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1 EXECUTIVE SUMMARY 

This deliverable summarizes the activities related to the development of predictive models to 

simulate the impact of fluid flow hydrodynamics and chemical composition uncertainties on 

the production behavior of geothermal assets. Specifically, in this report, the mineral 

precipitation behavior of the geothermal fluid was studied as both uncertainties in the fluid 

composition and the interaction between the fluid flow hydrodynamics and mineral 

precipitation can impact the deposition of the scaling.  

A workflow was developed to couple a multiphase flow solver to thermodynamics libraries and 

models which are used to simulate the precipitation amount and kinetics of different 

geothermal minerals. This coupled workflow will enable a better estimation of the location and 

amount of precipitated minerals in different location of a geothermal system. A detailed 

roughness model was developed to simulate the impact of mineral deposition to the fluid flow.  

In addition, an uncertainty quantification workflow was combined with the modelling 

framework to estimate the uncertainty bounds of the scaling and precipitation resulted from 

uncertainties in the fluid composition characterization and operational settings.  

The modelling and uncertainty quantification workflow was demonstrated on a barite 

precipitation case study in a heat exchanger. Initially, the impact of geo-chemical uncertainties 

(in fluid composition) on the mineral precipitation was assessed. Afterwards, the coupled fluid 

flow and precipitation model with the developed roughness model was tested. Finally, the 

coupled uncertainty quantification workflow with the coupled model was simulated to assess 

the impact of fluid composition uncertainties on mineral deposition. As an outcome of the 

simulation, the impact of uncertainties in the mineral deposition on reduction in the production 

rate and heat transfer (within the heat exchanger) was calculated. 

The developed framework is flexible and generic which can be applied to various production 

and operational challenges in geothermal assets. In the future, the workflow can be used to 

optimize the design and operation of geothermal assets considering various sources of 

uncertainties which is not only fluid composition but also operational conditions (link to D4.5 

REFLECT), robust modelling of other geo-chemical and flow assurance challenges in 

geothermal sites or even developing geo-chemical risk maps for different sites within EU (link 

to WP3 REFLECT). 
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2 INTRODUCTION 

Mineral scaling is one of the main challenges complicating the efficient operation of 

geothermal systems. The deposition of solid scales can lead to clogging of wells, reservoirs or 

surface facilities, reduction of flowrates within the wellbore and topside equipment, and 

impede the transfer of heat within heat exchanger systems, ultimately affecting the lifespan 

and economic viability of geothermal systems. Based on the chemical composition of the 

geothermal brine, which depends on the geological formation and on the operational settings, 

different types and amounts of scales can form within the system. Examples include calcite 

(CaCO3), barite (BaSO4), celestite (SrSO4), as well as lead-based and silica scales (which are 

mainly observed in high-enthalpy systems) (Regenspurg, et al., 2014). In addition, the thermo- 

and hydrodynamics of the system, i.e., the flowrates, pressures and temperatures, will largely 

determine the precise location and severity of scaling.  

Through specifying the topside pressure, heat extraction, and other parameters, these latter 

properties can, to a certain extent, be controlled by the operator of the system. For this, having 

an accurate and predictive model of the system is of critical importance, as it allows for 

evaluating the effects of different operating conditions on the scaling potential and flow 

conditions in the system without having to experiment with the physical system itself. 

An accurate prediction of the scaling amount and location in the geothermal systems depends 

heavily on (1) characterization of the geothermal fluid which is impacted by the uncertainties 

in the fluid sampling and analysis and (2) interaction between flow hydrodynamics and 

precipitation. Analysis of the impact of geochemical uncertainties and flow properties on the 

scaling prediction of geothermal brine would enable operators to make a better decision about 

the operational settings and mitigation measures.  

The objective of this work was to develop an accurate and robust prediction workflow for 

geothermal fluid production by considering the uncertainties in the physico-chemical 

properties of geothermal fluids. In this work, a modelling workflow has been developed, Figure 

1, that combines a flow solver which calculates the hydrodynamic properties (such as flow rate, 

shear stresses, …), pressures, and temperatures in the fluid flow system with a geochemical 

speciation tool that calculates the scaling potentials of selected minerals (PHREEQC (Parkhurst 

& Appelo, 2013)) and the fluid properties, which often derives from characterization tests. The 

developed workflow includes the two-way coupling between scale deposits and flow 

properties, i.e., the fact that minerals which precipitate on equipment walls in turn affect the 

flowrates in the system (through changing wall diameter and roughness) as well as 

temperatures (through reducing heat transfer) and pressures.  

However, while it is possible to manage a system’s operating conditions within certain 

boundaries, the composition of the geothermal brine cannot be controlled as easily. Moreover, 

having full certainty of the brine composition is highly unlikely in the first place. Measurements 

contain errors, and sampling of the brine is complex and expensive, making frequent 

monitoring of its composition practically infeasible. As a result, the exact composition of the 

geothermal brine is a large source of uncertainty within the modelling workflow. 
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Figure 1. Schematic of combining three modelling elements within a multiphase flow 

solver, the figures of the transport and deposition mechanisms are by (Schutte, 2016) 

Therefore, in addition to the development of a two-way coupled modelling approach, this task 

also includes an additional uncertainty quantification workflow which can be integrated into 

the geochemical-hydrodynamic models. In this workflow, the impact of fluid composition 

uncertainties based on the measurements error bounds on the scaling potential, amount and 

resulting production behavior can be quantified. Such a workflow can be used to optimize 

operating conditions that mitigate the negative effects of scaling while maintaining cost-

effective operation. 

The models developed in this work were applied to a model brine composition from a low-

enthalpy geothermal doublet which has the tendency to barite and celestite precipitation. 

Therefore, this work focuses primarily on the modelling of barite scales. In addition, as barite 

scaling is primarily dependent on temperature, all methods have initially been applied to a heat 

exchanger system. However, the generality of the developed workflow will allow it to be easily 

applied to other parts of a geothermal system, or the system in its entirety . Furthermore, 

depending on the nature of the minerals scaling chemistry, the models can be extended to 

include additional types of scales.  

Note that there is no conclusive evidence that these Dutch doublets experience barite scaling 

even though the models indicate supersaturation. In the PERFORM-D1.3 report (Kristensen, et 

al., 2020), many geothermal waters were assessed for barite scaling and the vast majority of 

formation waters were at, or close to, equilibrium with barite at reservoir conditions and 

supersaturated at the surface after cooling. Despite this, significant precipitation of barite is 

only reported at few sites (e.g. Groß Schönebeck). This discrepancy could be related to kinetic 

or nucleation related retardation of precipitation, insufficient supersaturation or model 

inaccuracies in for example in the thermodynamic database. Although not proven for Dutch 

doublets, barite scaling is a common issue for geothermal systems worldwide and therefore of 

interest as a case study for the workflow development. 
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3 STATE-OF-THE-ART 

In a geothermal system, brine is transported from aquifers – subsurface water reservoirs – to 

the surface, with the aim of extracting the thermal energy of the brine. The geothermal brine 

consists of several dissolved compounds – hydrocarbons, sulphates, metal ions - and gases, 

with unique concentrations for every aquifer. In the reservoir, the minerals and gases are 

approaching equilibrium with the formation water over time. Element concentrations are often 

enriched in saline water and can form scales due to mineral oversaturation or electrochemical 

reaction with the steel casing (Schreiber, et al., 2016). Barite or other sulphate scales occur in 

geothermal installations because the equilibrium as exists in the reservoir is disturbed by 

transport to the surface conditions. When changes in temperature and pressure cause the 

solubility to decrease, the mineral becomes oversaturated and precipitates. The solubility of 

barite decreases with decreasing temperature or pressure and increases with higher salinity 

(Zhen Wu, 2016). Barite solubility decreases with increasing pH (over pH 9), but the pH 

dependency is negligible between a pH of 2 and 6.5 (Zhen Wu, 2016), which is the pH relevant 

for Dutch siliciclastic reservoirs. The increase in barite solubility with higher salinities is due to 

the formation of different barium complexes which leads to the relatively high barium 

concentrations in formation water (the “salting in” effect, (Blount, 1977)).   

𝐵𝑎𝑆𝑂4 ⇌ 𝐵𝑎(2+) + 𝑆𝑂4
(2−)

 

Two types of mineral precipitation exist in geothermal systems (Andritsos, et al., 2002): 

• Heterogeneous precipitation: the formation of nuclei on a surface, typically a solid-

liquid interface. The interface concerned in this report is the solid-liquid interface, as 

the Gibbs energy of formation of a gas-liquid interface is orders of magnitude larger 

compared to the solid-liquid interface (Abyzov & Schmelzer, 2014). Most minerals, such 

as calcite, barite, celestite e.g., follow this path of precipitation, as the nucleation barrier 

is much lower for heterogeneous nucleation as it is for homogeneous nucleation. This 

type of precipitation is considered in this report.  

