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Abstract

Floods are among the most devastating natural disasters and are expected to

become more severe with changing climate and population growth. Flood fore-

casting is one of the key components of flood risk reduction. The potential for

seasonal flood forecasting through climate indexes has not been studied for

West Africa so far. This work investigates how climate indicators can be used

to predict in advance, one to several months ahead of the flood season, above

or below normal flood discharge in West Africa. Six global and regional cli-

mate indexes were screened for their potential to predict flood discharge of

56 river gauging stations across West Africa. Forecasting models are developed,

based on simple and multiple linear regressions between climate indexes and

annual maximum discharge, and evaluated using the relative operating char-

acteristics and the relative operating levels scores. The western dipole mode

index is the most skillful individual climate index for above normal flood pre-

diction. Combining climate indexes via multiple linear regressions outperforms

individual climate indexes for both above and below normal flood prediction.

The models show forecasting skills for up to 4 months prior to the flood sea-

son. Hence, this study opens promising possibilities for seasonal flood forecast-

ing in West Africa. This may help alert disaster reduction agencies of entering

a period of an increased chance of flooding and may trigger adequate mitiga-

tion measures.
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1 | INTRODUCTION

Climate change and its associated increase in the inten-
sity and frequency of hydrological extremes such as
floods is one of the current global challenges (Dottori
et al., 2018; Merz et al., 2021). Disaster risk reduction

(DRR), and particularly flood DRR (FDRR), supports
communities to adapt to the negative impacts of climate
change and remains of primary importance in achieving
sustainable development goals (SDGs).

A key component of FDRR is flood preparedness,
which requires prior knowledge of flood intensity and
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frequency to shape appropriate responses. Seasonal fore-
casting of flood frequency and quantiles, several months
ahead, could be valuable information for enhanced pre-
paredness in flood risk management. However, its poten-
tial is largely unexplored (Arnal et al., 2018). In Africa,
several initiatives have been undertaken to forecast
floods (Thiemig et al., 2011). However, these initiatives
focus on lead times varying between 1 and 15 days,
emphasizing short-term flood forecasting of lead times
up to 3 days.

The potential benefit of flood forecast information
increases with the lead time. Therefore, with at least
1 month of lead time, seasonal flood forecasting could
substantially improve flood risk management strategies.
This time could be used to release water from dams to
provide additional retention capacity or to procure disas-
ter management supplies and implement strategies
(White et al., 2017). Seasonal forecasts cannot predict the
weather or the flood peak at a certain point in space or
time. However, they inform about probable anomalies
and deviations from the normal or average conditions,
for instance, shifts in flood probability distribution
(White et al., 2017). This predictability is driven mainly
by slowly varying Earth system components, such as sea
surface temperature (SST). Hence, flood peak distribu-
tions are often related to large-scale circulation patterns
(Kundzewicz et al., 2019) like el nino southern oscillation
(ENSO). Evidence of such a relation was given by Ward,
Jongman, et al. (2014) who examined correlations
between observed peak discharge and the southern oscil-
lation index (SOI) on the global scale. They found strong
relationships between ENSO and annual floods in most
parts of the globe. There is also evidence from a substan-
tial number of regional studies. For example, Räsänen
and Kummu (2013) found that ENSO significantly influ-
enced the hydrology of the Mekong River and that flood
duration was on average more than 1 month longer dur-
ing La Niña years compared to El Niño years. The stratifi-
cation of a regional flood index according to ENSO and
interdecadal pacific oscillation led to marked differences
in flood quantiles for 40 flood gauges in New South
Wales, Australia (Kiem et al., 2003). Steirou et al. (2019)
detected coherent spatial patterns and substantial associ-
ations between climate indexes and flood probabilities
across Europe. Nakamura et al. (2013) showed that
20 major flood events in the Ohio River basin over the
last 100 years had nearly identical storm tracks, moisture
source, and delivery patterns suggesting that major flood
events are caused by specific large-scale climate patterns.
Similarly, Hounkpè et al. (2015) found a strong and sta-
tistically significant relationship between the annual
maximal discharge in the Ouémé basin (Benin) and cli-
mate indexes, such as the sea level pressure (SLP) and

SST of the Gulf of Guinea. Further, associations between
climate indexes and flood damage have been identified
for Europe (Zanardo et al., 2019) and at the global scale
(Ward, Jongman, et al., 2014). A promising research path
would be to use the potential predictability of climate
indexes such as ENSO to provide estimates of flood haz-
ard with lead times up to several months (Ward, Eisner,
et al., 2014; Ward, van Pelt, et al., 2014).

