
1.  Introduction
Earth's radiation belts consist of two torus-shaped rings of highly energetic electrons and protons (Van Allen 
& Frank, 1959). The inner belt, located between L = 1 and 3 (Roederer, 1970), is composed of ∼100–700 keV 
electrons and ∼10–100 MeV protons (Fennell et al., 2015), while the outer radiation belt, L = 2.8–8, is composed 
of primarily 0.5–10 MeV electrons. Though the inner radiation belt remains generally stable, the outer radiation 
belt may experience dynamic variations, especially during periods of enhanced geomagnetic activity (Baker 
et al., 1986, 1997; Craven, 1966; Reeves et al., 1998; Rothwell & Mcilwain, 1960).

Geomagnetic storms play a crucial role for electron enhancement events within the radiation belts (Bingham 
et al., 2018; Drozdov et al., 2019; Reeves et al., 2003; Turner et al., 2014, 2019), as they can facilitate wave 
generation (e.g., EMIC, chorus, etc.). The following resonant wave-particle interactions, resulting from this 
wave generation, impact the dynamic processes within the radiation belts (e.g., Jordanova et al., 2008; Lyons 
et al., 1972; Summers et al., 2007a; Summers & Throne, 2003, etc.). Radiation belt electrons may be accelerated 
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Plain Language Summary  Earth's radiation belts are comprised of two highly dynamic regions 
consisting of very energetic charged particles (protons and electrons). This paper presents two models that 
predict electron fluxes at geosynchronous orbit (i.e., the outer radiation belt) and create a scaling factor that 
can be used in simulations of the radiation belt. Both models are derived using satellite measurements of 
energetic electrons and a neural network-based machine-learning algorithm, the Nonlinear Autoregressive with 
Exogenous input (NARX). Common geomagnetic activity indices are used as driving inputs for the model. 
We compare our geosynchronous electron flux model to satellite observations to showcase their performance. 
Using our NARX-derived scaling factor, we reconstruct the radiation belts between July and November 
1990, and compare it with contemporaneous satellite measurements to show how our model can reproduce 
observations. Our model allows us to simulate the historical radiation belts from as early as the 1930s, when 
satellite measurements were unavailable.
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or scattered at certain energies, depending on the type of wave activity [for example, hiss (Shprits et al., 2008), 
EMIC (e.g., Drozdov et al., 2017; Summers & Throne, 2003; Zhang et al., 2016), and chorus (e.g., Summers 
et al., 2007a, 2007b), etc.]. Understanding in detail how these electron acceleration and loss processes affect the 
outer radiation belt remains a dominant topic of research within the space science community. This introduction 
will provide a summary overview of magnetospheric drivers, previous models (and their inputs [e.g., geomag-
netic indices, solar wind conditions, and electron flux observations]), and the techniques used to develop these 
models. The goal of this study is to develop two new models independent of in situ observations.

The dynamics of the Earth's magnetosphere are heavily susceptible to and driven by external solar wind condi-
tions (e.g., solar wind dynamic pressure (Pdyn), solar wind speed (Vsw), etc.), and the level of geomagnetic 
activity (e.g., Kp, Dst, Sym-H, and AE, etc.; Reeves et al., 2013; Saikin et al., 2016). Hence, these indices are 
often considered as proxies to explain electron enhancements and/or depletions (at their respective energies) in 
the radiation belts. Long-term recorded observations of geomagnetic activity exist for some indices as early as the 
1860s (i.e., the aa index; Bernoux & Maget, 2020).