• Homogeneous precipitation: the formation of nuclei inside the bulk flow. This type of 

precipitation does not require an interface or impurity, but the nucleation barrier is 

much higher. Silica tends to precipitate in this manner. 

Heterogeneous precipitation will thus nucleate and grow on the pipe wall, resulting in a change 

in surface roughness and a decrease in effective flow area. Both parameters affect the flow 

profile of the brine, and they lead to a decrease in heat transfer in the heat exchanger. These 

phenomena impact the (local) thermo- and hydrodynamic properties, as pressure drop will 

increase, and less thermal energy can be extracted. This, in turn, results in a shift of precipitation 

quantity and location. Therefore, a two-way coupling exists between precipitation and flow 

hydrodynamics. 

It is not straightforward to obtain an exact solution for each geothermal doublet: as the vast 

part of a doublet is located subsurface, measuring its brine properties induces errors. Therefore, 
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aleatoric uncertainties of brine composition and precipitation properties and mechanisms are 

also evaluated. Its magnitudes are expressed as a deviation error from the ‘original’ solution.  

The cooled and depressurized brine flowing through a geothermal doublet is prone to 

scaling. Minerals tend to precipitate out of the brine when its saturation index exceed a 

threshold. The saturation ratio is given by the ion activity product divided by the solubility 

product (Sorbie & Scott Boak, 2012): Ω𝑆𝑅   =  
𝐼𝑎𝑝

𝐾𝑠𝑝
 . 

• For ΩSR < 1: The brine is undersaturated with respect to the ion, which means that 

those ions will stay dissolved in the brine. 

• For ΩSR = 1: The brine is (critically) saturated. Ions will not precipitate, but a slight 

increase in ion activity or decrease in solubility product will shift the equilibrium. 

• For ΩSR > 1: The brine is supersaturated, and the respective ions will react and 

precipitate out of the brine. 

Thermodynamic models calculate chemical equilibria by using the saturation index, which is 

linked to the saturation ratio by the relation: Ω𝑆𝐼 = log10[Ω𝑆𝑅]. As log10[1] = 0, the threshold of 

mineral precipitation is shifted to 0 when the saturation index is concerned. 

The ion activity is the multiplicative of the molar concentration of said ion and its activity 

coefficient (Wright, 2007). Different models exist to calculate the activity coefficient. In this 

approach, the extended Debye-Hückel theory is used, due to the high salinity of geothermal 

brine and therefore its high ionic strength (Boersma, et al., 2018). The activity coefficient and 

the solubility product are both thermodynamic properties, and functions of temperature and 

pressure (Lei, et al., 2020). These properties are flow-dependent, thus mineral precipitation is 

affected by the transportation of the brine. 

The heterogeneous precipitation of minerals tends to attach and deposit on the pipe walls, 

forming a precipitation layer. This layer reduces the effective flow area and induces a unique 

surface roughness. Both these phenomena impact the flow hydrodynamics. Therefore, a two-

way coupling is present between mineral precipitation and hydrodynamics. In an earlier work 

by (Wasch, et al., 2019) a coupling between the flow properties and precipitation amount was 

performed, however the coupling of the impact of precipitation on the fluid properties were 

not considered. 

To quantify the development of mineral deposition, mineral precipitation mechanics need to 

be analyzed: where and how do they deposit? In this report, barite precipitation is considered. 

Each mineral has a specific crystal structure, which is the ‘preferred’ stacking of atoms. 

Precipitated minerals in a geothermal system tend to form in their preferred shape. However, 

turbulent shear forces break down the crystal structure. (Yan, et al., 2016) showed that barite 

maintains its crystalline structure in laminar flow conditions but breaks down to conical 

structures under turbulent conditions. (Chen, et al., 2017) used spectrum analysis to indicate a 

preference of barite precipitation at a contact angle of 38 degrees in turbulent conditions. A 

SEM image of barite precipitation is given in Figure 2.  
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Figure 2. SEM image of barite crystals under laminar flow conditions (Re = 176, left) and 

turbulent flow conditions (Re = 11249, right). Image from (Yan, et al., 2016) 

(Wang, et al., 2013) showed that positively charged ions have affinity to adhere to the 

negatively charged stainless steel surface. The adsorption of 𝐶𝑎2+, 𝐵𝑎2+ and 𝑆𝑖2+ onto the 

surface promotes adsorption of 𝐶𝑂3
  2− , 𝑆𝑂4

  2− and 𝑂2− , thus, enhancing calcite, barite and silica 

nucleation on the surface. This means that these minerals ‘prefer’ to grow on a stainless-steel 

surface, rather than onto already existing deposition. An important result which follows from 

this cited experiment is that the initial mineral precipitation will fully cover the pipe wall, before 

it grows in height. This is also confirmed by (Hammer, et al., 2011). 

 

(Tranter, et al., 2020) states that the solubility product of barite is highly sensitive to 

temperature: low temperatures correspond to a relatively low solubility product.  Therefore, 

barite precipitates at lower temperatures, which occurs in the heat exchanger and downstream. 

Table 1 provides an overview of the mechanical properties of barite scales. These parameters 

affect the deposition dimensions and the resultant surface roughness. Data followed from 

(Wen, et al., 2020). 

 

Table 1: Mechanical properties of barite. Data from (Wen, et al., 2020) 

Mechanical properties barite Value 

Density [kg/m3] 4480 

Ultimate tensile strength [MPa] 6.4 

Heat transfer coefficient [W/mK] 1.2 
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4 METHODOLOGY 

In this chapter the methods and approaches used to model the different aspects of the two-

way coupled hydro- and thermodynamic and geochemical scaling modelling workflow are 

discussed. In addition, it also provides the details of the uncertainty quantification approach 

used, and briefly discusses the different case studies the methods have been applied to. 

4.1 SIMULATORS 

Modelling of all flow related parameters (flowrate, pressure, temperature, etc.) are done using 

an in-house flow solver called Drift-Flux (Osiptsov, et al., 2014) which has been expanded with 

a connection to the geochemical speciation software PHREEQC and additional models for the 

calculation of deposition profiles and its effects on roughness and pressure drop within the 

system. Such a coupling can be done with any multiphase flow simulator which can calculate 

the process conditions, such as pressure, flow rates, temperature and gas-liquid fraction in 

geothermal plants. 

 

The software PHREEQC is used to simulate the scaling potential of the geothermal brine related 

to temperature and pressure changes in the geothermal installation. PHREEQC version 3 is a 

computer program written in the C and C++ programming languages that is designed to 

perform a wide variety of aqueous geochemical calculations (Parkhurst & Appelo, 2013). 

Several thermodynamic databases are available for PHREEQC, which include the solubility 

constants of a set of minerals and gasses at a range of conditions that can be different for each 

database. For this study we selected the Pitzer database which is suitable for calculations of 

mineral and gas solubility at high salinity (downloaded with PHREEQC v3. 

https://www.hydrochemistry.eu/ph3/index.html). A disadvantage of this database is that it 

does not include aluminosilicates and only limited metals (sulphides), meaning that these 

compounds cannot be simulated with this database, even though they are commonly occurring 

scales. 

4.2 COUPLED MODELLING WORKFLOW 

Figure 3 gives a schematic overview of the different components included in the two-way 

coupled modelling workflow developed within this study. The modelling workflow has been 

developed to be applicable to different parts of geothermal systems (wellbores, heat exchanger 

system, etc.) or the complete geothermal doublet.  

 

The workflow starts with the definition of the system geometry to be modelled, e.g. piping 

lengths, diameters, inclination, materials, and boundary conditions such as inlet temperature 

and pressure (reservoir conditions in case the entire wellbore is modelled). In addition, before 

the workflow can be executed, the composition of the geothermal brine has to be defined. 

Once all input parameters and boundary conditions have been defined, the system is 

discretized into a specified number of sections (cells), and the Drift-Flux model is used to 

calculate the flow properties (velocities, phase fractions), pressure, and temperature per cell. 

This model uses PVTsim (Anon., 2021), which takes the brine composition as an input, to 

perform any vapor-liquid equilibrium or fluid property calculations needed. 

 

https://www.hydrochemistry.eu/ph3/index.html
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With the pressure and temperature in the system known, PHREEQC can be used to perform 

the geochemical speciation calculations, resulting in a certain amount of precipitate leaving 

the solution at each cell in the system. If this amount is non-zero, the composition of the brine 

is updated accordingly before the calculations of the subsequent cell are performed (thereby 

maintaining conservation of mass of each species in the brine). 

 

After the amounts of precipitation per cell have been determined, the deposition and 

roughness models are used to calculate the change in inner diameter, roughness, and heat 

transfer of the pipe as a result of the newly formed scale layer. These updated values for 

diameter, roughness, and heat transfer are used in the next timestep to update the flow, 

pressure, and temperature in each cell, which in turn affects the precipitation amounts and 

diameters, roughness, and heat transfer of the next timesteps, and so on, completing the full 

two-way coupled interaction between hydro- and thermodynamics and geochemistry in the 

geothermal system. 