To the best of our knowledge, no attempt has been
made so far to estimate annual maximal discharge based
on climate indexes for seasonal flood forecasting pur-
poses in West Africa. Therefore, the objective of this work
is to investigate the link between flood quantiles and cli-
mate indexes and how this knowledge can be used to
forecast flood quantiles at the seasonal scale for improved
flood preparedness in West Africa.

2 | DATA AND METHODOLOGY

The methodological framework is summarized in
Figure 1. Each part of the framework is described in the
following sections.

2.1 | Data and data screening

Daily river discharges were obtained from the Global Run-
off Database Center (GRDC) and some West African
national hydrometeorological services. Six monthly climate
indexes were selected including (i) tropical southern atlantic
(TSA/SST) index and (ii) tropical northern atlantic
(TNA/SST) index (NOAA, 2020). TNA/SST is the anomaly
of the average monthly SST from 5.5 to 23.5 N and 15 to
57.5 W, while TSA/SST is the anomaly from the Equator to
20S and 10E to 30 W (Enfield et al., 1999). The choice of
TNA/SST and TSA/SST was guided by the findings of Atiah
et al. (2020) in which extreme precipitation in Ghana, West
Africa, was found to be significantly correlated with Atlan-
tic Ocean SST. (iii) SLP anomaly of the SOI (SOI/SLP) at
Darwin and Tahiti (NOAA, 2021) was used, as well as the
(iv) ENSO Nino3.4/SST (CPC/NOAA, 2005) corresponding
to the SST anomaly in Nino 3.4 region (5 N-5S, 120-170 W).
The (v) dipole mode index (DMI/SST) and (vi) Western
DMI (DMI_West/SST) derived from the SST of the equato-
rial Indian Ocean (Smith, 2020) were also considered.
DMI/SST is the anomalous SST gradient between the west-
ern equatorial Indian Ocean (50E-70E and 10S-10N) and
the southeastern equatorial Indian Ocean (90E-110E and
10S-0N). Significant changes in flood timing between posi-
tive and negative phases of both Indian Ocean Dipole and
El Niño–Southern Oscillation were found in Sub-Sahara
Africa (Ficchì & Stephens, 2019).

2 of 13 HOUNKPÈ ET AL.

 1753318x, 2025, 1, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1111/jfr3.12833 by H

elm
holtz-Z

entrum
 Potsdam

 G
FZ

, W
iley O

nline L
ibrary on [08/12/2024]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



The block maxima approach (BMA) over the calendar
year was used to obtain flood time series from continuous
discharge data. To address the issue of missing data, the
period of extraction of the annual maximal discharge was
limited to the rainfall season, which spans generally from
June to mid-November in West Africa. The boxplot
approach was used to identify possible outliers due to
missing data in the flood time series following the
approach of Chambers et al. (2018). For any given sta-
tion, after computing the interquartile range
IQR¼Quantile 0:75ð Þ�Quantile 0:25ð Þ, the lower adjacent
value of the boxplot defined as the smallest value greater
or equal to Quantile 0:25ð Þ�1:5� IQR is identified. Values
below the lower adjacent value are considered possible
outliers due to missing data and are particularly exam-
ined with the neighboring values.

2.2 | Identification of flood season

A widely accepted method for identifying the timing of
hydrological extreme events, e.g. annual maximal dis-
charge and peak over threshold discharge, is directional
statistics (Aguilar et al., 2017, Blöschl et al., 2017). Based
on Bayliss and Jones (1993), the date of occurrence of an
extreme event i can be transformed into directional statis-
tics by converting the day number DNi (varying between
1 and 366) into an angular measure θi:

θi ¼DNi
2π
365

, ð1Þ

Each date of occurrence can then be written in polar
coordinates employing a vector with a unit magnitude
and the direction specified by Equation 2. The coordi-
nates xm and ym of the mean of a sample of n dates of
occurrence can be written as:

xm ¼ 1
n

Xn
i¼1

cos θið Þ and ym ¼ 1
n

Xn
i¼1

sin θið Þ, ð2Þ

In polar coordinates, the mean of the sample will
have the following characteristics:

θ¼ arctan
ym
xm

� �
and r¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
xm2þ ym2

p
, ð3Þ

with θ the direction and r the magnitude of the mean of
the sample. The direction θ needs to be adjusted depend-
ing on its sign. 2π is added to negative θ while π is added
to positive θ to limit its variation to the interval 0,2π½ �.
The direction θ provides a measure of the mean timing of
the event for the sample of dates and can be converted
back to a mean number of days MND:

MND¼ θ
365
2π

, ð4Þ

FIGURE 1 Methodological framework for seasonal flood forecasting. WCI stands for weighted mean climate index, Qsim and Qobs

refer to simulated and observed flood peak discharge, respectively. KGE is the Kling and Gupta efficiency, abs, and corr represent the

absolute value and correlation functions. ROC and ROL are relative operating characteristics and the relative operating levels (ROL),

respectively
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The MND was considered in week number of the year as
well as the associated standard deviation.

2.3 | Relationship between annual
maximal discharge and climate indexes

Three-monthly weighted means (JFM = January to March,
FMA = February to April, MAM = March to May,
AMJ = April to June, MJJ = May to July) of the climate
index series were computed. The weight αi,j,m applied to
mth participating member (m¼ 1 to 3) was obtained by
optimizing the correlation between the observed annual
maximal discharge of the kth station Qobsk, k¼ 1 to 56ð Þ
and the three-monthly weighted mean climate index
series WCIi,j of the ith climate index i¼ 1 to 6ð Þ and the jth

period j¼ 1 to 5ð Þ as indicated in Equations 5 and 6.

max
0≤ αi,j,m ≤ 1

correlation WCIi,j,Qobsk
� ��� �� ð5Þ

For instance, for TSA/SST index i¼ 1ð Þ and the first
3months JFM j¼ 1ð Þ, the three-monthly weighted
mean is:

WCI1,1 ¼
α1,1,1 � TSA

SSTJanþα1,1,2 � TSA
SSTFebþα1,1,3 � TSA

SSTMar

α1,1,1þα1,1,2þα1,1,3
, ð6Þ

After determining the coefficient αi,j,m, the Spearman cor-
relation test was applied to WCIi,j and Qobsk and the
results were interpreted at 10% significance level.

2.4 | Flood discharge forecasting using
climate indexes

A significant correlation between weighted climate indexes
and flood time series of a given station suggests that its
annual maximal discharge series can be approximated
using a linear function of the weighted climate indexes.
Therefore, flood peaks Qsimi,j,k were estimated as follows:

Qsimi,j,k ¼ ak �WCIi,jþbk ð7Þ

The regression coefficients ak and bk and the weights
αi,j,m (see Equation 6) were estimated by minimizing the
difference between Qsimi,j,k and Qobsk using the Kling-
Gupta Efficiency (KGE) (Gupta et al., 2009). Depending
on the flood season identified for each station, T� jð Þ cor-
responds to the lead time of the seasonal forecast with
T the starting month of the flood season.

After assessing the flood predictability skill of each
climate index, the forecast skill of combined climate

indexes was evaluated using multiple linear regression
analysis. The predictors considered are the three-month
moving averages of each of the six climate indexes and
the simulated discharge from the multiple linear regres-
sion, Qsim, is calculated as:

Qsim¼
X6

i¼0
ai �WCIiþb ð8Þ

with ai and b the parameters to be identified by optimiz-
ing the KGE of Qsim and the corresponding Qobs. WCIi
corresponds to the three-month moving averages of each
of the six climate indexes. The independence of the cli-
mate indexes used in the multiple linear regression was
checked based on the variance inflation factor which was
less than 10 for the selected indexes (Thompson
et al., 2017).

