
1. Introduction
Understanding the mechanisms that drive the dynamics of the radiation belts is one of the main tasks of modern 
research. Significant progress in this area has been achieved thanks to NASA's Van Allen Probes mission; 
however, accurate modeling of the acceleration of radiation belt electrons remains a challenge. The observed 
enhancement of the radiation belt electron flux and phase space density can be a result of inward radial diffusion 
and transport, local acceleration due to wave-particle interaction, or the two mechanisms combined. The chal-
lenges that the scientific community faces can be summarized in the following questions:
 Q1. Under what conditions are contributions from radial diffusion unable to explain observed radiation belt 

variations?
 Q2. Why does diffusion work as well as it does (in simulations)?
 Q3. What methods do we have to study the relative contributions of radial diffusion, transport, and local 

acceleration?
 Q4. What advances are needed to improve the radiation belt models and/or resolve this debate?

These questions were discussed during the Geospace Environment Modeling (GEM) Virtual Summer Workshop, 
held on July 25–30, 2021. In this commentary, we present the results of the joint panel discussion organized by 
the “System Understanding of Radiation Belt Particle Dynamics through Multi-spacecraft and Ground-based 
Observations and Modeling” and “ULF wave Modeling, Effects, and Applications” focus groups.

2. General Overview of the Problem
Prior to the discussion of the above questions, the panelists presented a brief overview of the problem, which is 
summarized in this chapter.

Dr. Solène Lejosne provided an overview of existing radial diffusion models and common methods of radial 
diffusion derivation (Lejosne, 2019). The detailed review of radiation belt radial diffusion can be found in the 
recent paper by (Lejosne & Kollmann, 2020). Emphasis was made on terminology that must be used very care-
fully while discussing acceleration, as it can be adiabatic and nonadiabatic. It must be recognized that the dynam-
ics of the radiation belts can be properly addressed only considering phase space density (e.g., Roederer & 
Lejosne, 2018). However, parameterizing PSD in adiabatic invariant space requires an accurate electromagnetic 
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field model. For example, computation of L* requires determination of the drift shell that can be distorted by a 
large-scale electric field (e.g., Lejosne et al., 2021; Selesnick et al., 2016).

Prof. Mary Hudson also emphasized the importance of the phase space density analysis. The mapping of the 
observed flux to phase space density provides a dramatically different picture when compared to presentation 
of fluxes versus radial distance (or L-shell). During the Van Allen Probes era, both local acceleration and radial 
transport were observed during strong geomagnetic storms. In particular, during the 17 March 2013 and 17 
March 2015 storms, local heating occurred, followed by inward radial convective and diffusive transport (Li 
et al., 2017). In addition, the Van Allen Probes observations during the period of the solar minimum (February 
2018 - October 2019) raise the question of the relative contribution of the radial transport and local heating in 
the observed electron acceleration. However, it remains clear that both processes are important while occurring 
during different parts of the storms and/or under different types of driving conditions.

Dr. Hayley Allison showed that when accounting for both radial diffusion and local acceleration, simulations 
reproduce well the enhancement of the radiation belts across different energies (e.g., Wang & Shprits, 2019). 
However, changes in the plasma environment, such as electron plasma density and ion composition, may play 
a key role and influence the relative contributions of local and radial diffusion (Allison et al., 2021). Addition-
ally, local loss, local acceleration, and radial diffusion can influence each other. Local acceleration can change 
phase space density profiles (creating a peak changing the phase space density gradients), hence affecting radial 
transport, and vice versa. The proper analysis of such phenomena can be achieved with multi-point satellite 
observations.

Dr. Louis Ozeke discussed the challenges of the phase space density analysis. The rapid variation of the outer 
boundary in combination with the orbital characteristic of the satellite can lead to the observations of phantom 
peaks in the absence of chorus waves (Olifer et al., 2021; Selesnick & Blake, 2000). Hence, the presence of an 
isolated L* peak in phase space is not always an indication of the local acceleration. An example of how the peak 
in phase space density, observed by Reeves et al. (2013), can be produced in a purely radial diffusion model, 
was presented. In addition, insufficient accuracy of the magnetic field model, while calculating the phase space 
density profiles, may provide inconclusive results in identification of local acceleration (Loridan et al., 2019). A 
proposed solution of such a problem is the necessity of comparison of the modeled and observed in situ magnetic 
field prior to calculation of the phase space density profiles.