However, direct observations of the radiation belts are limited by the uneven spatial and time distribution of 
previous missions and may bias the interpretation of the data (Abel et al., 1994; Saikin et al., 2015). Therefore, 
simulations and modeling have become the prominent methods of exploring the physics that govern the radiation 
belts in a controlled environment. The use of Kp-driven models has become more prevalent over the last few 
decades (e.g., Beutier & Boscher, 1995; Drozdov et al., 2015, 2017; Glauert et al., 2014; Ma et al., 2016; Reeves 
et al., 2012; Shprits & Ni, 2009; Shprits et al., 2008; Subbotin & Shprits, 2009), while other models, like DREAM 
(Reeves et al., 2012) or the Salammbô electron code (Maget et al., 2006) may incorporate both geomagnetic data 
(i.e., Dst or Kp) along with data observations from satellite missions. Although these models and methods have 
proven successful in replicating the respective mission's observations, the necessity of in-situ data observations 
to produce those simulations constricts the time periods we may examine to those when near-continuous obser-
vations exist (i.e., post-1986 (Glauert et al., 2018)).

In recent years, machine learning has become a more prominent tool in its role to help model the radiation belts 
(Balikhin et al., 2016; Ganushkina et al., 2015; Saikin et al., 2021) or to forecast geomagnetic indices (Ayala 
Solares et al., 2016; Camporeale, 2019). Specifically, the use of the nonlinear autoregressive with exogenous 
input (NARX) models has been successfully employed to predict and model geomagnetic indices (such as Dst 
(Balikhin et al., 2011; Boynton et al., 2011; Wei et al., 2004) and Kp (Ayala Solares et al., 2016)). NARX is 
a machine learning algorithm that uses both current and past time step inputs to determine current and future 
outputs. Unlike other machine learning algorithms, with NARX, the time history is automatically incorporated 
and therefore does not require the additional construction of time series for historical values as additional inputs. 
Another machine learning algorithm, the Nonlinear AutoRegressive Moving Average with eXogenous inputs 
(or NARMAX), is like the NARX model, except that it incorporates a moving average of the error. NARX, for 
simplicity, reduces this moving average error term to a singular noise term.

Though most studies have focused on the forecasting of geomagnetic indices, it has been suggested that a NARX 
neural network could be employed to determine boundary conditions used in simulation studies (Campore-
ale, 2019). Given NARX's predictive abilities, we can train an empirical model based on the relationship between 
radiation belt measurements and geomagnetic activity. These neural networks will allow us to simulate and 
explore the radiation belts independently of in-situ observations and expand the available radiation belt data sets 
used for analysis (provided the geomagnetic or solar wind drivers are provided). Recently, the results and tech-
niques presented in this study were used to perform a series of radiation belt reconstructions. In the companion 
paper, Saikin et al.  (2021) employed the use of the NARX neural network-derived upper boundary condition 
presented in this study, along with the VERB-3D code, to hindcast the radiation belt electrons from 1933 to 2017 
(i.e., Solar Cycles 17–24) at 0.5, 1.0, and 2.0 MeV. This combination of empirical and physics models into gray-
box models (i.e., models which incorporate a data-driven set of parameterization inputs with a physics-based 
construction) is particularly promising for space weather applications and modeling radiation belt electrons and 
should be continuously explored and refined (Camporeale, 2019).

This study focuses on the creation and utilization of a NARX neural network to model geosynchronous flux 
(with a 5-min cadence) and determine an upper boundary condition that may be used to model the radiation belts, 
independent of direct observations. The geosynchronous model is the first to predict with such high resolution 
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and to not recalibrate after the initial starting point (being driven solely by geomagnetic indices). This manu-
script is organized as follows: in Section  2, we describe the NARX neural network in detail (its inputs and 
exports) followed by the data observations used in the construction of the neural network (i.e., geomagnetic, solar 
wind conditions, and GOES observations) and comparison (CRRES). Section 3 describes how the NARX neural 
network was optimized and how the exogenous inputs were selected (by providing correlation coefficients (CCs) 
based on the model performance against GOES-15 measurements). In Section 4, we apply our derived neural 
network GOES-15 measurements and our upper boundary condition to another period independent of the GOES 
observations (i.e., CRRES). Finally, in Sections 5 and 6, we discuss our results and summarize our conclusions, 
respectively.

