
1.  Introduction
Hydro-meteorological time series like annual maximum precipitation or streamflow may exhibit heavy-tailed 
distributions (Bernardara et al., 2008; Farquharson et al., 1992; Smith et al., 2018; Villarini et al., 2011). A statis-
tical distribution is termed heavy-tailed if its tail decays slower than that of an exponential distribution, leading 
to a higher occurrence probability of extreme events (El Adlouni et al., 2008; Papalexiou et al., 2013). Several 
classes of heavy tail distributions are distinguished which characterize the degree of tail heaviness (El Adlouni 
et al., 2008; Wietzke et al., 2020). The Generalized Pareto (GP) and Generalized Extreme Value (GEV) distribu-
tions with positive shape parameters are two widely used heavy tail distributions for modeling precipitation and 
streamflow series, respectively.

Abstract  In some catchments, the distribution of annual maximum streamflow shows heavy tail behavior, 
meaning the occurrence probability of extreme events is higher than if the upper tail decayed exponentially. 
Neglecting heavy tail behavior can lead to an underestimation of the likelihood of extreme floods and the 
associated risk. Partly contradictory results regarding the controls of heavy tail behavior exist in the literature 
and the knowledge is still very dispersed and limited. To better understand the drivers, we analyze the upper 
tail behavior and its controls for 480 catchments in Germany and Austria over a period of more than 50 years. 
The catchments span from quickly reacting mountain catchments to large lowland catchments, allowing for 
general conclusions. We compile a wide range of event and catchment characteristics and investigate their 
association with an indicator of the tail heaviness of flood distributions, namely the shape parameter of the 
GEV distribution. Following univariate analyses of these characteristics, along with an evaluation of different 
aggregations of event characteristics, multiple linear regression models, as well as random forests, are 
constructed. A novel slope indicator, which represents the relation between the return period of flood peaks and 
event characteristics, captures the controls of heavy tails best. Variables describing the catchment response are 
found to dominate the heavy tail behavior, followed by event precipitation, flood seasonality, and catchment 
size. The pre-event moisture state in a catchment has no relevant impact on the tail heaviness even though it 
does influence flood magnitudes.

Plain Language Summary  For each river catchment, we can estimate how likely it is that floods of 
certain magnitudes occur in that river. This is called a probability distribution. In some rivers, the occurrence 
of extreme floods is more likely than in others – their probability distribution decays slower and has a so-called 
heavy tail. Here, we examine which factors lead to higher probabilities of extreme floods in some rivers 
compared to others. To this aim, we look at the annual maximum river flows of 480 rivers in Germany and 
Austria over a period of more than 50 years. As potential factors influencing the likelihood of extreme floods, 
we analyze characteristics describing the river catchments in general and characteristics describing specific 
flood events. Using modeling approaches, we find that how a catchment responds to heavy rainfall has the 
strongest effect on the probability of extremes. A catchment is more likely to experience extreme flooding, if 
the largest observed floods are characterized by (a) high runoff coefficients, meaning a large share of rainfall 
becomes direct streamflow and (b) short event time scales, meaning the floods are short but intense. The 
rainfall itself and the season in which floods usually occur also have an influence.
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The reliable estimation of heavy tail behavior of floods is crucial, for example, for the robust design of flood 
protection measures or insurance appraisal. However, estimating the upper tail behavior from observational 
time series of typical length, for instance, 30–50  years, is associated with large uncertainty (Papalexiou & 
Koutsoyiannis, 2013). Understanding the controls of heavy tails is thus essential for sound estimation of extreme 
floods and their exceedance probabilities. A better understanding and characterization of the propensity of a 
given catchment to generate heavy tail flood behavior would help to avoid surprises, and harmful consequences 
and reduce risks (Merz et al., 2015).

In various science domains, different indices have been proposed to characterize tail heaviness (Wietzke 
et al., 2020). In hydro-meteorological studies, heavy tail behavior is most often characterized by the shape param-
eter (ξ) of the GEV distribution (Morrison & Smith, 2002). Other frequently used indices are the shape parameter 
of the GP distribution (Coles, 2001), the skewness (McCuen & Smith, 2008), and the Upper Tail Ratio (UTR) 
(Lu et al., 2017; Smith et al., 2018). UTR is defined as the ratio between the flood of record and the 10-year 
return period flood (Villarini & Smith, 2010). While GEV and GP distributions with shape parameters larger 
than zero are heavy-tailed (El Adlouni et al., 2008), skewness and UTR are not directly related or linked to the 
formal definition of tail heaviness in relation to the asymptotic behavior of the exponential distribution (Smith 
et al., 2018; Wietzke et al., 2020).

Distributions of annual maximum series (AMS) of streamflow are shaped by the complex interplay of meteor-
ological and hydrological processes. A number of studies have analyzed factors that control the tail behavior of 
flood distributions, though many studies do not explicitly use heavy tail indicators, describe the relative propen-
sity to heavy tails, for example, by analyzing skewness or the coefficient of variation of flood series.

Villarini and Smith (2010) analyzed the GEV shape parameter of flood distributions at 572 gauges in the eastern 
US, where more than half of the gauges exhibited positive values. They found a dominant control of extreme 
rainfalls caused by landfalling hurricanes on flood tail heaviness. Particularly in the Appalachian Mountains, very 
high ξ of 0.3 and above were detected for the majority of basins. Furthermore, a weak decrease of ξ, and thus 
tail heaviness, with catchment area increase was observed (Villarini & Smith, 2010). Smith et al. (2018) came 
to a similar conclusion by studying more than 8000 US catchments: extreme floods in many catchments char-
acterized by a very high UTR are generated by tropical cyclones and heavy summer thunderstorms. The effect 
of flood-causing precipitation on flood tails was also observed by Thorarinsdottir et al. (2018) for 203 basins in 
Norway. Catchments with high rain, but low snowmelt contribution to flood flows showed mainly positive ξ in 
the regional GEV model, whereas catchments with snowmelt-dominated floods often exhibited upper-bounded 
distributions (ξ < 0). A minor negative influence of the catchment area and the ratio of catchment area to catch-
ment length on the GEV shape parameter was detected. Light flood tails in snow-dominated catchments were 
also observed in the Mediterranean and Middle East regions (Bernardara et al., 2008; Farquharson et al., 1992). 
Gaume (2006) suggested that the heavy tail behavior of floods can be inherited from the heavy tail behavior of 
precipitation. Specifically, he argued that for very high return periods, 500 years and above, the tail of annual 
maximum precipitation distributions for durations in the range of the catchment concentration time controls the 
asymptotic behavior of the annual maximum flow distribution. For lower return periods of precipitation, catch-
ment controls seem to exert a strong influence on flood distributions. Gottschalk and Weingartner (1998) found 
a much stronger variability of flood distributions for 17 catchments in Switzerland compared to the variability 
of rainfall volumes scaled by the event duration. They attributed it to the variability of runoff coefficients. Simi-
larly, McCuen and Smith (2008) analyzed AMS for 28 catchments in the US and suggested that catchment and 
river channel storage dominated flood skewness. While the rainfall skewness was fairly constant, flood skewness 
showed a pronounced variability. These studies suggest that the impact of the tail behavior of rainfall distribu-
tions on the upper tail of flood distributions can be strongly modulated by the flood generation processes within 
catchments.

Nonlinear catchment response to rainfall has been proposed as another cause of the heavy tail behavior of floods. 
The exceedance of the storage capacity over a significant share of the catchment area was shown to affect the 
skewness of flood distributions in 10 catchments of Southern Italy (Gioia et al., 2008). When subsurface stor-
age thresholds are exceeded, much higher flood runoff is generated. This can lead to an inflection point or 
step-change in the flood frequency curve thus increasing the propensity for heavy tails, as shown by Rogger 
et al. (2012) for two small basins in Austria based on modeling experiments and detailed field surveys. Similarly, 
Basso et  al.  (2015) suggested that the nonlinearity of the storage-discharge relationship expressed by a high 
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recession exponent is responsible for the occurrence of high daily stream-
flow, and Basso et al. (2016) demonstrated that this nonlinearity contributes 
to the heavy tail behavior of seasonal flood maxima. The nonlinearity of 
catchment response can be characterized by the variability of runoff coeffi-
cients across flood events. Merz and Blöschl (2009) found that a high skew-
ness of flood flow distributions was related to strong variations in runoff 
coefficients in several Austrian basins. This high variation was particularly 
observed in dry catchments, whereas in wet basins, the runoff coefficients 
tended to be always high. In a similar vein, Guo et al. (2014) found higher 
coefficients of variation for flood flows in arid basins compared to wetter 
ones in the United States. The control of catchment aridity on runoff coef-
ficients was also observed by Norbiato et  al.  (2009) for 14 Alpine basins. 
The mean runoff coefficient showed a strong positive correlation with mean 
annual precipitation.

An approach to characterize the complex interplay between meteorological 
and hydrological processes during flood generation is flood typology (Merz 
& Blöschl, 2003; Tarasova et al., 2019). The analysis of flood types can thus 
be viewed as another perspective on the integrated effect of individual control 
mechanisms on the heavy tail behavior of floods. Merz and Blöschl (2003) 
demonstrated a fundamentally different form of flood frequency curves, 
convex versus concave, for two catchments dominated by different flood 
types: long-rain and short-rain versus rain-on-snow, respectively. Fischer and 
Schumann  (2020) identified different hydrograph shapes characterized by 
peak and volume for different flood types in catchments in Central Germany. 