2.5 | Forecast skill evaluation

The skill of a seasonal forecasting scheme to anticipate
the right category of an event several months ahead is of
great importance for decision-makers and flood risk man-
agers (Gobena & Gan, 2010). For that purpose, the ability
of the method for forecasting above normal and below
normal annual maximal discharge was assessed using the
ROC and the ROL after Mason and Graham (1999). The
thresholds used for ROC and ROL computation were the
lower and upper terciles of the observed annual maximal
discharge (Thomson et al., 2006; Winsemius et al., 2014).
We define as normal the range between the lower and
upper terciles of the observed annual maximal discharge.
The knowledge that flood magnitude for the coming sea-
son will be below normal (lower tercile) can guide reser-
voir managers in leaving less volume for flood control
and subsequently store more water for irrigation and
other usages. On the contrary, information on the above-
normal flood for the coming season can guide dam water
release strategies. For each station and lead time, a two-
by-two contingency table for the verification of a binary
forecast system was constructed and the following quan-
tities were computed (Table 1).

Hit rate :HR¼ h= hþmð Þ, ð9Þ

False alarm rate :FAR¼ f
f þ c

, ð10Þ

The hit and false-alarm rates, respectively, indicate
the proportion of events for which a warning was pro-
vided adequately and the proportion of nonevents for
which a warning was provided incorrectly (Mason &
Graham, 1999). A receiver operating characteristic curve,
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or ROC curve, is a graphical plot that illustrates the diag-
nostic ability of a binary classifier system as its discrimi-
nation threshold varies. From the hit and false-alarm
rates, the ROC score was calculated for each station and
each lead time with a ROC score greater than 0.5 indicat-
ing a positive skill. The ROC score is usually calculated
by plotting the hit rates against the false-alarm rates for
different warning criteria and then inferring the area
under the curve. A transformation of the ROC score was
used so that it ranges from �100 (a perfectly bad forecast-
ing system) to 100 (a perfect forecasting system) with
0 implying no skill, that is, same skill as the average
observed annual maximal discharge:

ROC Score %ð Þ¼ 2� ROCscore�0:5ð Þ �100 ð11Þ

The correct-alarm ratio indicates the proportion of times
that an event occurred given that a warning had been
provided while the miss ratio indicates the proportion of
times an event occurred when no warning had been
provided:

Correct�alarm ratio :CAR¼ h= hþ fð Þ, ð12Þ

Miss ratio :MR¼m= mþ cð Þ ð13Þ

Similar to ROC, the ROL score was calculated and was
expressed as a percentage. ROC and ROL scores are two-
dimensional measures of classification performance. For
more information on ROC and ROL scores, the reader
can refer to Mason and Graham (1999).

3 | RESULTS

3.1 | Data screening

Discharge data availability for West African river basins
is very challenging. In total, the data of 150 discharge-
gauging stations were obtained from GRDC and the

national hydrological services mainly for the Niger, the
Volta, and the Ouémé basins. The earliest record starts in
1922 (Tile-Mbeya, Nantaka, Koulikoro stations located in
the Niger basin), while the most recent record ends in
2017 (Bonou station in the Ouémé basin). The 56 dis-
charge stations having a minimum of 30 years data
length were selected (Figure 2).

3.2 | Flood seasonality

The knowledge of flood timing, that is, the period when
floods occur, is key information for flood risk reduction,
water planning, and reservoir management. Flood occur-
rence in West Africa and the associated standard devia-
tion are displayed in Figure 3. In general, floods occur
within the 34th and the 46th week of the year (August to
November) with some spatial discrepancies. Flood season
in the upper and lower Niger varies between the 36th
and 40th week of the year corresponding nearly to
September to early October. In the middle Niger (upper
closed curve in Figure 3), the mean flood timing varies
between the 34th and the 46th week. The ITCZ move-
ment governing rainfall onset, duration and amount,
may explain this high variability of flood timing over the
region. Earlier flood occurrence in the lower Niger com-
pared to some parts of the middle Niger can be explained
by the local rainfall regime leading to peak discharge
greater than peak discharge associated with flows coming
from the farthest tributaries in the Sahel (Badou
et al., 2017; Le Barbé et al., 1993).

In the Volta-Mono-Couffo-Ouémé basins, the mean
of flood timing varies between the 34th and 40th week
(August to early October). This finding is in line with Fic-
chì and Stephens (2019) who obtained similar results in
northern sub-Saharan Africa (including the Sahel and
Guinea region).

The results presented in Figure 3 suggest that the pre-
flood season (period preceding flood season) ends in July.
For the sake of simplicity, a homogeneous end of the pre-
flood season namely week 30, was used for all catch-
ments, despite the variation. This endpoint allows at least
a 1-month lead time which is long enough to take neces-
sary decisions to reduce flood impacts.