2.  Methodology
2.1.  Description of NARX

The NARX model is a type of recurrent neural network (RNN) designed to utilize time series data to model their 
predictions. RNNs are unique from other neural network algorithms in that, when they examine the connection 
between two nodes, RNN expects to find causality in only one direction, preserving the temporal order of the 
nodes (i.e., a future node or event cannot be the cause of a previous one). Following the description in Ayala 
Solares et al. (2016), the NARX model can be formalized as follows:

𝑦𝑦(𝑘𝑘) = 𝑓𝑓 (𝑦𝑦(𝑘𝑘 − 1),…, 𝑦𝑦 (𝑘𝑘 − 𝑛𝑛𝑦𝑦) , 𝑢𝑢(𝑘𝑘 − 1),…, 𝑢𝑢 (𝑘𝑘 − 𝑛𝑛𝑢𝑢)) + 𝑒𝑒(𝑘𝑘)� (1)

where 𝐴𝐴 𝐴𝐴 (𝑦𝑦𝑦 𝑦𝑦) is a function that will be determined from the data. The functions 𝐴𝐴 𝐴𝐴(𝑘𝑘) and 𝐴𝐴 𝐴𝐴(𝑘𝑘) are the system input 
and output signals, respectively. e(k) represents the error (i.e., system noise, with k = 1, 2, ….N), and 𝐴𝐴 𝐴𝐴𝑢𝑢 and 𝐴𝐴 𝐴𝐴𝑦𝑦 are 
the maximum lags for the input and output signals, respectively. By assuming that 𝐴𝐴 𝐴𝐴 (𝑦𝑦𝑦 𝑦𝑦) can be approximated by 
a linear combination of a predefined set of functions 𝐴𝐴 Φ𝑖𝑖(𝜑𝜑(𝑘𝑘)) , Equation 1 can be expressed in a linear-in-the-pa-
rameters form:

𝑦𝑦(𝑘𝑘) =

𝑀𝑀
∑

𝑖𝑖=1

𝜃𝜃𝑖𝑖Φ𝑖𝑖(𝜑𝜑(𝑘𝑘)) + 𝑒𝑒(𝑘𝑘)� (2)

where 𝐴𝐴 𝐴𝐴𝑖𝑖 are the coefficients to be determined (i.e., estimated), 𝐴𝐴 Φ𝑖𝑖(𝜑𝜑(𝑘𝑘)) are the predefined functions that depend 
on the regression vector 𝐴𝐴 𝐴𝐴(𝑘𝑘) =

[

𝑦𝑦(𝑘𝑘 − 1),…, 𝑦𝑦 (𝑘𝑘 − 𝑛𝑛𝑦𝑦) , 𝑢𝑢(𝑘𝑘 − 1),…, 𝑢𝑢 (𝑘𝑘 − 𝑛𝑛𝑢𝑢)
]𝑇𝑇  of past inputs and outputs, and 

where M is the number of functions used in the set. Figure 1 shows a basic configuration of the NARX model 
used in this paper. The exogenous inputs, “x-inputs(t-τi)”, represent the data time series used to guide and esti-
mate the output parameter, “flux(t-τf)”, the past values of which are also inputted into the network. The initial 
training stage incorporates both input and feedback delays (in 2 and 2 time steps, respectively; see Section 3 for 
more detail) for both the inputs and past flux to determine the appropriate causal relationship. The input delay 
represents the number of past time steps (including the current time t) of the exogenous inputs (e.g., AE, Dst, 
MLT, and Kp, etc.) that are used to predict the current time step's target value (i.e., flux). Similarly, the feedback 
delay is, exclusively, the number of past time steps used for the target quantity (i.e., the flux) to predict the current 
value. The initial flux and input parameters are then weighted, w, and modified with the respective biases, b. 
These results are then filtered through a sigmoid function, f, which serves to create a newly trained flux model. 