Prof. Allison Jaynes provided an overview of a two-step acceleration process that involves a combination of the 
two mechanisms (Jaynes et al., 2018; Katsavrias et al., 2019; Zhao et al., 2018). Local acceleration provides an 
initial accelerated electron population, which is then further accelerated by inward radial diffusion over a longer 
period of time in the recovery phase. The emphasis was made on the timescale of the models. For example, the 
long-term simulations (several months) may provide good results (Drozdov et al., 2020); however, accurately 
capturing the electron dynamics on an hourly time scale remains a challenge. The simulation can be improved 
using event-specific parameters (e.g., Tu et al., 2014; Tu et al., 2019); however, an overall understanding of the 
problem requires multi-point measurements covering a wide energy range. Future missions like REAL, CIRBE, 
AEPEX, and GTOSat provide a great opportunity for such measurements, especially in conjunction with balloon 
(e.g., BARREL (Blum et al., 2013; Breneman et al., 2015; Millan et al., 2013)) or sounding rocket (e.g., LAMP) 
observations. However, there is a gap in observations outside of geostationary orbit (e.g., between Van Allen 
Probes and MMS) which is crucial for resolving peaks in phase space density profiles identifying the region of 
seed electron acceleration, and quantifying the contribution of the two acceleration mechanisms. In addition, 
this region outside of GEO is crucial for understanding the role of plasma sheet convection and injections in the 
building up of the inner magnetosphere population.

3. Discussion of the Questions
After the overview, the discussion of the four main questions (see Introduction) took place. This chapter summa-
rizes the results of the discussion.

Q1. Under what conditions are contributions from radial diffusion unable to explain observed radiation belt 
variations?
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This question was extended, and the participants of the session discussed when radial diffusion is sufficient 
or insufficient to explain the observed radiation belts dynamics. In addition, the panel conveners proposed an 
additional question: “Are there certain timescales or event types where radial diffusion provides a substantial 
contribution or the opposite?” R diffusion and the local acceleration are observed under different geomagnetic 
conditions. It remains unclear which processes play a dominant role and whether the balance between processes is 
different during CIR storms in comparison to CME storms, or perhaps dependent on the sub-structure of the solar 
wind transient (e.g., Kilpua et al., 2019). Local acceleration has been observed during the recovery phase of CME 
shock storms and the long CIR-driven events (e.g., Bingham et al., 2018). However, the effect of radial diffusion 
is often observed on a longer time scale following a storm event (Jaynes et al., 2018). Unfortunately, the current 
observational infrastructure does not always provide a clear picture of the electron dynamics at the boundary 
(at geostationary orbit). It remains challenging to predict the radiation belt dynamics due to the spatio-temporal 
uncertainty that can be defined by the variation of the boundaries. Nevertheless, the advancement in understand-
ing of electron acceleration leads us to fewer assumptions; hence, our analysis has to be broadened across the 
system including the plasmasphere and ring current boundaries along with other related boundaries and phenom-
ena. The existence of the electron source population and the wave-generation condition that can lead to local 
acceleration must be considered. The substantial contribution of radial diffusion or transport is undeniable, as the 
particles have to be moved inward from the potential source region (beyond GEO); however, whether the initial 
particles are accelerated by chorus waves or other processes must be a subject of future research.

Q2. Why does diffusion work as well as it does (in simulations)?