The tail of mixed flood peak distributions was typically dominated by floods with low volumes but high peaks 
produced by intense thunderstorms.

The reviewed literature demonstrates the multitude of potential controls on flood tail behavior employing 
data-based, analytical, and modeling approaches. However, none of the previous studies realized a comprehen-
sive multivariate analysis of a large number of factors to identify the controls of heavy flood tails and quantify 
their relative importance. To date, mainly univariate analyses or studies with a very limited number of factors 
were carried out. The analysis by Thorarinsdottir et  al.  (2018) for Norway can be considered an exception, 
though the catchment attributes used as flood frequency model covariates included primarily physiographic 
quantities, not directly reflecting flood generation mechanisms. Furthermore, only a few studies covered large 
hydro-climatic and physiographic regions with several hundred catchments (Merz & Blöschl,  2009; Smith 
et al., 2018; Thorarinsdottir et al., 2018; Villarini & Smith, 2010) to allow generalized conclusions on heavy 
tail controls. Finally, many studies did not specifically target flood tail indicators but considered the entire flood 
frequency curve (e.g., Rogger et al., 2012), flood skewness (McCuen & Smith, 2008; Merz & Blöschl, 2009), or 
the coefficient of variation of flood flows (Guo et al., 2014).

In this paper, we present a multivariate analysis of an extensive set of event and catchment characteristics with 
the aim of exploring the causes of heavy tails of flood distributions. Event characteristics include triggering 
precipitation event characteristics, antecedent catchment state as well as catchment response characteristics. Our 
data exploration approach first applies univariate analyses to selected potential heavy tail predictors, followed by 
linear and nonlinear multivariate modeling using multiple linear regression and random forests, respectively. We 
analyze a comprehensive dataset of event and catchment characteristics for 480 German and Austrian basins that 
cover a large range of flood generating processes – from quick reacting mountains to large lowland catchments. 
This allows us to draw general conclusions on the heavy tail behavior of floods.

2.  Data
2.1.  Streamflow Time Series

We use observed mean daily streamflow at gauging stations across Germany and Austria (Figure 1). Data are 
provided by the Hydrometric Services of the German Federal States and the Austrian Hydrometric Service. Out 

Figure 1.  Locations of the 480 stream gauges used for analysis. The gauges 
are colored according to the catchment size. Catchment size distribution 
is shown in the inset histogram. Depicted river networks are from Vogt 
et al. (2007).
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of 639 gauges (492 in Germany and 147 in Austria), gauges with less than 50 years of observations, starting from 
the hydrological year 1951 (beginning on 1 November 1950), are excluded owing to large uncertainty in estimat-
ing the upper tail behavior. Furthermore, several gauges, for which peculiar estimates led to in-depth screening 
and a strong anthropogenic influence was identified (e.g., reservoir operation), are excluded. This results in 
overall 480 time series. Among these gauges, 100 gauges have small data gaps, with a mean of 1.7% missing 
data of the total series length of a respective gauge. We fill these gaps by the regression to the highest correlated 
daily streamflow series without gaps in the respective period. We extract annual maximum series (AMS) for 
hydrological years, defined as the period from November to the following October, to be subsequently used for 
the heavy tail analysis.

2.2.  Catchments

For all Austrian gauges, the contributing catchments are provided by the central hydrographic office of Austria 
HZB. The remaining catchments in Germany and adjacent countries are delineated based on the 25 m resolution 
EU-DEM v1.1. The resulting catchment areas range over five orders of magnitude between 11 and 159,378 km 2 
(Figure 1).

2.3.  Hydrometeorological Time Series

Daily gridded precipitation and potential evapotranspiration from the E-OBS dataset (version 12) with 0.25° 
resolution (Haylock et  al.,  2008) are used to derive catchment-averaged series of precipitation and potential 
evapotranspiration. Catchment-averaged daily soil moisture series are computed by the conceptual, raster-based 
hydrological model mHM (Samaniego et al., 2010), set up and calibrated for all German and Austrian basins. 
We use relative soil moisture between wilting point and field capacity for the entire soil column parameterized in 
mHM. For catchment-averaged daily series of snowmelt and for the identification of flood generation processes, 
reanalysis data 4DAS (Primo et al., 2019), which is downscaled from the ERA20 C reanalysis to a spatial resolu-
tion of 0.11°, is used. The variables precipitation, soil moisture, soil pore space, snowmelt, convective available 
potential energy (CAPE), and convective inhibition (CIN) are aggregated to daily totals, as used by Kemter 
et al. (2020).

3.  Methods
To analyze the heavy tail behavior of flood flows and identify their controls, we select the GEV shape param-
eter as a heavy tail indicator and compile a suitable set of predictor variables. The GEV shape parameter is 
most frequently used in hydro-meteorological studies to characterize heavy tail behavior (e.g., Morrison & 
Smith, 2002; Thorarinsdottir et al., 2018; Villarini & Smith, 2010). It assumes that the GEV is a suitable distri-
bution of the annual maxima. This assumption is widely accepted as the asymptotic distribution of independent 
block maxima values converges to the GEV (Fisher & Tippett, 1928). It can, however, not be proven. Further-
more, Wietzke et al. (2020) showed that, compared to other upper tail indicators, the GEV shape parameter is 
well suited for analyzing different sites with variable record lengths and statistical moments, as done here. We 
explore the relationships between the heavy tail indicator and the predictor variables using univariate and multi-
variate models. The selected predictors describing flood events and catchment characteristics are summarized 
in Table 1 and explained in the subsequent sections. Figure 2 gives a schematic overview of all methodological 
steps involved as part of the analysis.

From here on, the following terminology is used: We refer to groups of variables describing coherent aspects 
as event characteristics (e.g., event precipitation) and catchment characteristics (e.g., catchment wetness). 
Each characteristic is described by one or more variables (e.g., precipitation volume, event duration, maximum 
precipitation intensity for event precipitation; and mean annual precipitation and aridity index for catchment 
wetness). The variables describing event characteristics are further aggregated to catchment-specific indicators 
(see Section 3.2.1 for details), while this is not necessary for variables describing catchment characteristics. Once 
the indicators and variables are analyzed against the GEV shape parameter of flood flows, we refer to them as 
(potential) predictors.
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Characteristic Variable
Indica-

tors a Unit Data source Description Potential predictors

Event characteristics

Event precipitation Precipitation volume (Pvol) Yes mm E-OBS Catchment average event precipitation 
sum associated with AMS flow 

event

Pvol_CV, Pvol_shape, 
Pvol_rho, Pvol_

UTD, Pvol_slope b

Event duration (Pdur) yes days E-OBS Duration of precipitation event Pdur_CV, Pdur_shape, 
Pdur_rho, Pdur_
UTD, Pdur_slope

Maximum precipitation 
intensity (Pmax)

yes mm/day E-OBS Maximum daily precipitation intensity 
during precipitation event

Pmax_CV, Pmax_
shape, Pmax_rho, 

Pmax_UTD, 
Pmax_slope

Antecedent 
catchment state

Flow at event start (Qbegin) yes m 3/s Gauge observation Observed streamflow at the first day 
of flood event corresponding to 

AMS peak

Qbegin_CV, Qbegin_
shape, Qbegin_rho, 

Qbegin_UTD, 
Qbegin_slope

Soil moisture at event start 
(SM)

yes - mHM simulation Catchment average relative soil 
moisture in relation to wilting 

point and field capacity on the first 
day of flood event

SM_CV, SM_shape, 
SM_rho, SM_UTD, 

SM_slope

Precipitation before event 
start (P10 days)

yes mm E-OBS Catchment average precipitation sum 
of 10 days prior to flood event

P10 d_CV, P10 d_
shape, P10 d_rho, 

P10 d_UTD, 
P10 d_slope

Event catchment 
response

Runoff coefficient (RC) yes - Gauge, E-OBS, 
4DAS reanalysis

Runoff coefficient for flood event 
determined as a relation between 

direct runoff and event liquid 
precipitation plus snowmelt

RC_CV, RC_shape, 
RC_rho, RC_UTD, 

RC_slope

Event time scale (ETS) yes day Gauge observation Ratio between direct runoff volume 
and direct peak flow of flood event

ETS_CV, ETS_shape, 
ETS_rho, ETS_

UTD, ETS_slope

Event timing Flood seasonality (FS) No - Gauge observation Mean date of flood peak occurrence FS_x, FS_y

Event unseasonality (EUnS) yes - Gauge observation Difference between flood peak 
occurrence date and mean date of 

flood peak occurrence

EUnS_CV, EUnS_
shape, EUnS_rho, 

EUnS_UTD, 
EUnS_slope

Event types Event types of top 5 (Type5) No - 4DAS reanalysis Types of the five biggest flood events 
compared to the types of all other 

AMS flood events

Type5_pvalue

Event type shares 
(Type_share)

no - 4DAS reanalysis Ratio of the frequency of one event 
type to the total number of AMS 

flood events

Snow_share, Rain_
share, SM_share

Catchment characteristics

Catchment area Catchment area (Size) No km 2 EU-DEM, 
HZB (2009)