3.3 | Relationship between annual
maximal discharge and climate indexes

The association between annual maximal discharge and
climate indexes, weighted to three-month means, was
evaluated with the Spearman correlation and tested at
the 10% significance level (Figure 4). Positive as well as

TABLE 1 Two-by-two contingency table for the verification of

a binary forecast system

Observation

Forecasts

Warning (W) No warning (W0) Total

Event (E) h m e

Nonevent (E') f c e'

Total w w' n

Note: H refers to the number of times a flood warning was issued and was
effectively observed; m is the number of times a flood event was not issued
but was observed. The other quantities can be interpreted similarly.
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negative correlations were found. SOI/SLP shows a
mainly positive correlation, while the correlation of
DMI_West/SST is primarily negative. Consistent correla-
tions across different catchments and lead times are
found for SOI/SLP and DMI_West/SST suggesting their
substantial linkage to floods occurrence and magnitude

in West Africa. This suggestion is supported by the high
influence of DMI_West/SST (Atiah et al., 2020) and
SOI/SLP (Egbuawa et al., 2017) on rainfall in West
Africa. Therefore, the two climate indexes are promising
predictors for seasonal forecasting of annual maximal dis-
charge in the region.

FIGURE 2 Location of stations, catchment boundaries and river network. Colors indicate available data length. Numbers refer to the

station names given in Table S1 in the supplementary material

FIGURE 3 Week of flood occurrence (left) and the associated standard deviation (right) in West Africa. The closed curves on the left

figure indicate the subdivision of the study area in four zones namely the upper, middle, and lower Niger, and the Volta-Mono-Couffo-

Ouémé basins (basins)
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TNA/SST shows a significant correlation with Qobs
for a very limited number of stations scattered through-
out the region with both highly variable positive and neg-
ative correlations depending on catchments and lead
times. This suggests that TNA/SST is not a useful predic-
tor for flood magnitude in West Africa. DMI/SST shows
mainly positive and high correlations for lead times 2–
4 months, but negative correlations for lead times equal
to and smaller than 1 month.

A high and statistically significant correlation
between Qobs of a given station and a climate index
implies that the climate index can be used as a proxy for
obtaining useful information about floods for the coming
season. With the flood season spanning from August to

November in West Africa, and in case of significant cor-
relation, the three-month weighted mean climate indexes
of JFM, FMA, MAM, AMJ, and MJJ would be valid pre-
dictors for flooding with corresponding lead times from
4 to 0 months. For the lead times of 4 and 3 months (JFM
and FMA), DMI/SST shows the highest fractions of sta-
tions with significant correlations of 62.5% and 57.1%,
respectively. For 2 and 1 months (MAM, AMJ), SOI/SLP
gives the highest fractions with 69% and 75%, respec-
tively. DMI_West/SST shows the highest number of sta-
tions (73.2%) with a significant correlation for the lead
time of less than one month (MJJ). Overall, DMI_West/
SST is the best individual climate index indicating a sig-
nificant correlation with at least 52% of the stations,

FIGURE 4 Statistically significant correlation coefficients between the annual maximal discharge and weighted three-month mean

climate indexes. Values above each map indicate the percentage of stations showing a statistically significant correlation at 10%. SST refers to

sea surface temperature, SLP is sea level pressure. TSA and TNA are the tropical southern Atlantic and tropical northern Atlantic indexes,

respectively. ENSO/Nino3.4 is the SST anomaly in Nino 3.4 region. DMI is the dipole mode index and DMI_West is the western DMI of the

equatorial Indian Ocean. Combined indexes refer to linear multiple regression of all indexes
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irrespective of the lead time, followed by SOI/SLP
(at least 41%).

The combination of all climate indexes through mul-
tiple linear regression outperformed the individual
indexes in terms of the number of stations indicating a
statistically significant correlation irrespective of lead-
time. The strictly positive correlation found for all the sta-
tions confirmed that these covariates have the same influ-
ence on flood characteristics in the region and could
serve as valid predictors. Due to the relatively low perfor-
mance of TNA/SST and ENSO/Nino 3.4, they were

excluded as potential individual predictors but considered
in the multiple linear regression analysis.

