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S U M M A R Y
Data recorded by distributed acoustic sensing (DAS) along an optical fibre sample the spatial
and temporal properties of seismic wavefields at high spatial density. Often leading to massive
amount of data when collected for seismic monitoring along many kilometre long cables.
The spatially coherent signals from weak seismic arrivals within the data are often obscured
by incoherent noise. We present a flexible and computationally efficient filtering technique,
which makes use of the dense spatial and temporal sampling of the data and that can handle
the large amount of data. The presented adaptive frequency–wavenumber filter suppresses the
incoherent seismic noise while amplifying the coherent wavefield. We analyse the response
of the filter in time and spectral domain, and we demonstrate its performance on a noisy data
set that was recorded in a vertical borehole observatory showing active and passive seismic
phase arrivals. Lastly, we present a performant open-source software implementation enabling
real-time filtering of large DAS data sets.
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1 I N T RO D U C T I O N

Fibre optical distributed acoustic sensing (DAS) measures the strain
rate along an optical fibre cable. The technique uses laser pulses to
interrogate an optical fibre: a coherent light pulse is sent into the
fibre and is reflected by impurities within the fibre. Amplitudes
and phases of the reflected signal are measured by a photo diode.
Through an interferometric method phase shifts are obtained and un-
wrapped to relative strain rate measurements at fixed gauge lengths
along the optical fibre at nanometer precision (Blum et al. 2008;
Lindsey et al. 2020). DAS data are sampled equidistantly, where
spatial and temporal sampling rates are commonly on the order of
several metres and few kHz, respectively. DAS can measure the axial
strain rate along many kilometre long vacant dark telecommunica-
tion fibres or dedicated tight-buffered cables installed specifically
for the purpose of optical seismic measurements.

DAS recordings provide a dense image of the spatial and temporal
characteristics of the seismic wavefield and contain a wealth of infor-
mation that can be used for a variety of applications, among them
the study and monitoring of structures (e.g. buildings, pipelines,
railway or airplanes), the recording of active and passive seismic

sources for seismological and exploration geophysical application
(e.g. earthquake detection or vertical seismic profiling; VSP), the
monitoring of volcanic unrest and permafrost thaw, and the mon-
itoring of urban traffic (Mateeva et al. 2012; Ajo-Franklin et al.
2017; Dou et al. 2017; Jousset et al. 2018; Bakhoum et al. 2020;
Flóvenz et al. 2022; Tejedor et al. 2021; Gorshkov et al. 2022).
Handling, organizing and exploring the vast amount of collected
seismic data from a single measurement campaign can be a chal-
lenge for the established seismological workflow. Consequently,
traditional seismological∗∗ tool-sets and methods have to be ex-
tended to extract valuable information from the spatially dense and
high-frequency DAS data.

The quality and noise level of DAS recordings depend on many
different factors and may vary along segments of the fibre. Noise
sources include the noise environment of the installed optical in-
strument, optical and electronic noise, the reflectivity and quality
of the optical fibre, splices and plugs, the ambient noise conditions
along the fibre, or the coupling between the fibre and the ground
(Hartog et al. 2014). Thus, the noise in DAS data can have different
characteristics (broad-band or band-limited) and coherence between
channels. 1-D time–frequency filters like Butterworth band-, low-
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and high-pass filters are effective to suppress noise. Additionally,
image processing anti-aliasing filters or range filters can be applied
to the 2-D data set to remove unwanted noise, such as a median-
filter (Huang et al. 1979). Machine learning techniques have been
proposed for separating signal and noise in DAS data (e.g. Martin
et al. 2018; van den Ende et al. 2021). Other approaches are inspired
by methods adapted from active seismic exploration, where slant-
stacking (radon transform of rank 1 or τ–p methods) have been
used to enhance the signal-to-noise ratio (SNR, Kong et al. 1985;
Schwarz et al. 2021). Optimization-based techniques to suppress
coupling noise by continuous wavelet- and cosine-transformation
have been presented by Chen et al. (2019).