 

 
Figure 3. Workflow of the coupled flow-chemistry modelling framework. Image adapted 

from (Twerda & Veltin, 2014) 

4.3 FLOW-PRECIPITATION INTERACTION 

In this subchapter, the interaction between flow properties and mineral precipitation is 

explained. A precipitation model is created which describes the two-way coupling of the flow 

hydrodynamics with geochemistry (e.g. fluid composition). 

 

The precipitation model relies on the following inputs: 
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• Aquifer/reservoir conditions: mineral concentrations, pressure, temperature. 

• Geometry and properties of the geothermal doublet: pipe diameter, topside pressure, 

temperature drop in the heat exchanger. 

 

The Drift-Flux code, incorporated in the precipitation model, uses aquifer/reservoir conditions 

and doublet geometry as an input and converts them to a pressure and velocity profile through 

the geothermal process plant. As barite is modelled in this report, the solubility of which 

depends primarily on temperature, only the heat exchanger and downstream piping are 

modelled as before the heat exchangers temperatures are higher and little barite is expected 

to precipitate. This section of the geothermal doublet is divided into 25 grid cells of equal 

length. The amount of grid cells chosen is not arbitrary: 25 grid cells ensure a fast 

computational speed, while also maintaining sufficient accuracy of local hydrodynamic- and 

thermochemical parameters. The precipitation quantity deviates less than 2 percent in 

comparison to an analysis of 100 grid cell, while the 25 grid cell analysis is 16 times faster. The 

brine temperature in the grid cells results from brine sampling from operators, and is 

interpolated between sampling points. After solving for the pressure and temperature at each 

grid cell, PRHEEQC is used to calculate the expected mass of mineral precipitation per cell. 

 

Based on the literature discussed in Chapter 3, barite deposition can be modelled as conical 

structures along the pipe wall. (Wang, et al., 2013) and (Hammer, et al., 2011) stated that 

stainless steel pipes used in a geothermal doublet are negatively charged due to contact with 

the earth’s crust. The core of the earth has a positive charge due to presence of extremely high 

pressures and temperatures. As a result, the earth’s crust is negatively charged. Positively 

charged ions adhere to the pipe wall, which is further assisted by ion transportation from the 

bulk flow to the pipe wall due to turbulent flow (Schutte, 2016). Minerals therefore have a 

tendency to precipitate onto the pipe wall rather than on already existing precipitation layers. 

It is assumed that the pipe wall is completely covered with precipitated minerals after the first 

timestep. The geometry of the deposition of barite on a stainless steel surface is described by 

literature stated in Chapter 3, and it requires the calculation of the cone base width (shape of 

the deposition). For each cell, the mineral precipitation mass is converted into a cone width, 

which is equal for each cone in a single cell. This is illustrated in Figure 4.  

 
Figure 4. Illustrated view of the deposition profile of single grid cell 
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Here, the parameter D refers to the pipe diameter and parameter Q̇ refers to the volumetric 

flow rate. Dimensions of this profile are affected by the contact angle of the minerals with 

respect to the pipe wall, as well as the volumetric deposition along each individual cell. From 

the volumetric deposition and contact angle, the base and height of the triangular deposition 

model can be calculated for every cell. The accumulated crystals will experience a force due to 

the presence of the moving brine (shear stress between the deposited layer and fluid flow). An 

increase of crystal growth (increase in height of the deposition) leads to a reduction in effective 

flow diameter, which increases the force acting upon the minerals. The deposition can 

withstand a certain critical force, which is a function of the mechanical properties and the 

dimensions (most notably the cross-section) of the deposition layer. A critical deposition 

thickness (critical cone diameter) exists, where the fluid force exceeds the strength of the 

deposition, leading to destruction and transportation of the mineral above the threshold. This 

results in a trapezoidal deposition of the minerals along the pipe wall. The volumetric fraction 

of the deposition which is carried away by the flow is not analyzed further. The force diagram 

of one layer of scales is given in Figure 5. 

 

 
Figure 5. Force diagram of one layer of scales 

 

Solving for the critical cross-section gives the desired deposition profile along the pipe wall. A 

trapezoidal structure will be formed. From this structure, the mean deposition height can be 

calculated. The cone height is discretized in N data points. The absolute and mean deposition 

height quantify the surface roughness per cell. (Bouzid, et al., 2014) describes the surface 

roughness εRMS, based on the root-mean-square (RMS) method: 

 

εRMS = √
1

N
∗ ∑(x − x̅)2

N

i=1

 

 

Where: 

• εRMS  is the surface roughness of the pipe due to mineral precipitation [m]. 
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• N  is the number of discretized data points which describe the height of a cone [-

]. 

• x   is the height of the cone at data point i [m]. 

• x̅  is the average cone height [m]. 

 

As the cones per cell are assumed to be identical, one cone is analyzed to obtain the surface 

roughness. The change in surface roughness imposes a change in the friction factor (f), 

described by (Haaland, 1983): 

 

1

√f
= −3.6 ∗ log10[

6.9

Re
+ (

εRMS
D

3.7
)

10
9

] 

 

 

 

Where: 

• f  is the fanning friction factor [-]. 

• Re  is the Reynolds number [-]. 

• D  is the pipe diameter [m]. 

 

An additional pressure drop will occur as a result of change of friction factor, described by 

(Mirmanto, 2013): 

 

∆Pcell = fcell ∗
Lcell

R −  x̅cell
∗ ρbrine ∗ Ucell

2
 

Where: 

• ∆Pcell is the pressure drop over a single cell [Pa]. 

• fcell   is the Fanning friction factor in a single cell [-]. 

• Lcell  is the cell length [m]. 

• R         is the pipe radius [m]. 

• ρbrine    is the brine density [kg/m3]. 

• Ucell    is the flow velocity in a single cell [m/s]. 

 

The additional pressure drop affects the input pressure parameter of the next time step. The 

situation described above applies at the initial iteration, when no scaling is present in the cells. 

However, as more and more time steps are evaluated, more and more mineral will precipitate, 

and the deposition layer will increase in thickness. The deposition layer can be split into a 

constant thickness (resulting in a reduction in effective flow area) and a deposition roughness, 

described by the peaks which are on top of the deposition thickness. Due to the change in 

effective flow diameter and surface roughness, deposition may also occur at locations which 

were “scaling-free” beforehand. 
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(Dai, et al., 2021) and (Hammer, et al., 2011) performed experiments to evaluate “second-

generation deposition” and concluded that the deposition profile remains roughly the same: it 

can be modelled as the same profile, with addition of a uniform thickness, corresponding to 

the scaling amount predicted by PHREEQC in the corresponding time interval. This is shown in 

Figure 6. 

 

 
Figure 6. Illustration of the deposition layer, after one and two time step(s) 

 

4.4 UNCERTAINTY QUANTIFICATION 

As mentioned previously, the uncertainty in brine composition will lead to uncertainties in 

model outcomes which determine the confidence bounds of the prediction. For this reason, an 

uncertainty quantification workflow has been integrated with the modelling approach to 

estimate the magnitude of the effect of brine composition on flow conditions in a geothermal 

system. In this section, the type of uncertainties being studied is explained, and the uncertainty 

quantification approach is presented. 

4.4.1 Types of uncertainty 

As the name implies, uncertainty quantification (UQ) aims to quantify the impact of 

uncertainties on the outcome of a model of a physical system or experiment. In this, uncertainty 

is typically divided into two contributing parts: an aleatoric part and an epistemic (or 

systematic) part (Zhang, 2020).  

 

Aleatoric uncertainties are uncertainties that are different each time an experiment is 

performed or vary continuously while a system is operated (Zhang, 2020). For instance, even if 

a ball is kicked with the exact same velocity and direction, natural (unavoidable) fluctuations in 

airflow around the ball and force transfer to the ball will mean that it never hits a target at 

exactly the same spot. Aleatoric uncertainties are often known as irreducible uncertainties. 

 

On the other hand, epistemic uncertainties come from sources that in theory could be 

controlled, but for which it is difficult to do so in practice due to a lack of knowledge or 

information (Zhang, 2020). For instance, limitations in the understanding of a system might 

require simplified models that lead to uncertainties in predictions. Typically, epistemic 

uncertainties could be reduced by gaining better insights into the phenomenon at hand, 
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although again, this might not always be possible in practice. In short, aleatoric uncertainties 

come from the natural randomness of physical systems, while epistemic uncertainties arise 

from imperfections in our abilities to understand, control, or model them. 

 

The uncertainty quantification in this work focusses solely on the effects of aleatoric 

uncertainty. More specifically, it focusses on the uncertainty in geothermal brine composition 

and how this affects the subsequent formation of mineral precipitates and ultimately the 

reduction in flowrates in the system over time. 