3.4 | Flood predictability from climate
indexes

The significant correlation between Qobs and climate
indexes suggests that Qobs can be written as a linear func-
tion of these climate indexes. As shown in Figure 5, climate
indexes are skillful indicators for predicting whether Qobs

FIGURE 5 Boxplot of the ROC and ROL scores across the 56 stations for above normal and below normal annual maximal discharge

and different lead times. SST refers to sea surface temperature, SLP is sea level pressure. TSA and TNA are the tropical southern Atlantic

and tropical northern Atlantic indexes, respectively. DMI is the dipole mode index and DMI_West is the western DMI of the equatorial

Indian Ocean. Combined indexes refer to linear multiple regression of all indexes
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in the coming months will be anomalously low or high.
This is shown through the positive interquartile values of
the ROC and the ROL scores for most of the lead times and
climate indexes considered except SOI/SLP. A positive ROC
score indicates that the hit rates, which provide an estimate
of the probability that an event will be forecasted, are larger
than false-alarm rates, which is the probability that for a
nonevent a warning will be provided incorrectly (Mason &
Graham, 1999). A positive ROL score implies that the
correct-alarm ratio is greater than the miss ratio.

SOI/SLP and TSA/SST better predict below normal
flood discharge as their median ROC scores are higher

for below normal floods compared to above normal
floods. In contrast, DMI/SST and DMI_West/SST better
predict above normal flood discharge than below normal
discharge. The median values of the ROL score are con-
stantly greater than the corresponding median values of
the ROC score for below and above normal discharge
conditions. This implies that the ROC score tends to
penalize the forecast system more than the ROL score.
However, the performances indicated by the ROC score
and ROL score are concordant.

For the above-normal discharge condition, the
median ROC score using DMI_West/SST increases as the

FIGURE 6 Best climate index for above (top rows) and below (bottom rows) normal flood prediction for each catchment and lead time.

Numbers in brackets give the percentage of stations with positive skills using the best climate index. Tables display the percentage of stations with

a positive skill for the different climate indexes and cells with yellow color indicate the best indexes. SST refers to sea surface temperature, SLP is

sea level pressure. TSA and TNA are the tropical southern Atlantic and tropical northern Atlantic indexes, respectively. DMI is the dipole mode

index and DMI_West is the western DMI of the equatorial Indian Ocean. Combined indexes refer to linear multiple regression of all indexes
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lead time decreases, implying that as the flood season is
approaching the performance of the prediction increases.
In contrast to DMI_West/SST, the performance of pre-
dicting above-normal discharge using DMI/SST decreases
as the flood season approaches. For below normal dis-
charge, the performance using TSA/SST, SOI/SLP and
DMI_West/SST, respectively, generally increases as the
lead time decreases.

The combination of the six climate indexes through
multiple linear regression maximizes the forecast skill as
indicated by the strictly positive interquartile values of
ROC and ROL score for below as well as for above nor-
mal annual maximal discharge regardless of the lead
time. Hence, although the forecast performance varies
for below and above normal flooding, the forecast system
based on climate indexes has substantial skill in predict-
ing below or above normal flooding up to 4 months
ahead of the flood season.

The most skillful climate index for above or below nor-
mal flood prediction for each catchment and lead time is
displayed in Figure 6. The percentage of catchments exhi-
biting positive skills for forecasting above normal floods
generally increases with decreasing lead time, from 80% for
4 months to 91% for 1 month or less. For below normal
floods, there is no general pattern. The forecasting system
tends to be similarly skillful in predicting below normal
flood discharge as well as above normal flooding.

The combined climate index shows the highest skill
in forecasting both above and below normal floods in
West Africa for almost all lead times. It is the best index
for more than 70% of the skillful catchments for lead
times greater than or equal to 1 month. For lead time less
than 1 month, DMI_West/SST is the best climate index
for 29% and 31% of the skillful catchments for above and
below normal floods, respectively.