The high spatial sampling of DAS measurements and the spatial
coherence of the wavefield allows for spectral filtering techniques
in the frequency–wavenumber (f–k)∗∗ domain. f–k filters are often
used in active seismic exploration, such as the traditional f–k filter or
adaptive f–k methods (Duncan & Beresford 1994). In this work, we
introduce a modified adaptive Goldstein filter (Goldstein & Werner
1998) applied to a (nominal) f–k domain of dense linear DAS data
in order to suppress energy of incoherent noise and to enhance the
SNR. This adapted f–k filter technique is effective in enhancing the
coherent signals in DAS recordings. It is computationally efficient
such that it can be applied automatically on real-time acquisitions,
and also interactively on existing data sets.

2 M E T H O D

2.1 Filter approach

The filter approach was first presented by Goldstein & Werner
(1998) to enhance phase coherence in synthetic aperture radar
(SAR) interferograms (InSAR) that are derived from SAR data
acquired by satellites. The Goldstein filter technique is well estab-
lished within the InSAR community to suppress uncorrelated noise
in interferograms in 2-D spatial domain. The response of the adap-
tive Goldstein filter H(u, v) applied to time–space domain of DAS
data is

H(u, v) = |E(u, v)|α · E(u, v) , with u = f and v = k. (1)

While the filter works in the 2-D wavenumber space, u = kx and
v = ky, for interferograms; we use the f–k domain of the time and
the linear-distance space for DAS strain-rate data (ε). We propose
this application and the use of fast Fourier transformations (FFT),
because DAS data are sampled equidistantly in t and x. If the DAS
acquisition delivery is rectilinear, then k can be interpreted as the
apparent spatial wavenumber of the wavefield along the direction
of the cable. The filter technique works by sliding overlapping 2-D
windows over the DAS data. Within independent windows ε(t, x)
the 2-D FFT E( f, k) is calculated and multiplied with its scaled
amplitude spectrum |E( f, k)|α . The scaling exponent α ∈ [0, 1]
controls the strength of the filter, where 0 is no filtering and 1
is strong filtering. The convolution theorem states that the multi-
plication in the spectral domain is equivalent to a convolution in
time-spatial domain. The multiplication with the scaled amplitude
spectrum |E( f, k)|α enhances the energy of the large amplitude sig-
nals in f–k domain and thus amplifies the coherent components of
the wavefield in time-spatial domain. The filter adapts to variations
in the coherent wavefield such that windows with high coherence
are filtered stronger than windows with low coherence. The sliding
windows are quadratic of size n samples in linear space and time do-
main, and they have an overlap no ≤ n/2 − 1. Optionally, rectangular

windows of size n, m can be defined. The overlaps are tapered in
t–x domain with a Bartlett (triangular) taper in order to fade equally
between overlapping windows. Filtering in sliding windows makes
the operation adapt to locally present coherent signals.

In the presented implementation we omit smoothing the ampli-
tude spectrum, this approach was suggested by Goldstein & Werner
(1998) and Baran et al. (2003) for InSAR data. Seismic data in-
clude signals in different frequency bands and wavenumbers; thus,
smoothing the amplitude spectrum (particularly in a small window)
distorts the signal amplitudes and narrows the filter band. The adap-
tive filter has a broadband characteristic, and is non-destructive, that
is, it enhances the energy of coherent waves (wavenumbers) within
individual filter windows and no energy will be suppressed to the
stop band.

A weakness of eq. (1) is that the true amplitudes of the signal are
lost. This can be partially accounted for by normalizing the ampli-
tude spectrum coefficients (2). Doing so will retain the amplitude
of the most dominant f–k component of the input.

H( f, k) = |E( f, k)|αN · E( f, k), (2)

where |E |N = |E |/ max |E | is the normalized amplitude spectrum ∈
[0, 1]. In the following, we refer to the filters presented in eqs (1) and
(2) as adaptive frequency–wavenumber (AFK) filter and as normal-
ized adaptive frequency–wavenumber (NAFK) filter, respectively.
The here introduced (N)AFK filters can be combined with tradi-
tional frequency filters, such as the low- and high-pass filters or
Butterworth bandpass filters to further improve the SNR.