4.4.2 Uncertainty quantification approach 

The general uncertainty quantification approach used in this work is relatively straight-forward, 

and is summarized graphically in Figure 7. The method starts with a nominal brine composition 

for which the concentrations of different ions have been experimentally measured. Based on 

known measurement error bounds the possible upper and lower limits of the measurements 

are determined. Within these limits, a large number of brine compositions are sampled, and 

for each sampled composition, the relevant calculations are performed to get a distribution of 

a desired modelled quantity. For instance, in the example shown in Figure 7, the quantity of 

interest is the amount of barite precipitation. The resulting distribution can be further analyzed 

to find the expected deviations from the nominal and median values and identify best/worst 

case scenarios. 

 

Brine compositions were sampled from a random uniform composition as well as using so-

called Sobol sampling (Saltelli, et al., 2010). This latter sampling strategy was used to determine 

Sobol sensitivity indices for the different elements in the brine, which give an indication of 

which ions have the largest effects on the predicted quantity of interest (for more details, see 

the next subsection).  

 

 
Figure 7. Graphical depiction of the uncertainty quantification approach 
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4.4.3 Sobol sensitivities 

In addition to give an indication of the expected distribution of scaling at different brine 

conditions, uncertainty quantification (UQ) was also used to get an indication of which 

elements in the brine has the most impact on the scaling potential. In order to do so, the so-

called Sobol sensitivity of the different brine elements that were varied during the UQ analysis 

were determined. 

 

Sobol sensitivities are a variance-based approach, in which the magnitude of the impact of a 

given input parameter on the output is determined by evaluating how (much) the output 

changes when the input parameter is varied (Saltelli, et al., 2010). This impact is often divided 

into a specific set of “order” effects, e.g. first order, second order, and total order effects. First 

order effects look at the impact of varying a given parameter by itself, while second order 

effects vary the parameter along with one of the other input parameters to give an indication 

how their interaction affects the output (Saltelli, et al., 2010). As third or higher order effects 

become more and more difficult to evaluate, they are typically left out of analyses and the total 

order effect is calculated which summarizes all order effects of a given input parameters. 

 

To increase the efficiency and accuracy of Sobol sensitivities, the Sobol sampling scheme is 

used to generate the model output samples from which the sensitivities are determined. Sobol 

sampling generates quasi-random samples which are more evenly distributed between the 

upper and lower bounds of the sampling limits (Saltelli, et al., 2010). Figure 8 gives an example 

of 256 samples sampled using either uniform random sampling or Sobol sampling and 

highlights the even distribution of Sobol samples. 

 

The mathematics of how Sobol samples are generated and the sensitivities are calculated are 

considered outside the scope of this work, the interested reader is referred to (Saltelli, et al., 

2010). The analyses in this work were performed using the “SALib” Python package (Herman & 

Usher, 2017). 

 

 
Figure 8. Example of samples generated using a (pseudo-)random uniform distribution 

(left) and a Sobol sampling strategy. Points in red correspond to the first 10 samples, 
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those in blue to the first 100 samples, and green the remaining samples. As can be seen, 

the Sobol samples are distributed more evenly throughout the sampling box 

4.5 CASE STUDIES 

The modelling approaches developed in this task were applied to three different case studies 

of increasing complexity, through integrating more of the different sub-models. In this section, 

each of the cases are briefly explained. All case studies focused primarily on the scaling of 

barite within heat exchanger equipment (specific geometry and boundary conditions are 

discussed in Section 5.3). Brine compositions were based on measurements from a geothermal 

doublet in the Netherlands (details given in Section 5.1 and 5.2). 

4.5.1 Case A: barite scaling modelling 

In this case study, the PHREEQC model used to estimate barite precipitation potential under at 

different conditions was developed. In addition, using this model, the temperature-

dependency, kinetics, and effects of other ions/minerals on barite precipitation were 

investigated. 

4.5.2 Case B: uncertainty quantification of scaling potentials 

Initial uncertainty quantification activities focused solely on the impact of uncertainty in brine 

composition on the amount of potential scaling at a singular operating condition (i.e. a single 

combination of pressure and temperature). This case did not include any deposition or 

roughness modelling, and as such did not contain the full two-way coupling between 

hydrodynamics and deposition modelling.  

4.5.3 Case C: modelling the impact of hydrodynamics on scaling precipitation 

In the third case study, the modelling activities were expanded to the calculation of the height 

and profile of the deposition layer and roughness based on the scaling amounts and flow 

within the heat exchanger system. Activities in this case study also included the addition of the 

two-way coupling between hydrodynamics and scaling. However, it did not include any 

uncertainty quantification. 

4.5.4 Case D: uncertainty quantification of scaling precipitation, roughness, and flow 

The final case study combined all workflows that were previously developed, i.e. the full two-

way coupling of hydrodynamics and scaling under uncertainty in brine composition, and 

applied them to the same heat exchanger system as the prior case.  
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5 RESULTS 

In this chapter, the outcomes of the modelling work as applied to the case studies described 

in Section 4.5 are given. The results start with the description of the geochemical models and 

the initial model results for barite scaling as affected by key parameters. Secondly, the initial 

analysis of the impact of uncertainty in brine composition on the scaling potential of barite, 

followed by the description of results from the two-way coupling approach, and end with the 

outcomes of the full workflow combining the uncertainty quantification with the two-way 

coupled models.  

5.1 RESULTS CASE A: BARITE SCALING MODEL 

5.1.1 Model set-up and initialization 

The geothermal fluid is a combination of brine and gas (together with solid particles) which 

are analyzed and characterized for their compositions in the laboratory. The gas and liquid 

compositions used in this section are given in Table 2 and Table 3 respectively. As part of this 

work was executed after initial work on the uncertainty quantification and coupled modelling, 

the brine composition is slightly different from that given later as additional measurements 

had been analyzed leading to updated concentration values.  

 

In order to input the characterized fluid composition to PHREEQC, the brine (‘SOLUTION’) and 

gas (‘GAS_PHASE’) are combined at reservoir pressure and temperature to approximate the 

composition of the reservoir fluid. For this case study, one specific brine and gas composition 

is selected. A gas water ratio (GWR) of 0.36 is used for the gas volume. The gas composition is 

listed in Table 2. Any charge imbalance of the fluid (e.g. due to not including all the metal 

compounds with the Pitzer database) are solved by adjusting the sodium concentration with 

the ‘charge’ function. The fluid and gas are combined at 105 °C and 331 bar. Due to the 

dissolution of CO2 into the brine, the pH of the resulting reservoir fluid decreases from 5.2 to 

4.8. Under these conditions the barite saturation index is –0.3, indicating that barite is slightly 

undersaturated in the reservoir. The effects of uncertainties in sampling and measurement on 

the saturation index of barite and resulting precipitation will be addressed with the uncertainty 

assessment workflow in section 5.2. 

 

The reservoir fluid defined with PHREEQC can subsequently be exposed to any temperature or 

pressure condition in the geothermal installation for geochemical calculations of scaling 

potential which will be discussed in the following sections. First equilibrium barite precipitation 

will be assessed followed by the incorporation of kinetics in the model. Secondly, the effect 

strontium, calcium and magnesium on barite scaling prediction will be assessed.  
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Table 2 Gas composition of the case study fluid 

Gases Mole fraction 

CO2(g)  0.25659 

Methane(g) 0.57209 

Nitrogen(g)  0.10556 

 

Table 3 Brine composition of the case study fluid 

Element Concentration (mg/l) 

Na 89000 

K 810 

Ca 9500 

Mg 1200 

Ba 5.3 

Sr 440 

Fe 124 

Cl 160000 

S(6) 390 

C(4) 17.7 

Mn 10.3 

Li   31.1 

Si  9.37 

5.1.2 Barite scaling potential 

Since barite precipitation is strongly controlled by temperature, this case study is focused on 

precipitation with cooling in the heat exchanger. A fixed top-side pressure of 10 bar is assumed, 

allowing minor amounts of gases to exsolve. The first models were run assuming instantaneous 

(equilibrium) reactions. Figure 9 shows the predictions of increasing barite precipitation with 

lower temperatures. At a cooling temperature of 30 °C the predicted amount of barite scaling 

is 3.3E-5 mol/kgw. 

 

A second PHREEQC model was made for kinetically controlled mineral precipitation using a 

rate expression described by (Lasaga, et al., 1994). The rate expression describes the time 

required for a mineral to precipitate and to reach equilibrium as dependent on several 

parameters such as the saturation index and a mineral specific reaction rate. The barite reaction 

rates are taken from (Palandri & Kharaka, 2004). The kinetic model was run with a fixed pressure 

and temperature of 10 bar and 30 °C in several time steps for a specific time interval. Figure 10 

shows that after approximately 4 years, the fluid composition approaches equilibrium with 

respect to barite at the new temperature of 30 °C. Considering that the residence time of the 

fluid in the geothermal system (plant) is a matter of minutes and not years, the amount of 

predicted barite scaling will be significantly reduced when taking reaction rates into account. 