In the context of the held discussion the question can be clarified as: “Why do radial diffusion models perform 
generally well in simulating the observed radiation belt dynamics?” As we know from observations, ULF 
waves are not always present and have irregular spatio-temporal dependency (see Engebretson et  al.,  2008; 
McPherron, 2005; Waters, 2000). Often, the ULF waves have a phase velocity against the electron drift velocity 
and, similar to chorus waves, can result in non-linear interaction (see Li et al., 2020). The successful diffusion 
simulations under conditions when quasi-linear and non-linear interations may take place can be explained by the 
combination of multiple effects that can balance each other. Besides Pc5 waves, the particles interact with local 
VLF waves (e.g., Li et al., 2014; Thorne et al., 2013) and other types of waves, such as EMIC (e.g., Albert, 2003), 
smoothing the contribution of each individual process. The simulations with existing radial diffusion models 
generally provide good results (e.g., Drozdov et al., 2021; Tu et al., 2013); hence, it is necessary to address the 
periods (e.g., short time scales of hours or days) or events when the existing approximation does not provide a 
good agreement. The radial diffusion coefficients are not always accurate and on an event-specific basis can be 
very variable (e.g., Lejosne, 2020; Murphy et al., 2016; Sandhu et al., 2021; Zhao & Li, 2013). The ULF wave 
power can be found to be different on the adjacent orbit under similar geomagnetic conditions. In addition, 
the ULF waves can be localized in MLT (e.g., Claudepierre et al., 2013), even though the drift trajectory-av-
eraged  ULF wave power is often much less sporadic than that seen at an individual location in space, or along 
a  satellite trajectory. Hence, the variation of wave power can be less pronounced as the particles experience 
cumulative effect along the drift trajectory.

The advancement of radial diffusion models may be achieved by considering not only Kp, but other drivers as 
well (e.g., solar wind speed, IMF Bz, etc.). However, the advanced radial diffusion models may not be sufficient 
to distinguish its contribution from local acceleration. It requires systematic improvement of both radial diffusion 
and local acceleration models. The advancement also requires the search and analysis of isolated events that are 
driven solely by radial diffusion, although sudden electron enhancements or depletions across a wide range of 
L-shells during the short time interval (6–12 hr) may suggest non-diffusive transport. It is unclear under what 
timescales radial diffusion can describe the observed electrons dynamics. Such events require careful analy-
sis, taking into account the nature of the variation at the boundaries, adiabatic and non-adiabatic effects, rapid 
magnetic field reconfiguration, and the measurements uncertainties due to the orbital characteristics. Finally, the 
data-driven boundary conditions and accounting for the last closed drift shell (Albert et al., 2018) can signifi-
cantly improve the simulation results.

Q3. What methods do we have to study the relative contributions of radial diffusion, transport, and local 
acceleration?
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Historically, the radial and local diffusion coefficients were derived from theoretical assumptions (e.g., Lyons 
et al., 1971; Schulz & Eviatar, 1969), and space- and ground-based measurements (e.g., Brautigam & Albert, 2000; 
Glauert & Horne, 2005). Future models should include in situ measurements; however, derivation of the radial 
diffusion coefficients from the satellite observations is based on many assumptions (see Ali et al., 2016; Drozdov 
et al., 2021; Lejosne & Kollmann, 2020). The data coverage can be increased by using data assimilation, and 
in situ electric/magnetic field measurements can be combined with ground-based maps. There are several tech-
niques that can be considered for the validation of future models. Combining the model with artificial spacecraft 
trajectories can show if particle dynamics reveal a missing process in comparison to realistic measurements along 
the spacecraft orbit. The existing diffusion models, such as the VERB (Versatile Electron Radiation Belt code, 
Subbotin & Shprits, 2009; Shprits et al., 2015) code, can be used to study not just evolution of phase space density 
but its gradients as the manifestation of the diffusion process. The diffusion coefficients can be very large, but 
without a pronounced phase space density gradient, their contribution can be insignificant.