Figure 1.  A diagram of the structure of the Nonlinear Autoregressive with Exogenous input model. The x-inputs (t - τ i) are 
the exogenous data time series where τi indicates the delay from time step t. The gray circles indicate the input and feedback 
delays for the exogenous time series and the flux (t - τ f), with their respective number of time steps (2 and 2 respectively, 
see Section 3.1 for details). Both flux and the x-inputs are weighted, w, while b denotes biases. The f represents a sigmoid 
function.
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Through each iteration, the weights and bias are optimized. This process continues until the best performing 
neural network is produced (preferably before the model becomes overtrained).

For this study, we have created two NARX models derived from the GOES-15 measurements. The first model 
was designed to model GOES-15 flux measurements of 0.8 MeV electrons. The second model is to describe an 
upper boundary scaling factor (BF) at L* = 6.6, used with the VERB-3D code to hindcast simulations of the 
radiation belts. We use and train NARX to obtain this BF scaling factor that can be multiplied by an average 
spectrum at GEO J (E, L = 7; Shprits et al., 2006; Subbotin & Shprits, 2009; Subbotin, Shprits, & Ni, 2011). 
Following the approach of Brautigam and Albert (2000), it is assumed that the flux at L* = 6.6 is determined by 
Jmodel (GEO) = Javeraged(at GEO) * BF. For comparison, we will examine our hindcasted results with the CRRES 
mission observations during the July–November 1990 period to show that crafting a NARX model during the 
GOES-15 era can be used to aid simulations when contemporaneous in-situ measurements are unavailable, as 
was done in Saikin et al. (2021).

2.2.  Observations

2.2.1.  GOES

Observations from the Geostationary Operational Environmental Satellite-15 (GOES-15) were used in the devel-
opment of the neural network. The Energetic Proton Electron and Alpha Detector provides 1-min measurements 
of electrons in two integral energy channels (>0.8 MeV and >2.0 MeV) at geostationary orbit (6.6 Re). The east 
and west telescopes on board GOES-15 are averaged together. The full energy spectrum range was represented 
by assuming an exponential spectrum nature with the 0.8 and 2.0 MeV energy GOES-15 energy channels. The 
integral flux was converted to differential flux at the two energies (0.8 and 2.0 MeV) and with a linear interpo-
lation of the logarithm of the flux between them. At each data point, L* was calculated using the T89 magnetic 
field model (Tsyganenko, 1989). We determined the respective energy for each GOES L* that corresponded to 
1 MeV at L* = 6.6, using the conservation of the first adiabatic invariant (μ). This derived differential flux was 
then converted to phase space density (PSD), for the 1 MeV electrons at L* = 6.6 (assuming a flat PSD vs. L*). A 
sine function distribution for the pitch angle measurements (taken from the MAGnetopsheric Electron Detector) 
was used at the outer boundary, and we use the long-term averaged spectrum to represent the energy distribution 
of the outer boundary PSD. This method of determining PSD and differential flux from the GOES-15 measure-
ments has proven to be an effective choice when comparing simulations to observations (Cervantes et al., 2020; 
Saikin et al., 2021).

2.2.2.  CRRES

Launched in July 1990, the Combined Release and Radiation Effects Satellite (CRRES) executed an orbit with a 
perigee and apogee of 1.05 Re and 6.26 Re, respectively, with an orbital period of 9.4 hr at an inclination of 18°. 
On board the CRRES mission, electron measurements were taken by the Medium Electron A (MEA) instrument 
(Vampola et al., 1992) in a logarithmic distribution of energies from 0.15 to 1.58 MeV over a total of 17 channels. 
The CRRES mission provided in-situ measurements of the radiation belts for 14 months during Solar Cycle 22.

