tuk NE B2 2021-09-20T17:22:29.668 2021-09-20T17:27:09.818 depth from echo sounder
HV71 U08
            B09
                 52 2.00 0.61
                                  X -133.003450 69.456150 M Tuk NE B2 2021-09-20T17:32:16.898 2021-09-20T17:36:24.948 depth from echo sounder
HV72
    U09
            B10
                53 2.13 0.65
                                  X -133.003350 69.456117 M
                                                             Tuk NE B2 2021-09-20T17:40:10.768 2021-09-20T17:45:17.608 depth from echo sounder
HV73
     U10
            B11 54 1.60 0.49
                                  X -133.003233 69.456050 M
                                                             Tuk NE B2 2021-09-20T17:51:59.278 2021-09-20T17:56:23.698 depth from echo sounder
HV74 U11
             X 55
                       Ω
                          0 1.44 -133.003067 69.455983 M
                                                             Tuk NE B2 2021-09-20T18:01:38.538 2021-09-20T18:06:03.608 on land
                                                             Tuk NE B2 2021-09-20T18:09:03.000 2021-09-20T18:13:02.378 on land
HV75
     U12
             X 56
                            0 1.25 -133.002983 69.455950 M
                       0 0.84 -133.002967 69.455917 M Tuk NE B2 2021-09-20T18:14:44.648 2021-09-20T18:19:42.528 on land
HV76 U13
             X 57
HV77
     27
            X01 62
                        0 1.09
                                  X -133.010800 69.455250 M
                                                             Tuk NW B1 2021-09-27T18:59:16.338 2021-09-27T19:03:30.398 depth from GE tracks
                                  X -133.011033 69.456083 M Tuk NW B1 2021-09-27T19:23:38.608 2021-09-27T19:27:48.898 depth from GE tracks
HV78
     2.8
            X02 63
                       0 6.14
HV79 X03
            X03 64
                       0 5.62
                                  X -133.012883 69.456850 M
                                                             Tuk NW B1 2021-09-27T19:35:51.228 2021-09-27T19:40:00.678 depth from GE tracks
HV80
     29
            X04 65
                        0 5.62
                                  X -133.013717 69.457650 M Tuk NW B1 2021-09-27T19:47:53.488 2021-09-27T19:52:05.468 depth from GE tracks
HV81
     30
            X05 66
                        0 5.34
                                  X -133.014717 69.458383 M Tuk NW B1 2021-09-27T20:00:03.218 2021-09-27T20:04:14.258 depth from GE tracks
HV82
      31
            X06 67
                        0 5.48
                                  X -133.015850 69.458600 M Tuk NW B1 2021-09-27T20:12:55.198 2021-09-27T20:17:06.248 depth from GE tracks
                                  X -133.016967 69.459267 M Tuk NW B1 2021-09-27T20:31:54.578 2021-09-27T20:36:08.568 depth from GE tracks
HV83
            X07 68
                       0 5.24
      33
                                  X -133.004133 69.456583 M Tuk NE B2 2021-09-27T20:49:39.278 2021-09-27T20:53:27.788 depth from GE tracks
HV84
            Y01 69
                       0 2.32
                                  X -133.005183 69.456950 M Tuk NE B2 2021-09-27T21:08:47.178 2021-09-27T21:12:46.878 depth from GE tracks
HV85
      34
            Y02 70
                       0 4.48
                                  X -132.994100 69.455217 M Tuk South 2021-09-27T21:43:01.388 2021-09-27T21:47:05.788 get depth from GE tracks/CTD
HV86
            0 71
HV87
             60 72
                                  X -132.995500 69.455000 M Tuk South 2021-09-27T21:55:41.588 2021-09-27T21:59:58.438 get depth from GE tracks/CTD
                                  X -132.996783 69.454650 M Tuk South 2021-09-27T22:06:12.438 2021-09-27T22:10:16.328 get depth from GE tracks/CTD
HV88
      39
            120 73
HV89
      40
            185 74
                                  X -132.998317 69.454433 M Tuk South 2021-09-27T22:16:09.028 2021-09-27T22:20:22.838 get depth from GE tracks/CTD
HV90
      41
            2.50
                7.5
                                  X -132.999900 69.454183 M Tuk South 2021-09-27T22:27:12.000 2021-09-27T22:29:26.258 get depth from GE tracks/CTD
                                   X -133.002767 69.454033 M Tuk South 2021-09-27T23:00:28.000 2021-09-27T23:03:40.258 get depth from GE tracks/CTD
HV91
      42
            360
                 76
HV92
      43
            420
                 77
                                   X -133.004133 69.453783 M Tuk South 2021-09-27T23:08:50.000 2021-09-27T23:10:41.000 get depth from GE tracks/CTD
                                                             Tuk NE B2 2021-09-28T17:37:19.948 2021-09-28T17:41:12.848 depth from echo sounder
HV93
      46
            Y03
                       14 4.27
                                   X -133.006083 69.456917 M
HV94
     47
            Y04 83
                       13 3.96
                                  X -133.007417 69.457750 M Tuk NE B2 2021-09-28T17:49:09.000 2021-09-28T17:51:59.408 depth from echo sounder
            Y05 84 12.9 3.93
HV95
      48
                                  X -133.009783 69.458550 M Tuk NE B2 2021-09-28T17:58:09.678 2021-09-28T17:58:30.000 depth from echo sounder
OBS1 24 OBS1 OBS1
                                  X -133.539700 68.776583 0 L3 OBS A3S 2021-09-17T23:30:00.000 2021-09-22T19:39:00.000 get depth from GE tracks/bathyboat
OBS2
     25
           OBS2 OBS2
                                  X -133.540283 68.775917 0 L3 OBS A3U 2021-09-18T00:20:00.000 2021-09-22T19:44:00.000 get depth from GE tracks/bathyboat
                                  X -133.015050 69.454800 O Tuk OBS A46 2021-09-18T23:36:00.000 2021-09-20T18:33:00.000 depth from echo sounder
OBS3 OBS1 OBS1 OBS1 13.2 4.06
                                  X -133.003900 69.457717 O Tuk OBS A3V 2021-09-18T23:48:00.000 2021-09-20T18:26:00.000 depth from echo sounder
OBS4 OBS2 OBS2 OBS2 12.0 3.66
```