2.2 DAS data

As test data set, we use DAS data that were recorded in a verti-
cal 400 m deep Eger Rift ICDP borehole in Landwüst, Germany
(Dahm et al. 2013). The tight-buffer single-mode fibre optical cable
is cemented behind the casing. The data were recorded with a com-
mercial Silixa Ltd iDAS (version 2) interrogator with 10 m gauge
length and 1 m channel spacing at 1 kHz sampling frequency. The
data set includes a seismic signal excited by a 200 kg drop weight at
200 m distance to the well head, as well as body wave arrivals from
a weak local earthquake (ML1.0) in about 12 km distance (Fig. 1).
The data show relatively high noise, because of large optical en-
ergy loss in the first metres of the fibre outside of the borehole.
For compensation, the laser’s energy was increased and the gain
of the optical amplifier was elevated. Consequently, these measures
introduced higher levels of noise on this short fibre.

3 R E S U LT S

We apply the AFK filter to the borehole DAS data containing the
active signal (Fig. 1). The 2-D plots (Figs 1a–c) show the effect
of the filter in time–space domain. A clear separation between the
coherent wavefield and noise can be achieved. The residual (Fig. 1c)
shows a reminiscence of the seismic signal due to the exaggerated
dynamics of the filtered signal, particularly at steep signal flanks.
This can also be seen in the exemplary waveform trace of channel
250 (Fig. 1d), where the successful suppression of noise prior to the
arrival of the drop-weight signal can be seen. The signal’s character
is recovered, however, the relative amplitudes of the wave train are
distorted by the AFK filter (eq. 1), which is why the raw and filtered
data have been normalized to ( − 1, 1) (Fig. 1d). In the following
we quantify the noise reduction in terms of reduced spectral noise
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Figure 1. Active signal from a drop weight at 200 m distance to the 400 m deep vertical ICDP borehole in Landwüst, Germany. The figures show the
performance of the AFK filter (eq. 1) applied to noisy DAS data. (a) Raw data with 1 kHz sampling frequency and 1 m channel spacing. (b) The filtered
wavefield using the AFK filter with α = 0.6, 0.8, 1.0, 32 × 32 sample window size n and 15 samples overlap. (c) The normalized residual between raw and
filtered data. (d) Normalized raw (black) waveform and waveforms filtered (coloured) by different filter coefficients α recorded at channel 275, the shaded area
marks the signal duration. (e) Power spectra of signal shown in (d; shaded duration), the green area covers the noise band used for estimating the reduction in
spectral amplitude in dB. The data are neither tapered nor bandpass filtered, the images in (a)–(c) are not anti-aliased.

amplitudes in dB (Appendix A). The AFK filter suppresses high-
frequency uncorrelated noise by −17.2 dB (at α = 0.8 and n =
32) and preserves coherent energy from the traversing wavefield
(Figs 1d and e). The closer the α parameter is to 1, the stronger
the filtering will be. Lower values result in higher noise levels, but
also correlated signals will be better preserved compared to the data
filtered with higher alphas (Figs 1d and e).

For filter comparison, we apply the NAFK filter (eq. 2) to the
same data with the same filtering parameters as shown in Fig. 1. In
the 2-D data as well as in the waveforms (Figs 2a–d), a clear signal
can be observed. Although, the noise energy outside the wavefield
has overall higher amplitudes when compared with the AFK fil-
ter, the signal is emphasized above the background noise while the
true amplitudes of the coherent signal are preserved. This effect is
attributed to the adaptive and normalizing properties of the filter.
While the AFK filter (eq. 1) increases the dynamic (contrast) be-
tween the coherent wavefield and uncorrelated background noise,
thus improving the apparent SNR (eq. A.1, Supporting Informa-
tion), the NAFK filter (eq. 2) is adaptive to the relative amplitude of

the dominating local wavenumber (within the window). This prop-
erty improves the local SNR within the passing coherent wavefield,
thus recovering more details in wavefields with dynamic amplitudes
(Fig. 2). However, the relative SNR improvement of the signal is
worse with −8.8 dB (at α = 0.8). The α parameter has little influence
on the performance of the NAFK filter, that is, low and high values
of α both lead to similar noise levels in filtered waveforms and
spectra (Figs 2d and e). The N(AFK) filters perform similar when
applied to recorded DAS data of a local earthquake (Appendix B,
Figs A1 and A2, Supporting Information).