To calculate the radial diffusion coefficients, the ensemble model approach can be applied to minimize the error 
in ULF and VLF wave power, which has a substantial statistical spread (e.g., Thompson et al., 2020). Although 
the diffusion is already averaged over random processes, the ensemble average can provide an improvement in 
comparison to the deterministic models. However, the improved diffusion models may not be sufficient, as they 
are limited by the simulation domains. It may be necessary to extend the domain, properly consider the environ-
ment such as background electric/magnetic fields, and determine drivers other than other Kp-index. Moreover, 
it is still an open question as to whether radial transport is actually diffusive, although the non-linear drift terms 
and other non-linear effects can be incorporated into the diffusion models. The diffusion models can also be used 
in combination with data assimilation and machine learning (taking into account the non-linear terms) to obtain 
the comprehensive picture of the radiation belt dynamics for further analysis. Another approach to this problem 
is using test-particle simulations under time-varying MHD-derived fields (e.g., Hudson et al., 2015; Sorathia 
et al., 2018). The results of such a simulation can be mapped to the satellite trajectory. However, there are many 
challenges that must be addressed to achieve precise modeling, among them an accurate accounting for ULF 
and VLF waves and determination of the event-specific boundary conditions. Also, consideration of the detailed 
evolution of the wave packet can violate the quasi-linear approximation, resulting in non-linear effects. As an 
intermediate step before comprehensive test-particle simulations, coupled with MHD modeling, the approach of 
using Green's functions can be applied for instance (e.g., Kubota & Omura, 2018; Zheng et al., 2019).

Q4. What advances are needed to improve the radiation belt models and/or resolve this debate?

The improvement of modern simulations became possible due to the increase in grid-scale and time resolution of 
the modeling, as well as increase in resolution of the observations. For example, the Van Allen Probes mission 
has provided an exceptional data set suitable for the analysis and understanding of the radiation belts. However, 
the modeling still performs under many assumptions of the simulation parameters and inputs (e.g., solar wind 
propagation, initial and boundary phase space density profiles, diffusion coefficients, etc). As mentioned above, 
the data-driven boundary conditions are a necessity for successful modeling. To distinguish between local accel-
eration and radial diffusion, a comprehensive multi-point overview of the particle distribution throughout the 
radiation belts, at geostationary orbit and beyond is required. It is critical to have measurements of the radiation 
belts boundaries over a short time scale (hours, or even minutes). The sampling time of the geo-transfer orbit 
(similar to the Van Allen Probes, approximately 9 hr) may be too limited to capture fast, localized processes. 
Distinguishing between averaged global/long time scale dynamics versus local/short time scale dynamics is a 
very difficult task; however, with larger constellations and partnerships with groups like StarLink, such tasks can 
be addressed. The GPS satellites (e.g., Morley et al., 2010) are good for capturing rapid overall changes of the 
upper region of radiation belts (L > 4); however, the existing satellite fleet is not always sufficient to sample the 
length scales of interest. In addition, the GPS data set has to be handled carefully due to its latitude distribution, 
energy resolution, and absence of the pitch-angle resolved observations. Summarizing the above, comprehensive 
multi-point measurements of the radiation belts, at their boundary and beyond on the time scale of an hour, are 
required to answer the raised questions.
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4. Summary
Distinguishing between radial transport and local acceleration mechanisms in the Earth's radiation belts remains 
a challenging task. During the panel discussion, several keypoints were addressed that can help in advancement 
of this issue:

1.  Both radial diffusion and local acceleration are important mechanisms of observed electron flux enhance-
ments and must be considered.

2.  The contribution of those processes can be studied on an event-specific basis (short time scale, isolated 
phenomena, events when either local acceleration or radial diffusion does not perform well in the modeling).

3.  The analysis of phase space density profiles, their gradients, and the methods of their accurate calculation is 
required to distinguish between different processes.

4.  The modeling requires the data-driven boundary condition with the defined variation on the time scale of an 
hour and corresponding in situ measurements for validation.

5.  The diffusion coefficients can be improved and hence improve the modeling; however, the advancement 
of this issue may require a different approach, such as test-particle simulations coupled with MHD-derived 
fields.

6.  Significant advancement can only be achieved with multi-point satellite measurements of the electrons and 
ions across populations of different energies, on the time scale of an hour or less inside the radiation belts, at 
the boundary, and beyond.

Data Availability Statement
No data has been used to write this commentary.
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