Area of catchments contributing to 
selected gauges

Size

Catchment wetness Mean annual precipitation 
(MAP)

No mm E-OBS Catchment average precipitation sum 
for delineated catchments

MAP

Aridity index (AI) No - E-OBS Index based on the ratio of monthly 
precipitation and monthly potential 

evapotranspiration

AI

Table 1 
Potential Predictors for Heavy Tail Behavior of Flood Flows
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3.1.  AMS Flood Events

To analyze the link between flood event characteristics and heavy tail behavior, we identify flood event hydro-
graphs corresponding to the AMS peaks using an automated procedure applied by Guse et al. (2020) and further 
modified here to be applicable to a wide range of catchments with areas varying across five orders of magnitude. 
Each AMS flood hydrograph is characterized by a peak, a start, and an end point. The start and end points are 
located between an AMS peak and earlier and later independent peaks. First, the independent peaks are identi-
fied by backward and forward search starting at the AMS peak, and fulfill the following criteria: (a) the lowest 
streamflow between two independent peaks is below 70% of the smaller peak and below 20% of the AMS peak, 
(b) the smaller peak is greater than 20% of the AMS peak, and (c) the time lag (DT) between two peaks is at 
least several days. These criteria were empirically derived by Bacchi et al. (1992) and LAWA (2018) to avoid 
the identification of small peaks as independent flood events. Larger DT can be expected for larger catchments 
with longer response times and flatter recession curves. In extension to Guse et al. (2020), we relate DT to the 
catchment size and use DT = 7 days for catchments larger than 10.000 km 2, DT = 5 days for catchments between 
10.000 and 1.000 km 2, and DT = 3 days for catchments with an area below 1.000 km 2.

To identify the start and end point of the hydrographs, we apply a gradient-based method proposed by Klein (2009). 
Flow gradients between two consecutive days are computed and threshold values at the 90th, 91st, and 92nd 
percentiles are empirically identified for the three catchment area classes. Gradients in larger catchments show 
higher variability than in smaller ones. If gradients below the respective threshold value are detected for 5, 4, 
or 3 consecutive days for the three catchment area classes, this corresponds to the flattening of the hydrograph, 
and a start or end point is taken as the last or first point within this time window. In case no start or end point is 
detected by the gradient search within a time window of 20, 15, or 10 days for the three area classes, the day with 
the lowest flow within this time window is taken. All thresholds are determined empirically by trial-and-error 
followed by the visual inspection of hydrograph separation and plausibility check for several gauges in the three 
area classes.

3.2.  Event Characteristics

All the event characteristics as well as the catchment characteristics that are compiled as potential heavy tail 
predictors are selected based on an extensive literature review (see Merz et al., 2022, and references therein) 

Table 1 
Continued

Characteristic Variable
Indica-

tors a Unit Data source Description Potential predictors

Tail heaviness of 
rainfall in the 
flood season

Shape parameter of the 
maximum precipitation 

in the flood season 
(MP_shape)

No - E-OBS Maximum d-day precipitation in a 
timeframe around the mean date of 
flood occurrence, with d being the 

catchment response time

MP_shape

Nonlinearity of 
catchment 
response

Flashiness index (FI) No - Gauge observation Ratio of absolute day-to-day 
fluctuations of streamflow relative 

to total flow in a year

FI

Q10/Q50 No - Gauge observation Ratio of daily 10th percentile 
streamflow to the median daily 

flow

Q10/Q50

Synchronicity of 
precipitation and 
catchment state

Phase correlation between P 
and SM (P_SM_cor)

No - E-OBS, mHM 
simulation

Spearman rank correlation of 
catchment average precipitation 

and soil moisture per month

Pmean_SM_cor, 
Phigh_SM_cor

Phase correlation between P 
and Q (P_Q_cor)

No - Gauge observation, 
E-OBS

Spearman rank correlation of 
catchment average precipitation 

and streamflow per month

Pmean_Q_cor, 
Phigh_Q_cor

 aThis column specifies for which variables the aggregated indicators as described in Section 3.2.1 are estimated (“yes”) and for which this not the case (“no”).  bThe 
acronyms CV, shape, rho, UTD, and slope refer to the following indicators, which were derived for event characteristics: coefficient of variation, GEV shape parameter, 
Spearman rank correlation coefficient, upper tail dependence coefficient, and slope against flood return periods. Details are given in Section 3.2.1.
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combined with expert opinion. In the initial set of potential predictors, we include characteristics that have exten-
sively been discussed before as relevant for heavy tails of flood peaks (e.g., precipitation, catchment response), 
but also characteristics that have only been mentioned in this context and which an influence has not yet been 
tested (e.g., seasonality). For some of the characteristics, the associated literature is discussed in detail in the 
introduction, while for the remaining the reasons for including them are presented subsequently in the respective 
paragraphs. We do not claim that the set of potential predictors analyzed in this study is exhaustive. For example, 
predictors on the spatial variability of some variables (see Tarasova et al., 2020) could be added. We do believe 
though that the most relevant processes are covered with our set of characteristics.

3.2.1.  Event Precipitation

For each identified flood event, the event precipitation is determined by a backward search starting from the 
streamflow peak date and including all consecutive wet days till the last wet day with precipitation exceeding 
0.1 mm/day. For each event precipitation, total volume (Pvol), duration (Pdur), and maximum intensity (Pmax) 
are computed as event precipitation variables.

3.2.2.  Antecedent Catchment State

We use three variables to describe the catchment state prior to the onset of the flood event. Streamflow at the 
beginning (Qbegin) of a flood event is widely applied to describe the catchment wetness state (e.g., Ettrick 
et al., 1987; Merz et al., 2018). We also use catchment average soil moisture (SM) at the beginning of a flood event, 
standardized with the monthly average and standard deviation of SM (Zink et al., 2017). Merz and Blöschl (2009) 
identified a strong control of pre-event soil moisture on runoff coefficients in Austrian catchments. A similar 
result is found by Norbiato et al. (2009) for a few alpine catchments. The third variable is antecedent precipitation, 
defined here as the rainfall amount of 10 days (P10 d) preceding a flood event. Antecedent precipitation has also 
been widely used as a proxy for catchment wetness (Schröter et al., 2015; Tarasova et al., 2018).

3.2.3.  Event Catchment Response

The response of catchments to precipitation is described using two variables representing runoff generation and 
runoff concentration, respectively. The runoff coefficient (RC) is estimated as the ratio of direct runoff during 
a flood event and the sum of rainfall and snowmelt associated with the event. The concentration of runoff in a 
catchment is estimated using the event time scale (ETS). ETS is the ratio of direct runoff volume during a flood 
event and direct peak discharge (Gaál et al., 2012). A short ETS indicates a slim but pointy hydrograph and fast 
runoff concentration, while a long ETS corresponds to a wider hydrograph indicating a slow runoff concentration 
(Tarasova et al., 2018).

Figure 2.  Schematic overview of the workflow. Numbers in parenthesis refer to the sections with detailed descriptions of the respective steps. Numbers in boxes next to 
arrows indicate how many variables/potential predictors are passed to the next step.
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3.2.4.  Event Timing

Evidence of an association between the timing of flood events and their magnitude in temperate regions are 
contradictory. While Smith et  al.  (2018) and Petrow et  al.  (2007) observed the occurrence of large floods in 
distinct seasons in the US and Germany, respectively, Merz and Blöschl (2009) found no dependency of flood 
moments on the event timing for Austrian catchments. The effect of seasonality on tail heaviness has not been 
analyzed so far to our best knowledge. Therefore, we assess flood seasonality (FS) as a potential predictor for 
the upper tail indicator based on the average date of flood occurrence. Following the approach by Burn (1997), 
we use directional statistics to describe occurrence dates of flood peaks in polar coordinates and estimate the 
mean date (MD) per catchment. MD differs substantially between the first of January (MD = 2π/365) and 31st 
of December (MD = 2π) even though the seasonality is almost identical, and therefore we decompose MD into 
an x-component (cos(MD); FS_x) and a y-component (sin(MD); FS_y). Furthermore, we introduce the deviation 
from MD as another variable of event timing. Smith et al. (2018) found for the US that “record floods” differed 
strongly in their seasonality from the rest of the AMS flood peaks. For each event, the absolute difference, 
bounded above at π, between the date of flood occurrence and MD is estimated and termed event unseasonality 
(EUnS).

3.2.5.  Event Types

For all flood events, an event type based on the dominant flood generation processes is derived. We consider 
five flood event types based on the triggering factors: convective precipitation, stratiform rainfall, soil mois-
ture excess, snowmelt, and rain-on-snow. The classification is based on a simple decision tree developed by 
Kemter et al. (2020). An event is classified as generated by snowmelt if snowmelt is greater than rainfall, and 
as rain-on-snow, if rainfall is greater, but at least two-thirds of the catchment are covered with snow. If this is 
not the case and convective conditions prevail in at least 25% of the catchment, the event is classified as being 
generated by convective rainfall. All flood events not meeting the above criteria are assigned to be caused either 
by soil moisture excess if the mean soil water content exceeded 70% before the event, or by stratiform rainfall 
if this was not the case. We use Fisher's exact test (Fisher, 1934) to quantify how the occurrence of flood types 
differs between  the five largest events and the remaining AMS floods. The null hypothesis is that the relative 
proportion of the flood types is the same in the two groups. The smaller the p-value (Type5_pvalue), the higher 
the probability that the five largest events are caused by otherwise rare processes. Furthermore, we group the five 
event types into snow-dominated (snowmelt and rain-on-snow), rain-dominated (convective precipitation and 
stratiform rainfall), and soil moisture excess, and estimate the share of event types per catchment as indicators 
(Snow_share, Rain_share, SM_share).