In Fig. A3 (Supporting Information), a synthetic wavefield of an
inclined sweeping wavefield, simulating a changing slowness with
added Gaussian spectral noise is shown after filtering with α = 0.8
and different window sizes between 16×16 to 128×128 samples. It
can be seen that larger filter windows show stronger edge effects and
blur the signal (Appendix C). This shows the filter’s leakage within
large window sizes, leading to signal artefacts extending outside of
the region of the signal. However, large windows are not required,
even filter windows recover signals with wavelength larger than
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Figure 2. Active signal from a drop-weight source (see Fig. 1). The figures show the performance of the NAFK filter (eq. 2), applied to noisy DAS data. See
caption of Fig. 1 for details.

the window. The filter’s leakage with non-quadratic window sizes
of different sizes is shown in Appendix D (Fig. A4, Supporting
Information), where we apply the different filtering windows on
recordings of a local earthquake. In conclusion, the window size in
time should not exceed the period of the dominant waves in order
to avoid filter leakage. The presented data have not been filtered
in any other way and wavefield figures were created neither with
anti-aliasing filters nor clipping of the colour map.

For comparison, we evaluate the performance of the (N)AFK
filter against a neural network de-noiser (jDAS) (van den Ende et al.
2021, Fig. 3). The dynamic of the original signal has been better
preserved by the AFK filter, however the NAFK filtered data shows
higher background noise in time domain the signal and its coda
is emphasized over the noise. The neural network filter introduces
artefacts into the data, particularly the signal’s coda and behaves
erratic in spatial domain (Fig. 3d). Although some DAS channels
may be completely noise dominated, the (N)AFK filters can use
coherent energy of the neighboring channels to ‘reconstruct’ the
signal.

The filter algorithm is implemented in the Rust system program-
ming language (Matsakis & Klock 2014) with native bindings to
Python (Van Rossum & Drake 2009). A data set of 4096×4096

samples (Fig. 3) can be filtered with a window size of 32×32 sam-
ples and maximum overlap in 0.03 s on a desktop workstation.
Thus, this filter technique can be used in real-time applications.
For comparison, a neural network approach applied to the same
data set required 7.2 s on the same workstation (Figs 3a and c).
The presented filter is part of the open-source lightguide toolbox
(Isken et al. 2022a) and is implemented into the Pyrocko’s Snuffler
App (Heimann et al. 2017), an interactive waveform and wavefield
explorer. It is to note that the computational performance of the fil-
ter depends on the size and subsequent number of the independent
filtering windows.

4 D I S C U S S I O N A N D C O N C LU S I O N S

The coherent wavefield recorded in the DAS data can be success-
fully separated from the incoherent noise by both presented filter
variants. While the AFK filter better suppresses uncorrelated noise
it distorts the signal’s amplitudes. The NAFK filter does suppress
uncorrelated noise within correlated signals less effectively, but it
maintains the true amplitude of the seismic wavefield. The filter’s
application and strength lies in emphasizing and recovering a co-
herent wavefield, and thus can aid interpretation and analysis of the
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Figure 3. Comparison of the NAFK filter against a neural network de-noiser (jDAS, van den Ende et al. 2021). DAS data de-noised with (a) jDAS, (b) the
NAFK filter and (c) the AFK filter. For the N/AFK filter α = 0.8, the window size is 32 samples with 15 samples overlap. (d) Vertical slice across the channels
comparing jDAS (black), N/AFK filter (red/green lines) and raw data (gray) at t = 1.6 s. In (e), the channel 260 of the jDAS (black) and N/AFK (red/green
lines) filtered data is shown as time-series, the unfiltered raw data are shown in grey. The pre-trained jDAS network has been used and no post-filtering has
been applied to either data set.

seismic data. These filters are attractive for routine processing of
large DAS data sets due to their robustness, computational perfor-
mance and small number of parameters. When the filters are applied
conservatively (small window size and small α) little to no artefacts
are introduced to the data, whereas large window sizes in x and
t can introduce acausal leakage and ringing due to spreading the
amplified energy of dominating wavenumbers (Fig. A4, Supporting
Information). The non-destructive broadband character of the filters
enables a wide variety of seismological and seismic applications,
especially when combined with established frequency band filtering
techniques.