4 | DISCUSSIONS AND
CONCLUSIONS

The potential usefulness of a seasonal forecasting system
to predict above or below normal flood discharge in West
Africa was assessed. The forecasts are based on simple
and multiple linear relationships between observed
annual maximal discharge (Qobs) and climate indexes
for statistically significant correlations at the 10% signifi-
cance level. Except for TNA/SST and ENSO_Nino3.4/
SST, the four other climate indexes (TSA/SST, SOI/SLP,
DMI_West/SST, and DMI/SST) indicated statistically sig-
nificant correlations with Qobs for most of the catch-
ments considered. The mainly positive correlations found
for DMI/SST are in line with Dyer et al. (2017) who indi-
cated that warming in the Indian Ocean induces an

increase in the Sahelian rainfall while the opposite
implies a decrease in the Sahelian rainfall. Extreme pre-
cipitation in the Sahel and Guinean coastal region, a
proxy of high discharge, were found to be highly related
with El Niño 3.4 index (Diatta et al., 2020) and, El Niño-
Southern Oscillation (ENSO) and Mediterranean variabil-
ity (Diakhaté et al., 2019), and Atlantic Ocean SST (Atiah
et al., 2020). The combination of climate indexes in a lin-
ear multiple regression analysis significantly improved
the prediction skill compared to individual climate
indexes.

The potential differences in the results presented
above due to the change in the significance level from
10% to 5% for correlation analysis were tested. For that
purpose, all the correlation analyses between the three-
month weighted mean climate indexes and the observed
annual maximal discharge have been repeated using the
5% significance level. For the combined climate indexes,
the correlation was computed between the simulated
annual maximal discharge from the multiple linear
regression and the observed annual maximal discharge.
The results of the percentage change between the num-
ber of stations indicating statistically significant correla-
tion at 10% and 5% levels are shown in Table S2 in the
supplementary material. When considering single climate
indexes, it can be observed that from 10% to 5% signifi-
cance levels, the results substantially differ with a
decrease in the number of statistically significant stations
between 12 to 75%. However, for the multiple linear
regression based on all the indexes, the difference
between the two outputs is less than 10%. This indicates
that the multiple linear regression model which outper-
formed the models based on individual indexes (see ROC
and ROL scores) is not very sensitive to the variation in
the significance levels from 10 to 5%.

While the linkage between extreme precipitation and
climate indexes has been widely investigated in West Africa,
knowledge about teleconnections between flood character-
istics and climate indexes is very limited. Our study is
among the first to investigate the climate-flood link in West
Africa. In a global study, Ward, Jongman, et al. (2014)
found a strong linkage between ENSO and parts of the
Sahel and western Africa flood risk. Li et al. (2016) analyzed
flood events for 55 countries in Africa relative to ENSO
(SOI) years and found a statistically significant relationship
at a continental level. A strong linear correlation between
annual discharges and ENSO was also found in
South Africa (Alemaw & Chaoka, 2006) and the Nile river
basin (Siam & Eltahir, 2015). Hence, our study is the first
study to explore the relationship between floods and climate
for other climate modes besides ENSO.

The potential benefits of flood forecasting increase with
the forecast lead time. The forecasting skill was evaluated
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using the ROC and ROL scores by considering the lower
and upper terciles as reference thresholds (Arnal
et al., 2018; Mason & Graham, 1999). According to the
ROC score, most of the forecasting models mainly the mul-
tiple linear regression model were skillful compared to the
perpetual warnings or no warnings situation (Mason &
Graham, 1999), corresponding to the average historical
hydrometeorological information. It can provide useful
information on the coming flood season up to 4 months
ahead.

The forecast models are based on a direct (and linear)
relationship between flood peaks and climate indexes. This
link does not consider a range of processes, such as flood-
triggering rainfall patterns, antecedent catchment state, run-
off generation, and human interventions in catchments and
rivers that modulate the relation between large-scale cli-
mate indexes and local flood characteristics. However, as
the forecasting models are completely based on observa-
tions, these processes are inherently embedded in the
models–at least in a rough way.

Despite their simplicity, the forecasting models showed
positive skill, compared to the average hydrometeorological
situation, for lead times of up to 4 months. Such a long
period can be of large value for decision-making. The fore-
casts of above-normal flood discharge, several months
ahead, can help alert agencies and the public of entering a
period of an increased chance of flooding and therefore
improve flood preparedness for the upcoming flood season.
It would be interesting to explore how the identified links
between climate variability and streamflow could be
exploited for flood risk management but also for other
water-related sectors, such as water resources management
(White et al., 2017), hydropower generation (Lima &
Lall, 2010), and dam management (Viel et al., 2016).
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