3.2.6.  Indicators of Event Characteristics

The variables describing the characteristics of flood events are first derived separately for each AMS event. In 
the next step, an integral value per gauge, termed indicator, is computed for each variable. For all event char-
acteristics except flood seasonality and event types, five indicators are calculated and assessed: CV, shape, rho, 
UTD, and slope (details below). These are based on three different hypotheses regarding the association between 
a variable and the tail heaviness of flood distributions: (a) a larger variability of the variable favors heavier flood 
tails; (b) a heavier tail of the variable favors heavier flood tails; (c) a close association between (the upper tail of) 
the variable and the flood magnitude favors heavier flood tails. The derivation of indicators for flood seasonality 
and event types is explained in the respective paragraphs above.

The coefficient of variation (CV) is used to represent the first hypothesis. The second hypothesis is addressed 
by fitting a GEV distribution to the variables and adopting its shape parameter (shape) as an indicator. For the 
third hypothesis, three indicators are assessed, namely the Spearman rank correlation coefficient (rho) between 
the variable and AMS, the upper tail dependence coefficient (UTD) between the variable and AMS, and a slope 
value describing the relation of the variable with the return period of respective flood peaks. While the correla-
tion coefficient is based on the entire time series, the UTD coefficient considers only the correlation in the upper 
tails (here: top decile) and can be understood as the probability of one margin exceeding a threshold under the 
condition that the other margin exceeds a threshold (Frahm et al., 2005). Here, the nonparametric estimator of 
Schmid and Schmidt (2007) is used (R package copula; Hofert et al. [2020]). The slope indicator is a novel coef-
ficient proposed here, which takes the entire time series into account, but is dominated by the values associated 
with high flood return periods. This indicator is inspired by the results of Merz and Blöschl (2008), who reported 
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different associations of event runoff coefficients with the return periods of respective flood peaks. The slope 
describes whether the largest flood events in a catchment are also the events with the highest (or lowest) values 
of a variable (Figure 3). The variable is plotted against the return periods of the respective flood event peaks and 
a linear model is fitted by the least-square procedure. The slope of the linear model, normalized with the mean of 
the variable, is taken as the indicator.

3.3.  Catchment Characteristics

3.3.1.  Catchment Area

Spatial aggregation can average out the effect of nonlinear behavior in flood generating processes taking place 
at small scales. This can lead to lighter flood tails in larger catchments. A weak decrease in tail heaviness with 
catchment area (Size) was found in some studies (e.g., Villarini & Smith, 2010), while others found no depend-
ency (e.g., Smith et al., 2018).

3.3.2.  Catchment Wetness

For each basin, we derive mean annual precipitation (MAP) based on the regionalized E-OBS precipitation data-
set. Further, we compute average aridity index (AI) following Knoben et al. (2018). AI is calculated based on the 

Figure 3.  Two examples of the association of a variable, here event rainfall volume, with the return period of the associated flood events. In the Auhammer catchment 
(a), (c), the rainfall volumes associated with the largest flood events are slightly below average, resulting in a slope value close to 0; in the Zwickau-Pölbitz catchment 
(b), (d), the highest rainfall volumes are associated with the largest flood events, resulting in a slope value of 0.058. Note the logarithmic scale on the x-axes.
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Thornthwaite's Moisture Index (������ℎ ) according to mean monthly observations of precipitation (𝐴𝐴 𝐴𝐴𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 ) and 
potential evapotranspiration (PET����ℎ ):
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The average aridity is then calculated as one-twelfth of the sum of monthly Thornthwaite's indices and 
can range from −1 (most arid conditions) to 1 (most humid conditions) (Knoben et  al.,  2018; Melsen & 
Guse, 2019).

3.3.3.  Tail Heaviness of Rainfall in the Flood Season

Heavy tails of extreme precipitation can, under certain conditions, propagate to heavy tails of annual maximum 
floods (Gaume, 2006). Besides event precipitation, the tail heaviness of catchment maximum precipitation in the 
flood season (MP) is considered a potential predictor. Extreme precipitation events are regarded as relevant for 
the generation of flood peaks if they persisted over a timespan corresponding to the catchment response time d 
(Ganguli & Merz, 2019) and occurred within a time window around the mean date of flood occurrence MD. The 
width of the window is estimated according to Bertola et al. (2020) and depends on the concentration of occur-
rence dates around MD. We use the GEV shape parameter of all MP (MP_shape) in a catchment as a potential 
predictor.

3.3.4.  Nonlinearity of Catchment Response

The overall, not event-specific response of a catchment to rainfall is an important description of its functioning. 
Catchments in which rapid changes in the daily streamflow are frequent might be prone to fast increases of 
streamflow after heavy precipitation which can then lead to extreme flood events. To quantify the rapidity and 
frequency of such streamflow changes, we use the Richards-Baker flashiness index (FI) (Baker et al., 2004). For 
each year y, the ratio of absolute day-to-day fluctuations of streamflow relative to the total flow in that year is 
estimated:

FI𝑦𝑦 =

∑𝑛𝑛

𝑖𝑖=1
|q𝑖𝑖 − q𝑖𝑖−1|

∑𝑛𝑛

𝑖𝑖=1
q𝑖𝑖

�

with q being the mean daily streamflow, i indicating the day, and n = 365 (366). The annual values FIy are aver-
aged to the mean flashiness index FI which ranges between 0 (constant flow) and 2 (high flashiness). Another 
factor influencing the catchment response to rainfall is groundwater storage. As a variable describing the ground-
water storage, the ratio of the 10th percentile of daily streamflow to the median daily flow, Q10/Q50, is taken 
(Norbiato et al., 2009). A high ratio of low to median flows corresponds to high subsurface water storage which 
can buffer heavy precipitation and cause lighter flood tails.

3.3.5.  Synchronicity of Precipitation and Catchment State

If the seasonality of rainfall intensities and the seasonality of catchment wetness are in phase, this resonance can 
lead to higher flood magnitudes and can impact the shape of flood frequency curves (Sivapalan et al., 2005). To 
quantify whether rainfall and wetness seasonality are synchronized or out of phase, we estimate Spearman's rank 
correlation coefficient between monthly measures of catchment average precipitation and monthly measures of 
catchment wetness. The measures of precipitation are the monthly average of daily precipitation Pmean, and 
the number of times per month that the d-daily precipitation exceeds the 95th percentile Phigh. The measures 
of catchment wetness are the monthly average of daily soil moisture and the monthly average of daily stream-
flow. In total, four correlation coefficients are estimated (Pmean_SM_cor, Phigh_SM_cor, Pmean_Q_cor, 
Phigh_Q_cor).
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3.4.  Screening of Predictors

Including all variables and indicators, a total of 43 potential predictors are generated. Prior to applying multivar-
iate models, a reduced expedient set of indicators and variables needs to be selected. We use different methods 
to distill the most promising predictors for explaining the variability of the upper tail indicator across our set of 
catchments.

First, the suitability of the five indicators used for event-based variables (i.e., CV, shape, rho, UTD, slope) is 
assessed using Spearman rank correlation against the shape parameter of AMS floods (ξAMS). The significance 
threshold for the correlation coefficients is set to 0.05, and the indicators looking most promising across all 
variables are selected for further analyses. In a second step, all potential predictors, both event and catchment 
characteristics, are subject to univariate analyses against ξAMS. We use again Spearman rank correlation along 
with a visual screening of scatterplots and locally estimated scatterplot smoothing (LOESS) curves. The aim is in 
particular to reduce the number of variables of which two or more describe similar aspects (e.g., MAP and AI for 
catchment wetness), and not to achieve a drastic dimensionality reduction of the variable space.

3.5.  Multivariate Analysis

Based on the preselected sets of potential predictors, we apply linear and nonlinear multivariate models, namely 
multiple linear regression (MLR) and random forests (RF), respectively. MLR has the advantage of a simple 
estimation procedure along with easily interpretable results (Molnar, 2021). Its main disadvantage is that MLR 
models can only include linear relationships between predictors and the predictand. In contrast, RF works well 
if nonlinear dependencies or interactions between predictors are present, but are less efficient in modeling linear 
relations (Molnar,  2021). Furthermore, RF has high predictive power, is robust to the inclusion of noisy or 
highly correlated predictors, can handle big data efficiently, and are fast in comparison to other machine learning 
methods (Tyralis et al., 2019). Originally, RF are difficult to interpret, but the RF variant used here counter-
acts this limitation and has been described as especially useful for interpretation and causal inference (Hothorn 
et al., 2006; Tyralis et al., 2019). Both MLR and RF have frequently been used and also compared to one another 
in hydrological studies. Conclusions on the superiority of one model over the other depend highly on the context 
and the (non-)linear dependencies present in the analyzed data. For example, Booker and Snelder (2012) found a 
poor performance of MLR compared to RF in the context of flow duration curves, and linked this to high-order 
interactions and complex non-linear relations. Ibarra-Berastegi et al. (2011) on the other hand, concluded that 
using either model resulted in equal performance when predicting precipitation and surface moisture fluxes. 
Therefore, we apply both multivariate models. In the models, we use predictor sets with different indicators of the 
event variables (e.g., shape and slope) and sets with just one indicator per variable (e.g., only slope).