The filters’ performance and computational efficiency is outper-
forming recent neural-network approaches for de-noising DAS data
(Fig. 3), furthermore, the sturdy f–k approach does not require re-
training of a neural network (on a fixed-size data frame) for new
data sets or changing noise environments. The presented technique
is purely data-driven and leverages well-known signal-processing
techniques for DAS data. The real-time performance of the fil-
ter allows to control its parameters (i.e. strength α and window
size) interactively, thus enabling the interactive exploration of the
recorded seismic wavefields (as implemented in the Pyrocko tool-
box). The small and independent filtering windows allow the filter
to work on data acquired along undulating cable geometries with
rapidly changing apparent slowness of the wavefield. Both, the AFK
and the NAFK filters are potentially suitable for a wider applica-
tion in evenly spaced geophysical data sets. While the AFK filter
is very effective in the suppression of uncorrelated noise, it is lim-
ited to applications where the signal amplitudes themselves are not
important, for example, event detection and localization, ambient
noise correlation, earthquake clustering, active seismic surveying
or for imaging with ground-penetrating radar. The NAFK filter is
suitable to suppress noise in applications where signal amplitudes
are important, for example, earthquake source inversions or rupture
directivity studies.

A C K N OW L E D G M E N T S

The VSP experiment in Landwüst was supported by Christopher
Wollin, Charlotte Krawczyk and Philippe Jousset from GFZ Pots-
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rogator. The drop weight for the VSP shots was provided by the
GIPP pool at GFZ Potsdam. The plots have been generated using
Matplotlib (Hunter 2007) and Pyrocko (Heimann et al. 2017). The
high-performance filter functions are leveraging the discrete Fourier
transforms from the FFTW package and the filter has been imple-
mented in Rust system programming language (Matsakis & Klock
2014). This work was funded by the DEEPEN project (GEOTHER-
MICA; Bundesministerium für Wirtschaft und Energie, Germany,
funding no. 03EE4018). The raw DAS data were converted to
MiniSEED with DAS convert (Isken et al. 2021).

DATA AVA I L A B I L I T Y

All data shown and analysed as well as the software are openly
available. The software package and filter implementation is part of
the Python package lightguide and can be downloaded from Pyrocko
git repositories at https://github.com/pyrocko/lightguide. All shown
DAS data sets and plotting scripts are part of the extended electronic
supplement published through Zenodo, see Isken et al. (2022b). The
jDAS neural network is provided by van den Ende et al. (2021) at
https://github.com/martijnende/jDAS..
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Figure S1. Noisy record of a regional earthquake event ML 4 in
Poland at 300 km distance to the ICDP borehole in Landwüst,
Germany. Performance of the AFK filter (eq. 1). See the caption of
Fig. 1 for details.
Figure S2. Noisy record of a regional earthquake event, see Fig. A1
for event details. Performance of the NAFK filter (eq. 2). See cap-
tions of Fig. 1 and Fig. A1 for further details.
Figure S3. Synthetic test with a sweeping wavefield expressing dif-
ferent slowness, overlaid by Gaussian spectral noise. The sampling
is regular at 1 m at 100 Hz, the linear sweep as a function of×is
from 0.1 to 2 Hz. The filter exponent α = 0.8 for four different filter
sizes (32, 64, 128 and 256 samples at maximal overlap) for the AFK
(second row) and NAFK filter (third row) type are shown. The white
rectangle shows the size of the filter window. The lower panels show
the averaged and normalized power spectra of the signal region for
the input (black), AFK (red) and NAFK filter (blue). The green area
shows the noise frequency band used for calculating the filter effect
in dB.
Figure S4. Wavefield from a local earthquake (ML 1 at 12 km
hypocentre distance) recorded on the vertical DAS fibre in the ICDP
borehole in Landwüst, Germany. Comparison of rectangular win-
dow sizes using the NAFK filter. The white rectangle in the lower
left corner shows the different window sizes, from top to bottom: 16
traces×0.05 s, 16 traces×0.1 s, 32 traces×0.2 s and 32 traces×0.4 s.
The white dashed line at 14.1 s illustrates the P-phase arrival time
at channels 336 to 660, and serves as a visual anchor to demonstrate
leakage of large windows. The coherent wavefield shows increasing
leakage of the filter illustrated through apparent wave arrivals even
before the P-phase arrival with growing filter window sizes. The
figures have been plotted without interpolation.
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