Running the kinetic model for ten minutes yields 7.70E-10 mol/kgw barite scaling (Figure 11), 

instead of the 3.3E-5 mol/kgw barite predicted with the instantaneous equilibrium model 

(Figure 9). This illustrates the large effect of kinetics on predicted mineral precipitation. 
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These results indicate that caution is advised when assessing the barite precipitation with 

instantaneous (‘in equilibrium’) simulations without considering reaction rates, as will be 

initially done for the workflow development in the following case studies. For barite this may 

significantly overestimate precipitation. Furthermore, including the kinetic rates will most 

probably spread-out barite precipitation through the geothermal installation and injection 

well, maybe even down to the reservoir. Barite precipitation may not even be predicted at all 

following the theory that barite precipitation starts only in case of significant mineral 

oversaturation. Some studies (e.g. (Kristensen, et al., 2020), (van der Hulst, 2019)) argue that it 

is unlikely that barite scale will cause problems at Saturation Index (SI) values lower than 1 or 

even 3. Figure 12 shows the calculated saturation index of barite with cooling (when barite 

precipitation is not allowed in the model). For our case, the saturation index is below 1 for 30 

°C and only exceeds a SI value of 1 after cooling to 20 °C (Figure 12). Our model results, which 

show a large kinetic control and a SI below 1, agree with the lack of observed barite scaling in 

Dutch doublets (which cool to temperatures between 30 and 40 °C). 

 

 

 
Figure 9. Barite precipitation simulated for cooling from 100 to 20 °C 

 
Figure 10. Kinetic barite precipitation at fixed conditions of 30 °C and 10 bar, simulated 

for a time span of 5 years 
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Figure 11. Kinetic barite precipitation at fixed conditions of 30 °C and 10 bar, simulated 

for a time span of 10 minutes 

 
Figure 12. Barite saturation index (SI) simulated for cooling from 100 to 20 °C 

5.1.3 Effect strontium on barite scaling potential 

Similar to barium in barite, strontium can form a sulphate mineral (celestite or celestine). Barite 

and celestite can form a solid solution which is observed in samples of geothermal scales (e.g. 

(Haas-Nüesch, et al., 2018), (Heberling, 2017), (Regenspurg, et al., 2014)). The fluid of this case 

study contains a very high strontium compared to the barium concentration (Table 3), which 

suggests a potential for combined celestite and barite precipitation. Studies on natural samples 

of barite and celestine indicate a slightly non-ideal regular solid solution with a dimensionless 

interaction parameter a0 (or Guggenheim parameter) in a range of 1.6 < a0 < 2.0, assuming no 

miscibility gap in the solid-solution series ( (Monnin & Cividini, 2006) and (Heberling, 2017)). 

We used a nondimensional Guggenheim parameter of 1.8 for the solid solution in PHREEQC. 

 

Figure 13 shows the amount of barite and celestite precipitating together as solid solution. At 

the onset of cooling, the scale becomes increasingly celestite rich. Only at 30 °C and lower, 

barite is the dominant component. This is probably the reason why barite is a common scale 

mineral, assuming that cooling is fast and the brine mostly experiences a low temperature. The 

incorporation of strontium in barite reduces the total predicted scaling to 1.9E-5 mol/kgw, 

compared to the 3.3E-5 mol/kgw of pure barite. This indicates that the high strontium 

concentration in the fluid and incorporation of strontium in barite might reduce the scaling 

potential. 
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Figure 13. Precipitation of a barite-celestite solid solution, simulated for cooling from 

105 to 30 °C. 

5.1.4 Effect calcium and magnesium on barite scaling potential 

Barite precipitation is controlled by several parameters as mentioned previously. In literature, 

calcium is reported to have a large effect on barite solubility. Barite scaling has been reported 

to be more favorable for calcium rich geothermal fluids (Kristensen, et al., 2020). This could be 

related to a decrease in ion pair stability with decreasing temperature by a factor of ~3 from 

150 to 25 °C (Dai, et al., 2014), meaning that the ion pair would disassociate upon cooling, 

increasing the concentration of free SO4
2-. This causes barite solubility to be substantially 

affected by temperature changes in Ca-rich brines (Kristensen, et al., 2020). In contrast, 

experimental work showed that the precipitation kinetics of barite are affected by an inhibitory 

effect of calcium ions which can adsorb on barite nuclei during formation and growth (Jones, 

et al., 2004); also, the formation of the calcium sulfate ion pairs CaSO4 decreases the free sulfate, 

hence the saturation state of the solution (Azaza, et al., 2017). Thus, increased calcium cations 

in solution would reduce precipitation and nucleation rates due to the lower supersaturation 

and higher solubility of barite. In the literature (Jones, et al., 2004) it was also discussed the 

disagreement in literature on the effect of calcium on barite precipitation, either promoting or 

inhibiting its precipitation. For example other controls on barite precipitation could interfere 

with interpretating results such as the presence of organic additives or the effect of the 

changed ionic strength of the fluid with varying calcium concentrations. For our study, the 

theoretical effect of calcium on barite precipitation will be assessed with PHREEQC. 

 

For this case study, the effect of the calcium concentration on barite solubility is assessed by 

running the cooling simulation with different initial calcium concentrations. Sodium is used to 

charge balance the initial solution with the new calcium concentration and hence the ionic 

strength of the fluid has not changed. Figure 14 shows the reduction of predicted barite scaling 

with higher calcium concentrations, due to an apparent increased solubility. With increased 

calcium, more cooling is required for barite scaling to start, but the difference in barite scaling 

becomes less pronounced at lower temperatures. The simulated decrease of barite scaling 

agrees with the findings of (Azaza, et al., 2017) and (Jones, et al., 2004), of reduced precipitation 

rather than an increased scaling risk for calcium rich brines. 
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The same variation in concentration was investigated for magnesium to check whether other 

elements could have a similar effect on simulated barite precipitation. The magnesium 

concentration does not have a significant effect on the barite solubility and predicted 

precipitation (Figure 15). 

 

The results indicate that the model and the thermodynamic database are able to capture 

specific interactions of calcium, barium and sulphate while other cations are of much less 

influence. In the following section, the effects of uncertainties and variations in fluid 

composition on barite precipitation will be further discussed. 

 

 
Figure 14. The effect of different initial calcium concentrations in mg/kg-water on barite 

precipitation, simulated for cooling from 100 to 20 °C. 

 

 
Figure 15. The effect of different initial magnesium concentrations in mg/kg-water on 

barite precipitation, simulated for cooling from 100 to 20 °C. 
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5.2 RESULTS CASE B: IMPACT OF UNCERTAINTIES ON SCALING 

POTENTIAL 

To investigate the impact of uncertainties in the geothermal brine solutions that come from 

element concentration measurements or arise from natural changes to the geothermal system, 

the uncertainty quantification approach as described in Section 4.4 was applied to the 

modelling of barite scaling at a fixed temperature-pressure combinations. 

5.2.1 Brine composition and uncertainty bounds 

An initial analysis was done on the fluid composition data using REFLECT project database for 

a single well (multiple measurements from a single well) and a group of wells from the same 

formation. In the second case, the impact of measurement uncertainties and variabilities in the 

ions compositions are combined. The result of the initial analysis is shown in Figure 16. The 

analysis shows that the largest uncertainties in the fluid compositions are in iron, nickel and 

aluminum which are unlikely to impact the barite precipitation. However, the impact of even a 

small variation/uncertainty in the other ions on barite or other mineral precipitation is still 

unknown.  

 

 
Figure 16. Uncertainties in the fluid composition measurements (in mg/L) for a group of 

wells in a formation (top) and a single doublet in the same formation (bottom), the solid 

line indicates the mean value and the dashed lines are the standard deviation 

 

For this purpose, in total eight elements were taken into account during the uncertainty 

quantification, including: barium (Ba), carbon (C), calcium (Ca), chlorine (Cl), potassium (K), 

magnesium (Mg), sodium (Na), and sulphur (S). The nominal concentrations and 

maximum/minimum variation of these elements were based on downhole sample 

measurements of the brine composition at a Dutch geothermal doublet. The upper and lower 

bounds between which brine samples were generated were calculated from these percentages.  
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Two different variation magnitudes were considered: smaller “well variations” which were 

representative to the uncertainties in a single well, and “formation variations” which 

represented the much larger variations between wells within the same geological formation 

(Slochteren formation). All nominal concentrations and maximum/minimum deviations from it 

are listed in Table 4. Please note that this analysis was performed before those of Section 5.1, 

which uses more recent measurement values. Thus, there is a difference between the 

concentrations reported in Table 3 and Table 4.   