3.5.1.  Linear Multivariate Analysis

We consider all possible combinations of 3 to 10 predictors for constructing multiple linear regression models. 
We limit the range of combinations to reduce the computational time, and because we assume the best model to lie 
within this range and that fewer or more predictors would result in a too simplified or too complex model, respec-
tively. To avoid overfitting during the predictor selection (Lever et al., 2016), we use 5-fold cross-validation. The 
data is split randomly into five subsets and each subset once serves as test data to evaluate the performance of 
an MLR model trained on all remaining data (Hastie et al., 2009). The best model within each cross-validation 
fold is selected based on the lowest Bayesian Information Criteria (BIC). To analyze the degree of predictor 
multicollinearity, we compute the variance inflation factor (VIF) for each of the best predictor combinations per 
subset (Hirsch et al., 1992). For each predictor combination, VIF is related to the coefficient of determination 
(R 2) for an ordinary least square regression fitted to all predictors except one taken as a predictand. Predictor 
combinations with VIF >10 show a high degree of multicollinearity and are excluded from the analysis (Kutner 
et al., 2004; Montgomery et al., 2001). From the resulting five predictor sets, the one with the highest R 2 based on 
the test data is selected. An MLR model with these predictors is fitted to the entire dataset, using again five-fold 
cross-validation to get a more conservative estimation of the model performance. The above-described procedure 
is run for each of the sets of potential predictors (single/several indicators per variable) and the resulting models 
are evaluated based on the explained variance. Finally, the relative importance of the selected predictors is esti-
mated (R package relaimpo; Grömping [2006]) and their interaction is analyzed for the best performing models.



Water Resources Research

MACDONALD ET AL.

10.1029/2021WR031260

12 of 25

3.5.2.  Nonlinear Multivariate Analysis

Random forests are generated for each of the sets of potential predictors 
(single/several indicators per variable). In a random forest, an ensemble of 
regression trees is combined, each of which is built based on recursive parti-
tioning of the predictor space into regions with similar values of the response 
variable (Breimann, 2001). Each tree is constructed using a bootstrap sample 
from the entire dataset, and the remaining data are called out-of-bag (OOB) 
data (Breimann,  2001). We first select predictors from the predictor set 
using recursive feature elimination (RFE) with mean squared error (MSE) 
as an accuracy measure and based on 100 trees (R package moreparty; 
Robette [2020]). With the selected predictors, a random forest is generated 
using 500 conditional inference trees as base learners (R package party; 
Hothorn et  al.  [2021]). In contrast to regular regression trees, conditional 
inference trees are not biased toward variables with many potential split 
points (Hothorn et al., 2006). The performance of the random forests is eval-
uated based on the OOB predictions which result in more conservative accu-
racy measures (Strobl et al., 2009), similar to the cross-validation for MLR 
models. For the best-performing model, the influence of the selected predic-
tors on the prediction is estimated with accumulated local effects (ALE) plots 
(Apley & Zhu, 2020; Robette, 2020). ALE plots have a similar purpose to 
partial dependence plots but are unbiased even in the presence of collinear 
input variables (Molnar, 2021). They estimate how the prediction of a model 
changes over small intervals of each predictor (local effects). The effects are 
then accumulated across all intervals and centered in a way that the mean 
effect is zero (for more details see Apley & Zhu [2020]; Molnar [2021]). The 
interaction between selected predictors is finally analyzed using scatterplots.

4.  Results
4.1.  Spatial Distribution of GEV Shape Parameters of Flood Flows

The GEV shape parameter of AMS flood flows (ξAMS) ranges between −0.418 and 0.471 with a median of 0.0577 
for the 480 gauges. High values are found in the south and north-east of Austria, as well as in Saxony in Germany 
(Figure 4). Gauges in the west of Germany have mainly light-tailed distributions. In the south-west, center, and 
north-east of Germany slightly negative ξAMS and values close to zero are estimated.

4.2.  Correlation Analysis of Event-Based Indicators

The five indicators, that is, CV, shape, rho, UTD, and slope, applied to event-based variables are evaluated using 
Spearman rank correlation against ξAMS. Significant correlations are found for all indicators for at least four of the 
eight variables (Figure 5). No indicator clearly outperformed all others at this stage, so we keep one indicator for 
each of the three hypotheses stated in Section 3.2.1 for the following analyses. Out of the three indicators based on 
the third hypothesis, that is, a closer association between (the upper tail of) the variable and the flood magnitude 
favors heavier flood tails, the newly developed slope indicator has the highest number of significant correlations 
as well as the highest absolute correlation coefficients. Furthermore, the UTD is found to be suitable only for 
positive correlations between variables and the flood magnitude as it cannot capture dependence of the lower tail 
of a variable on the upper tail of the flood distribution. Hence, we use CV, shape, and slope for further analyses.

4.3.  Univariate Analysis of Predictors

Univariate analyses are conducted for the remaining three indicators of all event characteristics as well as for all 
catchment characteristics – a total of 43 potential predictors. Only a selection is shown and discussed here, the 
remainder can be found in the supplement (Figure S1 in Supporting Information S1).

Figure 4.  Spatial distribution of the generalized extreme value shape 
parameter of annual maximum series flood flows (ξAMS). Gauge locations are 
plotted and colored based on ξAMS. Depicted river networks are from Vogt 
et al. (2007).
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Indicators of the volume (Pvol) and maximum intensity (Pmax) of the event precipitation are found to be signif-
icantly correlated to ξAMS while no significant correlations are found for the duration (Pdur) of the precipitation 
event (Figures 6a–6c). The slope indicators of Pvol and Pmax show positive correlations to ξAMS meaning that 
higher slopes are associated with heavier tails of the AMS flood flows. High slopes in turn mean that, at the 
respective gauges, the largest floods are strongly associated with the highest volumes or intensities of precipi-
tation, respectively. In general, mainly positive slopes are observed for those two variables, indicating that the 
return period of floods tends to increase with increasing precipitation volume and intensity across almost all 
gauges.

To reduce the number of potential predictors for the multivariate approaches, Pdur is excluded from further 
analyses at this stage. Similarly, other variables, of which two or more describe the same event or catchment char-
acteristic and show similar behavior in the univariate analyses, are excluded, namely SM (antecedent catchment 
state), MAP (catchment wetness), and P_SM_cor (Synchronicity of precipitation and catchment state).

For the antecedent catchment state, the slope of Qbegin shows the strongest correlation to ξAMS (Figure 6d). As 
indicated by the positive slope values, we find that at the majority of the gauges the return period of AMS flood 
flows tends to increase with a wetter catchment state. Nevertheless, the influence of the catchment state on the 
upper tail of flood peak distributions is less pronounced than that of other event characteristics.

The catchment response is characterized by the runoff coefficient (RC) and the event time scale (ETS). The slopes 
of RC are mainly positive and show a significant positive correlation with ξAMS, meaning that gauges, where the 
largest floods are associated with high RC, tend to have heavy-tailed flood distributions (Figure 6e). In contrast, 
the slopes of ETS are largely negative and are also negatively correlated with ξAMS. If the largest flood events in a 
catchment have a short ETS and are influenced by fast runoff generation processes, this favors heavy tail behavior.

The univariate analysis of the flood seasonality shows lighter tails for catchments dominated by winter floods and 
heavier tails for those dominated by summer floods (Figures 6g–6h). While a significant negative correlation is 
found for the x-component of the mean occurrence date (FS_x ≈ −1 ≙ Jun/Jul; FS_x ≈ 1 ≙ Dec/Jan) with ξAMS, 
this is not the case for the y-component (FS_y ≈ −1 ≙ Sep/Oct; FS_y ≈ 1 ≙ Mar/Apr).

Figure 5.  Spearman rank correlation of indicators of event-based variables against the generalized extreme value shape parameter of annual maximum series flood 
flows. Event-based variables are ordered along the horizontal matrix dimension and respective indicators computed for each variable are ordered along the vertical 
dimension. For each variable, the indicator with the highest absolute correlation coefficient is marked with a triangle. Pvol – precipitation volume, Pmax – maximum 
precipitation intensity, Pdur – precipitation duration, Qbegin – flow at event start, SM – soil moisture at event start, P10 d – precipitation before event start, RC – runoff 
coefficient, ETS – event time scale.
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We find that catchments dominated by snow-related events tend to have lighter tails than catchments with a high 
share of rain-induced flood events (Figures 6i–6k). This resonates well with the analysis of seasonality. The share 
of rain-induced AMS events in a catchment (Rain_share) shows a significant positive correlation with ξAMS, 
while the share of snow-related events (Snow_share), as well as the share of events induced by soil moisture 
excess (SM_share), show significant negative correlations with ξAMS.