 

Table 4. Nominal concentrations and minimum and maximum percentual deviations of 

elements included in the brine uncertainty quantification analysis 

Element Nominal Concentration 

(mg/l) 

Minimum/maximum percentage deviation 

  
Variation in well Variation in formation 

Ba 5.5 ±3% ±30% 

C 0.001 ±3% ±30% 

Ca 7450 ±3% ±30% 

Cl 145000 ±3% ±30% 

K 2200 ±0.5% ±5% 

Mg 1150 ±4% ±40% 

Na 85000 ±2% ±20% 

S 585 ±4% ±40% 

 

5.2.2 Uncertainty in barite scaling potentials 

Approximately 10,000 samples were generated (number depends on the number of 

parameters included in the analysis and the specifics of the Sobol sampling scheme) based on 

the uncertainty bounds from well and formation variation. For each sample a PHREEQC 

simulation was performed to calculate the barite scaling amounts. Figure 17 shows the 

calculated barite scaling amounts for both variation scales. The most noticeable difference is 

the width of the respective distributions (bottom plots), which, as expected is very narrow for 

the smaller variation, and broad for the larger variations. For the uncertainties based on well 

variations, the mean value for the barite precipitation is significantly higher than that for the 

formation variations and lies around one standard deviation away from the mean of the 

formation variations. Moreover, when comparing both distribution means to the nominal value 

(purple dash-dotted line) the well variations show only minor deviations (0.7% lower mean than 

nominal value), while the formation variation mean is around 20.7% lower. This is likely due to 

another significant difference: the fact that for the larger variations, there are a considerable 

number of brine compositions for which there is no barite scaling predicted at all. Not only 

does this lead to a large “tail” towards the lower amounts of barite precipitation in the 

formation variations and resulting lower mean, but it will also significantly impact the flow 

profile in the geothermal system (something investigated in more detail in Section 5.4). 
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Figure 17 Barite scaling amounts calculated using PHREEQC at 70 °C and 10 bar for the 

smaller well variations (left), and larger formation variations (right). Results are plotted 

both as a box plots (top) and histogram plots (bottom). The black dashed lines indicate 

the mean value of barite scaling distribution, red lines dashed lines are one standard 

deviation away from the mean, and the purple dash-dotted lines indicate the barite 

scaling amount corresponding to the nominal brine composition 

In addition to the barite scaling amount distributions shown in Figure 17 for a temperature of 

70 °C and pressure of 10 bar, Figure 18 shows the distributions at five other temperature-

pressure combinations representative of different points within a heat exchanger. In this case, 

distributions are only determined for the formation variations. 

 

As can be seen, as the temperature changes, so do the barite distributions. While at higher 

temperatures, where the solubility of barite is high, there is a large amount of possible brine 

compositions that result in no precipitation, this slowly changes as the temperature drops and 

solubility decreases. Eventually, at the lower temperatures (50 degrees and below), barite is 

expected to precipitate regardless of the brine composition, although there is still a lot of 

variance in the potential amount of barite that precipitates. Looking at the nominal values for 

each points, we see that all of them predict barite scaling to occur. Comparing them to the 
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mean of the distribution, the largest differences are found at the higher temperatures, with a 

maximum difference of 46% at the first point, which reduces at the last point to a difference of 

around 13%. These result are due to the large number of samples for which no barite scaling 

is predicted, which lowers the mean of the distribution significantly. 

 

From the analysis it can also be seen that 70 °C seems to be the point around which the 

possibility of barite precipitation goes from a small chance of no precipitation at all, to certain 

precipitation no matter the brine composition (which is consistent with Figure 9). Thus, while 

the largest effects of uncertainties in absolute terms are found at lower temperatures, since 

they have broader ranges of potential scaling amount values associated with them, the 

uncertainty in whether scaling occurs or does not occur are found at higher temperatures (70 

°C and above). When it comes to heat exchanger performance, these latter uncertainties are 

expected to play a larger role, as the difference between no precipitation at all to some 

precipitation has quite a large impact on the flow and heat transfer within the system (mainly 

due to a change in wall roughness and the addition of thermal resistance due to the barite 

deposition layer, as will be shown in Section 5.3). 
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Figure 18 Barite scaling amount distributions at five different temperature-pressure 

combinations (from top to bottom, left to right: 100 °C, 10 bar; 90 °C, 8.75 bar; 70 °C, 7.5 

bar; 50 °C, 6.25 bar; and 40 °C, 5 bar). The black dashed lines indicate the mean value of 

barite scaling distribution and the purple dash-dotted lines indicate the barite scaling 

amount corresponding to the nominal brine composition 
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5.2.3 Sobol sensitivities of barite scaling potential 

In this task, Sobol sensitivities were used to get an indication of which extent the eight elements 

included in the uncertainty quantification have the biggest impact on barite scaling. This 

information can then in turn be used to limit the number of elements to be included in later 

analyses, reducing the number of samples required, and improving the efficiency of the 

complete workflow. 

 

Figure 19 shows the first, second, and total order Sobol sensitivities of each of the eight 

elements included in the brine composition uncertainty analysis, both for the well variations 

(left) and formation variations (right). As can be seen, for both variation magnitudes, four of 

the elements stand out as having a significant impact on the outcome (barium, sulphur, 

calcium, and chlorine), while the other four (carbon, potassium, magnesium, and sodium) have 

negligible to no importance. These findings, especially the high second order effect of the 

combination of Barium and Sulphur, align closely with what would be expected from the 

chemistry of barite precipitation. Barite itself is a compound of barium and sulphate, and thus 

its formation primarily depends on the presence of the elements making up these two ions. 

According to Tranter et al (2020), the ratio between sulphate and barium is an important 

control on the amount of scaling that can be expected, with less precipitation if the initial ratio 

deviates more from unity. In addition, calcium and chlorine have been known to affect the 

formation of barite (as discussed in Section 5.1.4), which explains the additional minor 

sensitivities to those elements. 

 

Another interesting result is the changes observed when going from smaller well variations 

(plots on the left) to the larger formation variations (plots on the right).  While the four most 

important elements remain the same, the magnitudes of their sensitivities change considerably. 

Especially those of barium and sulphur show interesting changes. Where for the smaller 

variations sulphur had by far the highest impact on the outcomes, for the larger variations 

barium becomes the element to which the barite formation is most sensitive. This seems to 

indicate that when looking at small potential measurement errors, it is more important to limit 

the uncertainty in sulphur, while for large possible uncertainties, it is better to limit the potential 

error in barium. The analysis also shows that going forward, carbon, potassium, magnesium, 

and sodium can be left out of consideration during any uncertainty quantification related to 

barite modelling. 
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Figure 19 First and total order Sobol sensitivities (top) as well as second order 

sensitivities (bottom) for the eight elements included in the brine uncertainty 

quantification for the smaller well variations (left) and larger formation variations (right) 

5.3 RESULTS CASE C: IMPACT OF HYDRODYNAMICS ON SCALING 

In this section, the effects flow, pressure, and temperature have on the amount and profile of 

scaling deposits of barite are given. It also discusses how these deposits affect inner pipe 

diameters and roughness of pipe walls and how these parameters themselves in turn affect 

flow profiles and heat transfer within the system. 

 

These calculations focused on the modelling of a single heat exchanger pipe of length 3.4 m 

with an inner diameter of 0.01 m discretized into 25 cells. The inlet and outlet temperature of 

the pipe were 100 °C and 40 °C respectively, and inlet pressure was set to 10 bar. Flow was 

modelled as a single-phase liquid.  

5.3.1 Deposition profile 

As stated in Section 4.3, barite deposits in conical shapes along the pipe wall. The top of the 

cones gets sheared off due to hydrodynamic forces imposed by the transported brine. A shear 

stress force balance is constructed and used to calculate the critical deposition height where 
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the shear stress experienced by the deposition exceeds the ultimate tensile strength of the 

precipitated mineral. 

 
Figure 20. Shear stress as a function of critical cone height (left) and deposition profile 

of barite over time (right). 

The result is a trapezoidal deposition profile (in 2D). As time progresses, the thickness of the 

deposition layer grows, the roughness/resistance of the pipe flow increases and eventually the 

effective flow diameter reduces. This results in larger hydrodynamic forces, which impact the 

force balance on the cones: the critical height of the cones (with respect to their total height) 

reduces, resulting in trapezoidal structures which are more flat. The root-mean-square error 

thus decreases with increasing deposition thickness, which results in lower surface roughness. 

This affects the flow regime, leading to (local) pressure changes over time, which impact the 

scaling tendency. 

5.3.2 Flow velocity profile and average flowrate 

Deposition dimensions per cell result in an additional pressure drop in each cell. Brine pressure 

in the pipe decreases as the brine progresses through the pipes, because pressure differences 

causes fluid transportation. Cells without precipitation have a base pressure drop, which is a 

function of hydrodynamic properties (operating pressure of the doublet) and doublet 

properties (surface roughness of the stainless steel pipe, grid cell length). Precipitation which 

is present in a cell results in an additional pressure drop: the combination of the base pressure 

drop and additional pressure drop due to scaling gives the total pressure drop over a cell. 