With regards to catchment characteristics, the catchment area is found to be significantly correlated with ξAMS, 
with heavier tails for small catchments and lighter tails with increasing catchment size (Figure 6l). In contrast to 
that, no clear association between the average aridity index characterizing catchment wetness and ξAMS is detected 
(Figure 6m).

Figure 6.  Univariate analysis of potential predictors against the generalized extreme value shape parameter of annual maximum series flood flows (ξAMS). Spearman 
rank correlations (ρ) which are significant at the 0.05 level are marked with an asterisk. Locally estimated scatterplot smoothing (LOESS) regression and the 
corresponding 95% confidence bound are indicated by red line and gray shading (note that the LOESS regression has large uncertainty in areas with scarce data; in 
these areas, the relation between the shape parameter and the predictors is very sensitive to outliers). Pvol – precipitation volume, Pmax – maximum precipitation 
intensity, Pdur – precipitation duration, Qbegin – flow at event start, RC – runoff coefficient, ETS – event time scale, slope – slope indicator of event variables, FS – 
flood seasonality (with x and y component), Rain/Snow/SM_share – share of the events classified as rain/snow/soil moisture induced, Size – catchment area, AI – aridity 
index.
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4.4.  Multiple Linear Regression

We construct MLR models for different sets of potential predictors (single/several indicators per variable). In 
each set, the MLR model with the lowest BIC has between six and nine predictors. The coefficient of determina-
tion (R 2) based on cross validation ranges between 0.235 and 0.607 for these models. Distinctively higher values 
of R 2 are reached by the MLR models containing the novel slope indicator in the set of predictors compared to 
the ones without it (R 2 ≥ 0.569 vs. R 2 ≤ 0.386). Results for the latter group of models are therefore discarded.

The three models with slope indicators (i.e., slope and shape, slope and CV, only slope) differ slightly in the 
selected predictors but are very similar in the event and catchment characteristics which are found to be relevant. 
In all three models, predictors representing event catchment response, event precipitation, and event timing have 
the highest explained variance (Figure 7). In general, event characteristics are found to be of greater importance 
for the heavy tail behavior of flood flows than catchment characteristics. The only catchment characteristic, 
which is selected as a predictor in each of the three best performing models, is the catchment area. Event char-
acteristics describing the antecedent catchment state and the dominant flood generation process have little or no 
impact on the tail heaviness of AMS flood distributions according to these models.

The predictors which have the highest relative importance in each of the three models are ETS_slope and RC_
slope, which both characterize the event catchment response (Figure 8). ETS_slope has a negative model coeffi-
cient meaning that the predictand, that is, ξAMS, increases with decreasing ETS_slope. Catchments, where large 
floods have shorter ETS compared to smaller floods, show heavy tail behavior, as also indicated in the univariate 
analysis. In contrast, ξAMS increases with increasing RC_slope in all three models. Catchments, where the runoff 
coefficient tends to increase with the return period of flood events, show heavier tails in their flood distribution. 
In terms of explained variance, the two indicators of the event catchment response are followed by a predictor 
representing the event precipitation. In the model with slope and CV indicators, this is Pmax_slope, in the two 
others, it is Pvol_slope. The model coefficient is positive in all three cases. If the largest floods in a catchment are 
strongly associated with very high precipitation volume or intensity, it can lead to heavy tail behavior.

The event timing is found to be of high relative importance in all three models. The x-component of the flood 
seasonality is selected as a predictor in all cases with a negative model coefficient. Low values of FS_x, that is, a 
mean date of flood occurrence in summer, lead to high ξAMS, while tails are lighter for catchments with high FS_x 
corresponding to dominance of winter floods. Two of the models also include EUnS_slope, which characterizes 
the deviation from the mean seasonality, as a predictor, but with low explained variance. A last predictor, which 
is selected in all three models, is the size of the catchment. Small catchment sizes show heavier flood tails, as 
indicated by the negative model coefficient. The remaining predictors differ between the three models, but have 
only a very low explained variance and are not further discussed.

Figure 7.  Explained variance by the event and catchment characteristics of which predictors are selected in the three best performing linear regression models. The 
denoted values show the total explained variance by all predictors describing the respective characteristic.
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Figure 8.  Results from the multiple linear regression models based on predictor sets with slope and shape (a), (b), slope and CV (c), (d) and only slope (e), (f) 
indicators for event-based variables. a, c, and e show modeled generalized extreme value shape parameters of annual maximum series flood flows (ξAMS) against ξAMS 
estimated from time series. b, d, and f show the predictors selected in the best performing models along with their model coefficients and their relative importance for 
the respective model output. Pvol – precipitation volume, Pmax – maximum precipitation intensity, Qbegin – flow at event start, RC – runoff coefficient, ETS – event 
time scale, EUnS – event unseasonality, slope – slope indicator of event variables, shape – GEV shape parameter of event variables, CV – coefficient of variation of 
event variables, FS_x – x-component of flood seasonality, Size – catchment area, FI – flashiness index.



Water Resources Research

MACDONALD ET AL.

10.1029/2021WR031260

17 of 25

Since the three MLR models agree on the majority of predictors which are found to be most important and are 
also very similar in terms of overall explained variance, we select only one of them for further analysis. The 
model with only slope indicators is less complex than the other two (6 instead of 9 predictors), while having only 
a slightly lower R 2. So, we further focus on this model to analyze the interaction between selected predictors 
presented in Figure 9. In this plot matrix, the diagonal plots show the histograms of predictors and scatter plots 
below the diagonal show pairwise relationships between predictors. Histograms are segregated according to five 
quantile ranges of the predicted ξAMS, that is, the first range corresponds to the lower 20% of ξAMS values and the 
fifth range to the upper 20%. These ranges are colored accordingly and the same color code is used in the scatter 
plots to pinpoint pairwise interactions of predictors and resulting ξAMS.

If ETS_slope is low, ξAMS tends to be high, almost independently of the remaining predictors (Figure 9). Similarly, 
a high RC_slope leads to high ξAMS even in combination with low Pvol_slope values or in winter-flood-domi-
nated catchments where flood distributions would usually have lighter tails. The positive model coefficient of 
Pvol_slope suggests that ξAMS increases with Pvol_slope. If, however, a high value of Pvol_slope coincides with a 
moderate to the high value of ETS_slope or a flood seasonality with mainly winter floods, the flood distribution 
tail is not as heavy. As seen before, catchments with mainly summer floods (FS_x ≈ −1) tend to have high ξAMS. 
Catchments with mainly winter floods have lighter tails, but ξAMS can be high if ETS_slope is low and/or the 
catchment size is small. In small catchments, ξAMS tends to be high. This is not the case though for the smallest 
catchments (<100 km 2) and if ETS_slope is high or winter floods are dominating. FI has only a weak impact on 
ξAMS as can be seen in Figure 8. The negative model coefficient indicates that a low FI leads to a high ξAMS, but 
for the lowest values ξAMS is low.

Figure 9.  Interaction between the predictors selected in one of the best-performing multiple linear regression models. Lighter colors correspond to higher values of 
the predictand, that is, the generalized maximum value shape parameter of annual maximum series flood flows (ξAMS). Note that the axes differ between subplots: The 
x-axis (y-axis) of each subplot reports the values of the predictor stated at the top (right). High (low) values of FS_x correspond to a mean date of flood occurrence in 
winter (summer). Pvol – precipitation volume, RC – runoff coefficient, ETS – event time scale, slope – slope indicator of event variables, FS_x – x-component of flood 
seasonality, Size – catchment area, FI – flashiness index.



Water Resources Research

MACDONALD ET AL.

10.1029/2021WR031260

18 of 25

4.5.  Random Forest

As for the MLR models, we start the nonlinear multivariate analysis with different sets of potential predictors 
(single/several indicators per variable). In all cases, the automatic predictor selection results in three to five 
predictors, which we then use to generate random forests. The R 2 values based on OOB data range from 0.274 
to 0.495, with values above 0.49 only for models including slope indicators. In fact, in all three cases with slope 
indicators in the potential predictor sets (i.e., slope and shape, slope and CV, and only slope), the exact same 
four predictors are selected. So even if shape and CV indicators are in the set, they are not selected during the 
predictor selection, resulting in the same random forest model for the three sets. The following results focus on 
this best-performing model.

The four selected predictors are ETS_slope, RC_slope, Pmax_slope, and FS_x (Figure 10), characterizing the 
event catchment response, event precipitation, and event timing. This conforms with the event characteristics 
which are found to be most important in the MLR model. Predictors of the antecedent catchment state and of the 
flood types are not selected, as also none of the catchment characteristics.

In the random forest model, low values of ETS_slope lead to high values of ξAMS (Figure 10), as also in the MLR 
model. If the largest flood events in a catchment are associated with very short ETS so that ETS_slope is for 
example, around −0.02, the model predicts ξAMS to be higher by roughly 0.12 compared to the average prediction 
across all catchments (Figure 10b). Similarly, the model output is clearly above the average predicted ξAMS for 
high values of RC_slope or Pmax_slope. High values of FS_x on the contrary lead to comparatively low values 
of ξAMS. This reflects the effect of flood seasonality, for example, for winter floods lighter tails can be expected 
and the opposite for summer floods. The effects of the four predictors on ξAMS in the random forest model align 
with the results from univariate and linear multivariate analyses. No distinct nonlinear relationships between 
ξAMS and  the predictors ETS_slope, RC_slope, and Pmax_slope are found. For FS_x, the ALE plot shows a steep 
decrease toward negative effects for catchments dominated by winter floods, while the increase toward a positive 
effect for summer floods is less pronounced.

The interactions between the predictors selected in the random forest model are very similar to the ones already 
presented for the MLR model (Figure S2 in Supporting Information S1). The only additional predictor is Pmax_
slope, but it behaves almost identical in relation to other predictors as Pvol_slope, which is included in the MLR 
model.

Figure 10.  Results from the best-performing random forest model. (a) Modeled generalized extreme value shape parameters of annual maximum series flood flows 
(ξAMS) against ξAMS estimated from time series and (b) Accumulated local effects (ALE) for the four selected predictors. ALE plots show how over the range of a 
predictor the model outcome differs from the mean prediction, in units of the predictand. Here, ranges were set to encompass 20 catchments each, leading to the uneven 
spacing of points. High (low) values of FS_x correspond to a mean date of flood occurrence in winter (summer). Pmax – maximum precipitation intensity, RC – runoff 
coefficient, ETS – event time scale, slope – slope indicator of event variables, FS_x – x-component of flood seasonality.
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5.  Discussion
Various event and catchment variables that can potentially determine the tail heaviness of flood flows are derived. 
For event-based variables, indicators are developed which are expected to pinpoint the effect of variable prop-
erties on tail heaviness. Besides more conventional measures, such as the coefficient of variation or the shape 
parameter of a fitted GEV distribution, the slope of a linear model relating the variable with the return period 
of the respective flood events is proposed. It is found (a) has the highest Spearman rank correlation against ξAMS 
for most variables and (b) to improve model performance in both linear and nonlinear multivariate models. Most 
or all selected event-based predictors are slope indicators in the best-performing linear and nonlinear models, 
respectively.

The slope indicator captures well how a variable is associated with flood magnitude, especially for high return 
periods. For some variables, this association is found to have a crucial effect on the tail heaviness of flood flows. 
The upper tail behavior of flood distributions is per definition determined by the few largest events. In contrast to 
other examined indicators, the slope indicator is also dominated by the characteristics of those few large events 
and allows us to quantify if the highest (or lowest) values of a variable are associated with the largest flood events 
in a catchment. We evaluate the novel slope indicator to be of high value for the analysis of heavy-tailed flood 
flows.

In this study, we apply a multiple linear regression and nonlinear random forest model to analyze the controls 
of flood ξAMS. The linear model is found to slightly outperform the nonlinear model. The best-performing linear 
regression, which is based on the predictor set with only slope indicators, explains 57% of the variance of ξAMS. 
With the random forest model generated for the same predictor set, 50% of the variance can be explained. In 
the examination of the results from the random forest approach, no distinct nonlinear relationships between 
predictors and predictand are observed for three of the four selected predictors. In contrast, the fourth one – flood 
seasonality – shows a nonlinearity with a stronger effect on ξAMS for winter-flood-dominated catchments. The 
difference in the explained variance between the linear and the nonlinear model is relatively small and might 
partly be caused by differences in the estimation of the model performance (5-fold cross validation for linear vs. 
out-of-bag error for nonlinear approach). While the random forest model allows insights into nonlinear effects of 
predictors, the slightly better performing linear regression has the advantage of being easier to interpret and still 
capturing important influences on ξAMS.

Our analysis of flood tail behavior based on event and catchment characteristics suggests unequivocally that the 
event time scale and runoff coefficient along with event precipitation characteristics such as maximum precip-
itation intensity or precipitation volume are the dominant controls of flood tail heaviness. The importance of 
these factors is given by this very order. All the best models identify the slopes of ETS and RC relationships to 
flood return periods to be the most powerful predictors of flood tail heaviness. In the linear models, these two 
factors together explain more than half of the total explained variance. Catchments with large negative ETS 
slopes are associated with heavier tails. In other words, heavier tails prevail in catchments, where larger flood 
peaks are associated with relatively small direct runoff volumes compared to smaller floods. So, if catchments 
show a flashier response for larger events compared to smaller ones, this favors heavy-tailed flood distributions. 
ETS, originally proposed by Gaál et al. (2012), is controlled by the precipitation timescale and the time of runoff 
concentration. Precipitation timescale represents a characteristic duration of the rainfall event triggering an AMS 
flood (Viglione, Chirico, Woods, et  al.,  2010). Thus, both precipitation characteristics and runoff generation 
processes influence ETS. For the bulk of rainfall-runoff events, not specifically focused on AMS events, Tarasova 
et al. (2018) found a strong correlation (Spearman's R 2 ≥ 0.4) between ETS and precipitation volume in many 
German catchments, suggesting a considerable influence of rainfall characteristics on ETS. In our flood event set 
consisting of annual maximum floods, this correlation vanishes (R 2 is primarily below 0.15, not shown). This 
result suggests that for AMS floods, ETS becomes rather controlled by runoff concentration than by precipitation. 
A negative ETS slope, that is, small ETS for large floods, indicates an efficient runoff concentration in a catch-
ment and rapid transport of large runoff volumes in short times. This leads to peak hydrographs. Such behavior 
occurs in catchments where the prevailing runoff generation mode shifts from subsurface storm flow for small 
floods toward overland surface flow due to infiltration or saturation excess. For instance, Viglione, Chirico, 
Komma, et al. (2010) showed a large flood driven by long-rain rainfall in the Kamp region, Austria, to have a 
fast and concentrated response in contrast to small short-rain floods. For the latter, higher average hillslope travel 
times for rainfall excess and higher spatial average variance in hillslope routing times were detected. Furthermore, 
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connectivity of runoff contributing areas increases with flood magnitude. This process can additionally increase 
the efficiency of water transport in the landscape and lead to a rapid increase in runoff (Tromp-van Meerveld & 
McDonnell, 2006; Viglione, Chirico, Komma, et al., 2010; Western et al., 2001).

In a similar vein, a positive runoff coefficient slope, that is, large RC for large floods characterizes the propensity 
of a catchment to generate non-proportional large direct runoff volumes for large compared to small precipita-
tion and snowmelt events. For the bulk of rainfall-runoff events, that is, a set dominated by small events, Merz 
et al. (2006) identified rainfall depth and antecedent catchment state as major controls of the temporal distribu-
tion of RCs within 337 Austrian catchments. Our multivariate analyses suggest that catchments with steeper RC 
slopes tend to show heavier flood tails. It is not a prerequisite for the emergence of heavy flood tails to have high 
RCs across all flood events, as is often the case in wetter catchments (Merz et al., 2006). Rather, the gradient of 
RCs between small and large floods is decisive for the upper tail behavior. The occurrence of high RCs for large 
floods can indicate the presence of threshold behavior related to saturation of runoff contributing to catchment 
areas and their connectivity, which leads to step changes in flood frequency curves (Rogger et al., 2012). Indeed, 
flood frequency curves for some of our analyzed catchments could be interpreted to have a step change following 
a visual inspection. Overall, our result suggests that the flood tail heaviness is mainly controlled by the runoff 
generation processes. These processes modulate the effect of precipitation input characterized by the slope of 
event precipitation intensity or volume. These two precipitation-related indicators follow both ETS_slope and 
RC_slope in terms of explained variance in the linear models.

The analysis of interactions between predictor variables indicates the dominant role of ETS_slope and RC_slope 
for the modeled ξAMS values. Their impact on tail heaviness is not affected or modulated by other predictors. In 
contrast, the impact of several variables is dampened by the event catchment response if the indicators of RC and 
in particular ETS are particularly low and high, respectively.

A strong association of large floods with high precipitation volumes, that is, high values of Pvol_slope, generally 
leads to heavy-tailed flood distributions. If, however, the large floods are also associated with medium to long 
time scales of the catchment response, tail heaviness is reduced. This resonates well with findings from McCuen 
and Smith (2008), who argued that rainfall distribution properties are not directly passed on to flood distribution 
properties, but are modulated by catchment processes such as catchment and channel storage. Long ETS indicates 
slow runoff concentration and the contribution of slow runoff components, which can dampen the immediate 
effect of heavy precipitation.

The flood seasonality and catchment area are also found to exert an impact on tail heaviness but are less impor-
tant than the event catchment response and event precipitation. Catchments that are dominated by summer floods 
show a higher propensity to heavy-tailed flood distributions than those with mainly winter floods. The random 
forest approach shows that this relationship is slightly nonlinear. The seasonality of floods is sometimes used 
as a surrogate for different flood-generating processes (e.g., Villarini & Smith, 2010). Here, we use event types 
to address dominant flood generation mechanisms, but the respective predictors are not selected in any of the 
best-performing models. Presumably, the selected flood seasonality component FS_x allows sufficient discrim-
ination of flood types with respect to tail heaviness in Germany and Austria. Catchments with a high share of 
event types that predominantly occur in winter, that is, snow-dominated floods, tend to have lighter tails than 
those with a high share of rain-dominated floods, which are typical in summer.