 

The additional pressure drop can play a role in two manners: a pressure drop induced by the 

surface roughness of the deposition layer and a pressure drop induced by the reduction in 

effective flow area. Minerals which precipitate on a surface, such as barite, have the tendency 

to precipitate on the pipe wall first, before growing inward over time, and as time progresses, 

the deposition layer grows by means of a total deposition thickness increase (Hammer, et al., 

2011). The surface roughness induced by mineral precipitation also changes slightly over time: 

the hydrodynamic forces which act on the scales gradually increase as the effective flow area 

decreases, which results in larger tensile strength in the cones, causing them to shear off at 

lower heights, which reduces the trapezoidal height and subsequent roughness value. Results 

show that the pressure drop in cell 4 (the cell with the largest precipitation volume) after the 
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first timestep of 25 days is equal to 18.1 mbar, including the surface roughness pressure drop 

of 12.5 mbar, which is 69 percent of the total pressure drop. However, after 100 days, the 

pressure drop in cell 4 has risen to 47.0 mbar, while the surface pressure drop decreased to 

11.7 mbar, which is 25 percent of the total pressure drop. Therefore, the pressure drop due to 

reduction in effective flow area outweighs the pressure drop induced by surface roughness as 

longer time periods are evaluated. 

By means of superposition, the total pressure drop is calculated and converted to the flow 

velocity reduction profile and a volumetric flowrate reduction over time (trend data), which are 

shown in Figure 21 and Figure 22 respectively. 

 
Figure 21. Flow velocity over time 

 

 
Figure 22. Average volumetric flowrate over time 
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The figures show a relative large reduction in flowrate after the first timestep, a reduction of 

12.6 percent compared to the maximum flowrate without precipitation. This is due to the 

sudden change in surface roughness , as precipitation in the grid cells was not present 

beforehand. (Ceylan & Gudret, 2003) concluded that heat exchanger pipes have a surface 

roughness of 0.12 mm, which corresponds to a Fanning friction factor of 0.0053 in the modelled 

heat exchanger. After 25 days, precipitation has attached to the pipe walls, resulting in grid cell 

surface roughnesses ranging from 0.12 mm (where no precipitation occurred) to 0.34 mm, 

which corresponds to a Fanning friction factor of 0.0079. The flowrate decreases linearly in 

subsequent timesteps (a reduction of 3.1 precent after 50 days, compared to the flowrate after 

25 days), as the deposition layer increases by roughly the same amount each timestep while 

roughness remains relatively constant. This means that the quality (location of precipitation) 

and quantity (precipitation amount per cell) of barite precipitation does not shift in the first 

100 days. 

5.3.3 Heat flux through pipe wall 

The deposition of precipitated minerals also negatively affects the heat transfer in the heat 

exchanger, as the precipitation acts as an insulating layer. The impact of scaling on the 

exchange of heat can be categorized into two types: 

 

• A change in heat convection from the brine to the precipitation layer, as the change in 

surface roughness and decrease in effective flow area impact the Nusselt number. 

• An additional heat conduction layer due to the thickness of the deposition profile. 

 

With increasing timesteps, the deposition layer grows larger, while the surface roughness is 

largely unaffected. Therefore, the change in radial heat transfer is much larger than the axial 

heat transfer variations (due to the precipitation peaks/crests). Thus, when analyzing the heat 

conduction, the deposition profile is modelled as an average thickness, instead of the inclusion 

of the peaks and crests. The average deposition thickness can also be written as a decrease in 

radius. This radial decrease, along with the thermal conductivity of barite, is used to calculate 

the conductive thermal resistance (Mills, 2014):   

R conductive,barite =
ln[rI.D.−t

rI.D.
]

2π ∗ kbarite ∗ Lcell
 

Where: 

• Rconductive,barite is the conductive thermal resistance of the barite   

  precipitation layer [K/W]. 

• rI.D.   is the inner pipe radius [m]. 

• t   is the average deposition layer thickness [m]. 

• kbarite   is the thermal conductivity of barite [W/mK]. 

 

The peak and crests are, however, included in the calculation of the heat convection. The 

surface roughness profile impacts the flow profile close to the deposition and changes the heat 

transfer accordingly. Gnielinski’s formula (Mills, 2014) links the flow profile and surface 

roughness to an averaged Nusselt number: 
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NuD =

f
8

(ReD − 1000)Pr

1 + 12.7(
f
8

)
0.5

(Pr
2
3 −1)

 

Where: 

• NuD  is the averaged Nusselt number for pipe flow [-]. 

• Pr  is the Prandtl number [-]. 

 

The convective heat transfer coefficient is resolved from the Nusselt number (Mills, 2014). 

 

hconvective =
kbarite

2 ∗ (Rpipe − tprecip.layer)
∗ NuD 

 

From this parameter, the convective thermal resistance can be calculated: 

 

Rconvective =
1

2π ∗ (Rpipe − tprecip.layer ) ∗ hconvective ∗ Lcell

 

 

Figure 23 provides the thermal resistance of conductive and convective heat transfer, 

respectively. Both resistances have the same order of magnitude at locations where no 

precipitation has occurred, but thermal resistance due to conduction becomes several times 

larger with respect to the thermal resistance of convection when precipitation is present. After 

the first timestep the conductive thermal resistance is 6 times larger at the location of minimal 

precipitation, and this difference grows linearly in time. Therefore the impact of scaling on 

convective heat transfer can be largely ignored within the time horizon of this simulation, and 

going forward the conductive heat transfer is the sole parameter which is varied to predict the 

heat transfer reduction over time.  

 

The conductive heat transfer resistance is a combination of the thermal resistance of the 

stainless-steel pipe wall, which is constant over time, and the precipitation layer resistance, 

which increases over time: 

 

Rcond,total = Rcond,barite + Rcond,steel =
ln [

rI.D.

rI.D.−t
]

2π ∗ kbarite ∗ Lcell
+

ln [
rO.D.

rI.D.
]

2π ∗ ksteel ∗ Lcell
 

Where: 

• rO.D. is the outer radius of the pipe [m]. 

 

Therefore, the heat transfer from the brine to the secondary flow decreases over time. This is 

visualized in Figure 24. 
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Figure 23: Thermal resistance comparison between conductive and convective heat 

transfer. 

 

 

Figure 24: Relative changes in heat flux in heat exchanger (relative to the initial heat flux 

without any precipitation) 

The heat flux in the heat exchanger is at a minimum at a location where the volumetric 

deposition reaches a maximum (cell 4), as the conductive thermal resistance scales with the 

volumetric deposition and is therefore also at a maximum. Further downstream in the heat 

exchanger, less barite precipitates, resulting in lower thermal resistances and thus a larger heat 
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flux compared to the initial cells. The drop in heat flux in the first 25 days is relatively large due 

to the initial formation of deposition, which has the largest impact on the hydrodynamics of 

the flow. Figure 25 shows that the average heat flux over the heat exchanger declines with 

roughly 2% of its original flux after a time period of 25 days. From 25 days onwards, the heat 

transfer reduces with roughly 1% every 25 days. When considering larger time scales, this 

decline will increase faster as the thermal resistance of the precipitation layer increases faster 

when smaller pipe diameters are concerned. 

 

 
Figure 25: Relative average heat transfer in heat exchanger. 

The reduction in heat transfer leads to higher brine temperatures in and after the heat 

exchanger, since less heat is dissipated. As a result, the temperature conditions of the cells 

change, which impacts mineral precipitation in the following timestep, which is not linear in 

time. Figure 26 shows the difference in precipitation volume at each cell after 100 days. 

 

 
Figure 26: Influence of deposition profile in heat exchanger on barite precipitation 
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The temperature of the brine reduces less when a precipitation layer is present, resulting in 

relative higher brine temperatures in the heat exchanger. The solubility of barite is temperature 

driven, and its precipitation therefore shifts to the right: less barite precipitates in earlier cells, 

but this difference diminishes in the cells afterwards. The location of maximum precipitation 

will shift more downstream as larger time intervals are analyzed (e.g. a time interval of 200 

days instead of 100 days), resulting in nonlinear differences between timesteps. 

5.4 RESULTS CASE D: IMPACT OF UNCERTAINTIES ON SCALING 

Minor variations in the composition of the brine lead to variations in the precipitation and 

deposition of critical minerals. An analysis is performed to determine the magnitude of these 

output variations. For this analysis, the nominal and percentual deviations of table 2 were used 

as input, and 100 samples were generated. 

5.4.1 Uncertainty in deposition layer height 

Each sample served as input for the precipitation model, returning the resulting deposition 

profile and volumetric flowrate per cell. The uncertainty in the deposition height of barite at 

each cell is shown in Figure 27. 