The catchment area has a negative effect on the tail heaviness of flood distributions, with lighter tails for larger 
catchments, in our study region encompassing Germany and Austria. There have been previous studies finding 
this effect (e.g., Merz & Blöschl, 2009; Villarini & Smith, 2010), but also others have not detected such an associ-
ation (e.g., Smith et al., 2018). A possible explanation for the influence of the catchment area is the spatial aggre-
gation of processes in larger catchments. While local, convective rainfalls of high intensity can lead to relatively 
large floods in small catchments, their effect may be averaged out in larger catchments (Merz & Blöschl, 2009). 
Similarly, nonlinear behavior in the runoff generation at small scales, for example, threshold processes, can be 
averaged out with increasing catchment size, as catchment properties and relevant processes become more hetero-
geneous (Rogger et al., 2012). This spatial aggregation of precipitation and runoff generation can result in lighter 
tails for larger catchments.

The effect of catchment size on the tail heaviness of flood flows is superimposed by the effect of ETS, in particu-
lar for high values of ETS_slope. Small catchments have heavy-tailed distributions as long as the large floods 
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have shorter ETS than the smaller floods. If, however, the largest floods are dominated by slow processes of 
the catchment response, that is, the value of ETS_slope is high, even small catchments have light-tailed flood 
distributions. Long ETS is for example, common in catchments where lakes prolong the runoff concentration 
(Tarasova et al., 2018). Here, temporal smoothing is taking place, similar to the spatial aggregation discussed 
above for large catchments. The effect on flood distributions is the same: lighter tails in catchments with stronger 
aggregation, be it spatial or temporal.

Indicators of average catchment soil moisture at the event start as simulated by a hydrological model and show 
weak correlations with ξAMS. Slightly higher correlations are detected for Qbegin indicators. Qbegin is an inte-
gral variable characterizing not only the catchment moisture state at the onset of the flood event but is also 
affected by connectivity within a catchment. Qbegin slopes are mainly positive, though a significant portion of 
detected slopes is negative (∼33%). Most of these negative slopes have very small absolute values (abs(Qbegin_
slope) < 0.005) and are likely to result from uncertainties in the detection of the starting point of a hydrograph for 
small events. Though the univariate analysis indicates some association of Qbegin_slope with ξAMS, our multi-
variate models suggest no explanatory power of this indicator for the upper tail behavior of floods. At the first 
glance, it may sound counterintuitive that the initial catchment state does not play a role in the heavy tail behavior 
of floods, while its role in flood generation, in general, is extensively documented (e.g., Merz & Plate, 1997; 
Zehe & Blöschl, 2004). We believe this lies in the nature of heavy tails which are determined by a few largest 
events. Higher catchment wetness increases the propensity for flooding compared to dryer catchment states given 
the same precipitation input. The effect of antecedent catchment state and, in particular, the spatial variability 
of soil moisture is pronounced for medium-sized, but not large events, as detected in a small German catchment 
(Merz & Plate, 1997). This resonates with findings by Grillakis et al. (2016) for catchments in Austria and Crete, 
who suggested that the effect of pre-event soil moisture on the peak flow of flash floods depends on the precip-
itation event magnitude. Also in the large Elbe catchment in Germany, Nied et al. (2017) detected a decreasing 
role of the pre-event catchment state compared to event-triggering weather patterns for the occurrence of larger 
floods with return periods above 10 years compared to smaller floods (T ≥ 2 years). Thus, there is evidence for 
consistent sensitivity of floods to pre-event catchment states for small and large catchments and this sensitivity 
is controlled by the magnitude of meteorological drivers. The occurrence of high moisture states appears to be 
not sufficient for the emergence of heavy tails. In catchments that tend to be wet, variability of pre-event soil 
moisture or streamflow at the event start is relatively low, so other factors control the occurrence of extremes. In 
catchments that tend to be dry, the variability in pre-event conditions is large, but still not sufficient to explain 
the occurrence of heavy tails. Additional factors, such as intensive or high volume precipitation and/or unusual 
catchment response characterized by the ETS_slope and RC_slope indicators discussed above, are required for 
the generation of extraordinary events.

There are some limitations to the underlying data. Using catchment-averaged variables can mask very hetero-
geneous conditions, especially for large catchments, and thus introduce some uncertainty. For example, a local, 
high-intensity rainfall may be averaged out in large catchments (Merz & Blöschl, 2009). For small catchments, 
on the other hand, a higher resolution of the gridded precipitation data would be beneficial, as it would better 
represent local conditions. Similarly, a higher temporal resolution of the data would also be beneficial for small 
catchments, as the mean daily flow can underestimate flood peaks of a short duration. High-resolution data is 
sparse though and going below a daily scale would distinctively reduce the number of gauges with sufficiently 
long time series in our study region.

The negative shape parameters estimated for some catchments should be interpreted with caution. They correspond 
to distributions that are bounded from above. Upper limits of streamflow are also assumed by the concept of prob-
able maximum precipitation and probable maximum flood, which is used in hydrological practice for designing 
sensitive infrastructure. However, this concept has been critized as flawed (Koutsoyiannis & Papalexiou, 2017; 
Salas et al., 2014). Further, for a global analysis of extreme daily rainfall, Papalexiou and Koutsoyiannis (2013) 
reported a decreasing percentage of negative shape parameters with increasing record length, suggesting exclu-
sively positive values for records of sufficient length. The availability of streamflow records of appropriate length 
is limited though. Therefore, it might be worth to further exploring alternative distributions, as recently demon-
strated by Zaghloul et al. (2020).

The linear and nonlinear multivariate analyses provide useful insights regarding the processes that are most rele-
vant for the emergence of heavy tails in flood peak distributions. Understanding the controls of heavy tails can 



Water Resources Research

MACDONALD ET AL.

10.1029/2021WR031260

22 of 25

be beneficial for flood risk management, especially in situations with limited funds or otherwise restricted possi-
bilities. Unfortunately, using the derived MLR or RF as predictive models for catchments with no or only short 
records of streamflow data is not practical. This is because the predictors which were found to have the highest 
explanatory power, that is, ETS_slope and RC_slope, are based on streamflow time series themselves. Neverthe-
less, knowing the influence that differences in ETS and RC between small and large floods have on heavy tail 
behavior, is already an important step. It strongly suggests further studying these variables in more detail to get 
a better understanding of the factors that lead to distinct differences in the runoff generation for different flood 
magnitudes. This in turn can help in identifying catchments that are prone to these factors and that are also prone 
to exhibiting heavy-tailed flood distributions. Once catchments with a higher probability of the occurrence of 
extreme floods are detected, these can be prioritized in flood risk management practices.

6.  Conclusions
We conducted a multivariate analysis of an extensive set of event and catchment characteristics with the aim 
of exploring the controls of heavy tail behavior of flood distributions. Tail heaviness is described by the shape 
parameter of the Generalized Extreme Value distribution fitted to the annual maximum flow series. The analyzed 
event characteristics include variables related to the antecedent catchment state, flood-generating event precipi-
tation, event catchment response, and timing and types of flood events. For these event-based variables, different 
indicators were estimated and we expected to pinpoint the association between a variable and the tail heaviness 
of flood distributions. Among those indicators, the slope indicator was found to be the most powerful. It captures 

Figure 11.  Summary of the findings from the multivariate analysis of potential controls of heavy tail behavior of flood peak distributions. The results are based on 
data from 480 gauges across Germany and Austria, which range from quickly reacting mountain catchments to large lowland catchments. ETS – event time scale, RC – 
runoff coefficient, Pvol – precipitation volume, Pmax – maximum precipitation intensity, Qbegin – flow at event start.
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how a variable is associated with the flood return period, that is, whether the largest flood events at a gauge also 
have the highest or lowest values of a respective variable. For some variables, this association was found to have 
a crucial effect on the tail heaviness of flood flows.

Univariate as well as linear and nonlinear multivariate analyses were conducted to scrutinize potential heavy tail 
predictors. In both the multiple linear regression and the random forest approach, variables describing the event 
catchment response were identified as the dominant controls of heavy tail behavior, followed by event precipi-
tation characteristics. The main controls of heavy-tailed distributions are summarized in Figure 11. Catchments, 
where the largest floods have smaller ratios of direct runoff volume to peak flow than smaller floods, tend to have 
heavy-tailed distributions. Similarly, associations of the largest events with the highest runoff coefficients or with 
the highest flood-event causing precipitation volumes result in heavier tails. The flood seasonality and catchment 
area also exert an impact on tail heaviness, but to a lesser extent. Heavier tails were found for smaller catchments 
and for those dominated by summer floods. Pre-event catchment moisture state is not decisive for the emergence 
of heavy tails in flood series. In summary, our analysis shows that catchment response is decisive for the emer-
gence of heavy tails, but not the pre-event catchment state. The strong role of catchment response suggests that in 
catchments with heavy tail behavior, extreme floods are associated with faster, rainfall-driven runoff generation, 
as opposed to a slower runoff generation for smaller floods. Particularly, small catchments can reach threshold 
states under severe precipitation events, where flood generation processes shift, causing extreme floods. A better 
understanding of the factors that lead to an unusual catchment response for large compared to smaller floods 
promises high benefits for flood design and risk assessment.

Data Availability Statement
Data on the characteristics of catchments and of flood events that were used for deriving potential heavy 
tail predictors in the study are available at GFZ Data Services via https://doi.org/10.5880/GFZ.4.4.2021.004 
(Macdonald et al., 2021).
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