 

 
Figure 27. Deposition height uncertainty of barite precipitation 

Large differences are present in the first number of cells, with the uncertainty boundaries 

converging as the cell number is increasing. The large uncertainties in cells 2 and 3 are a result 

of the saturation index being close to 1 for those specific cells due to the temperature in those 

cells being close to the temperature at which barite starts precipitating out of solution. No 

precipitation was present in cell 2 for the majority of the samples, and a small shift in mineral 

concentration give a relative large uncertainty when considering geothermal brine with a 

saturation ratio close to unity. The deviation from the median of cell 2 is around 25%. Further 
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downstream in the heat exchanger, at lower temperatures and lower solubility products of 

barite, the deviations become around 7%. 

5.4.2 Uncertainty in flowrates 

The uncertainty in barite precipitation also results in an averaged flowrate uncertainty. This is 

shown in Figure 28. 

 

 
Figure 28. Uncertainty in averaged volumetric flowrate 

The volumetric flowrate calculated with the nominal concentrations is roughly linearly 

decreasing in time. Slightly less barite will precipitate at later timesteps, as the brine 

temperature increases slightly over time due to the reduction in heat transfer, preventing some 

barite from precipitation. The red dot shows the averaged volumetric flowrate for the nominal 

case. Compared to the average of the 100 samples it is 0.2 m3/hr lower for each timestep. The 

uncertainty has an upper and lower boundary of 1% compared to the average, and it increases 

slightly for larger timesteps. Thus, an aleatoric uncertainty of 3-4% in the brine concentration 

leads to an average flowrate uncertainty of around 1%. 
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6 CONCLUSION & RECOMMENDATIONS 

Within this task, a two-way coupled modelling approach was developed for the prediction of 

scaling, primarily barite, within geothermal systems. The approach uses a hydrodynamic flow 

solver (Drift-Flux) to calculate the flowrates, pressures, and temperatures in the system, and a 

geochemical speciation model (PHREEQC) to estimate the precipitation amounts of selected 

minerals at those conditions. Through newly developed deposition, roughness, and heat 

transfer models, the effects of precipitation are coupled back to changes in the flow, pressures, 

and temperatures in the system, which in turn lead to changes in precipitation 

amounts/locations. 

 

In addition, to evaluate the effects of uncertainties in the measured composition of the 

geothermal brine, an uncertainty quantification workflow was developed and implemented, 

which generated a large number of possible brine compositions for which the scaling amounts 

would be calculated, allowing for analysis of the variation in predicted scaling amounts based 

on potential differences in brine composition. 

 

Using the above two workflows in tandem, it is possible to use the models to predict occurrence 

and severity of various scaling types within a geothermal system, its effects on the decrease in 

flowrate over time, and the expected potential variation of these results based on the 

uncertainty in brine composition. In the next two sections, the main conclusions of current work 

and recommendations for future work are given. 

6.1 CONCLUSIONS 

6.1.1 Scaling model 

A model was developed using the geochemical speciation software PHREEQC (Parkhurst & 

Appelo, 2013) to estimate the amount of barite precipitation with cooling. Two types of models 

were used to assess the maximum amount of scaling versus the time dependent precipitation. 

If the system would allow an equilibrium to be reached between barite and the fluid, an amount 

of 3.3E-5 mol/kgw barite is predicted to precipitate. When the reaction rate of barite using a 

'kinetic’ model is included, the amount of barite scaling is reduced several orders of magnitude 

to 7.70E-10 mol/kgw (for ten minutes of precipitation). These results indicate that caution is 

advised when assessing the barite precipitation simulations without reaction rates, as will be 

initially done for the workflow development. There are several factors besides the temperature 

affecting barite scaling, which have been investigated with the PHREEQC model. There is a 

strong kinetic control with the reaction rates of barite causing precipitation to be slow, 

requiring several years before equilibrium is reached at the new low temperature. Taking the 

reaction rates or a minimum required oversaturation (SI) for precipitation into account in 

geochemical modeling, considerably reduces the predicted barite scaling potential. 

 

Besides the control of temperature, barite precipitation may also depend on the concentration 

of cations other than the main constituents. Incorporation of strontium forming a barite–

celestite solid solution appears to reduce the total amount of scaling. The presence of increased 
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concentrations of calcium considerably reduces barite scaling as more cooling is required 

before barite starts coming out of the solution. 

6.1.2 Impact of uncertainties on scaling 

An uncertainty quantification analysis was performed on the effects of brine composition and 

ions concentration on the scaling potential and precipitation amount. In total eight elements 

were included in the analysis (barium, carbon, calcium, chlorine, potassium, magnesium, 

sodium, and sulphur), and 10,000 samples with different concentrations for each of these 

elements were generated. For each sampled brine composition the barite precipitation amount 

was calculated at five different temperature-pressure combinations. 

 

Looking at the distribution of barite formation amounts, it was found that for higher 

temperatures, there were a significant amount of compositions for which no precipitation 

occurred at all. At a slightly higher temperature compared to the base case the precipitation 

can occur considering the brine composition uncertainties. In addition, it was found that 

uncertainties in barium, sulphur, calcium, and chlorine have the biggest impact on the amount 

of barite formed (i.e. changing the concentration of these elements results in a significant 

change to the amount of barite formed, while for the others it remains practically unchanged). 

Based on these results, any subsequent uncertainty quantifications performed on barite 

precipitation only focused on these four elements. 

6.1.3 Impact of hydrodynamics on scaling 

The deposition of barite was modelled as rows of cones, based on theory found in literature 

which describe mineral nucleation under geothermal conditions. A force balance was 

constructed which calculates the height at which the cones are sheared of due to hydrodynamic 

forces, resulting in trapezoidal structures. This structure was converted into a friction factor and 

a deposition thickness, which impact flow velocities, volumetric flowrates and heat transfer. The 

same modelling workflow was used to calculate the changes in the pressure for a given flow 

rate. Modelling of the brine composition given in Chapter 5 resulted in a relatively large 

reduction of flowrate in the first timestep (12.6 percent), which is due to the sudden change in 

surface roughness resulting from the initial precipitation. After the first timestep, the deposition 

layer grows radially inward in thickness, but the surface roughness does not change much. 

From the first timestep onward, a reduction of 3.1 percent in flowrate is observed every 25 

days.  

 

The impact of precipitation on the heat transfer was also modelled. Mineral precipitation results 

in a deposition layer on the pipe wall, which acts as an insulating layer, reducing heat transfer. 

The magnitude of the conductive thermal resistance outweighs the magnitude of the 

convective thermal resistance. The heat transfer reduces with 2 percent after 25 days, and with 

1 percent after every 25 days, up to 100 days. The reduction in the initial 25 days is relatively 

large because flow hydrodynamics are affected more, due to initial precipitation. 

 

Aleatoric uncertainty quantification is also performed to quantify the impact of composition 

uncertainties on the deposition layers. The largest variations in output were found in the first 

few cells, as the saturation index is close to 1 in these cells: some samples give a nonzero 
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expected precipitation, while others do not predict any precipitation. This leads to large 

uncertainties in earlier cells (around 25%) but to smaller uncertainties further downstream 

(around 7%). Converting these results in an averaged flowrate shows that the results deviate 

even less: the aleatoric uncertainty of 3-4% in the brine concentration leads to an average 

flowrate uncertainty of around 1%.  

 

6.2 RECOMMENDATIONS 

6.2.1 Scaling model 

Current geochemical models were focused on barite, but other minerals can also precipitate 

alongside it. For example, celestite was shown to precipitate together with barite, but not yet 

included in the uncertainty analysis. Furthermore, a screening of other minerals predicted to 

be oversaturated in combination with measurements of scales from the pipes or precipitates 

in the filters of a geothermal plant would yield a more complete assessment of scaling in the 

geothermal system. Experimental work or a literature study on the saturation index required 

for barite scaling to commence would yield valuable data to make the assessment of barite 

scaling risks more accurate. 

6.2.2 Impact of hydrodynamics on scaling 

The uncertainties in strontium concentrations need to also be taken into account as it was 

shown that it can have a big impact on barite precipitation. The scaling prediction model was 

extended for kinetics to include the scaling reducing effect of slow reaction rates. However, the 

deposition model currently assumes that the entire amount of precipitate calculated per cell 

deposits within that same cell using the equilibrium PHREEQC model. Due to the kinetics of 

deposition, the location at which a solid mineral deposits on the wall is not necessarily the 

same location at which it first precipitates. Future work will also include kinetics in the 

deposition model to improve the estimation of the precise location and amounts of scaling 

deposits. Lastly, the validation and calibration of the models with experimental data is required 

to ensure the prediction accuracy.  

6.2.3 Impact of uncertainties on scaling 

Due to time constraints the number of samples included for the uncertainty quantification of 

the full two-way coupled modelling approach was limited to 100. To get more robust results, 

in the continuation of the activities this number will be increased. In addition, it could also be 

interesting to look at sampling from larger variations (current results focused only on the 

smaller well variations). Moreover, when modelling celestite or other materials, additional 

elements might have to be taken into account during the analysis (e.g. strontium for celestite 

modelling). 
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