2.3.  The VERB 3D Code

To simulate and model the relativistic electrons within the radiation belts, we employ the VERB-3D code to 
solve the Fokker-Planck equation numerically (Shprits et al., 2008; Subbotin & Shprits, 2009; Subbotin, Shprits, 
& Ni,  2011; Subbotin, Shprits, Gkioulidou, et  al.,  2011). The Fokker-Planck equation encompasses several 
processes to describe the dynamics and evolution of relativistic electron populations. Through wave-particle 
interactions (i.e., radial transport, local acceleration, or the loss of electrons to the atmosphere), chorus, plas-
maspheric hiss, electromagnetic ion-cyclotron (EMIC) waves, and lightning whistler waves often impact the 
electron population through a combination of pitch-angle, energy, mixed diffusion, and radial diffusion (caused 
by ultralow frequency waves).

Following the works performed by Saikin et al. (2021) and Subbotin and Shprits (2012), we use a single grid 
configuration of modified adiabatic invariants K (𝐴𝐴 𝐴𝐴 = 𝐽𝐽∕

√

8𝑚𝑚0𝜇𝜇 , where μ and 𝐴𝐴 𝐴𝐴0 represent the first adiaba-
tic invariant and the electron mass, respectively) and V (𝐴𝐴 𝐴𝐴 = 𝜇𝜇 ∗ (𝐾𝐾 + 0.5)

2 ) to solve the 3D Fokker-Planck 
equation. The use of these parameterizations is convenient for numerical calculations and defining boundary 
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conditions because K is independent of the particle's energy, and V is only loosely dependent on the particle's 
pitch angle. This method allows us to sidestep the interpolation between numerical grids used in earlier VERB-3D 
simulations, which reduces unstable code behavior and numerical errors (Subbotin & Shprits, 2009). Using these 
modified invariants, the Fokker-Planck equation takes the form:

��
��

= 1
�

�
��

� ⟨���⟩
��
��

+ 1
�

�
��

�
(

⟨�� � ⟩
��
��

+ ⟨���⟩
��
��

)

+ 1
�

�
��

�
(

⟨��� ⟩
��
��

+ ⟨���⟩
��
��

)

−
�
�

� (3)

where f represents the three-dimensional PSD and τ is the electron's lifetime. Here, 𝐴𝐴 ⟨𝐷𝐷𝐿𝐿𝐿𝐿⟩ , denotes the radial 
diffusion coefficients while 𝐴𝐴 ⟨𝐷𝐷𝑉𝑉 𝑉𝑉 ⟩ , 𝐴𝐴 ⟨𝐷𝐷𝐾𝐾𝐾𝐾⟩ , 𝑎𝑎𝑎𝑎𝑎𝑎 ⟨𝐷𝐷𝑉𝑉𝑉𝑉⟩ represent the drift and bounce-averaged diffusion coef-
ficients. The required Jacobian transformation from an adiabatic invariant system (μ, J, Φ) is denoted by G 
(𝐴𝐴 𝐴𝐴 = −2𝜋𝜋𝜋𝜋0𝑅𝑅

2

𝐸𝐸
𝐿𝐿−2

√

8𝜇𝜇𝜇𝜇0∕(𝐾𝐾 + 0.5)
2 ). RE represents the Earth radius and B0 = 0.3 G (the magnetic field on 

the equator of the Earth's surface). Finally, 𝐴𝐴 𝐴𝐴∕𝜏𝜏 is a loss term accounting for losses to the atmosphere and those 
caused by magnetopause shadowing.

All simulations were performed on an orthogonal grid of size 29 × 62 × 61 points for L, V, and K, respectively. The 
boundary conditions for these simulations are set at L* = 6.6 (with the total L* range set from 1.0 to 6.6) for energies 
from 10 keV to 10 MeV (V) and pitch angles from 0.7° to 89.3° (K), respectively. At the equator, K is defined as 
0 G^0.5*Re. The V grid points are distributed on a logarithmic scale, while the L* and pitch angle grid points are 
distributed linearly. Losses within the loss cone are denoted by the lower K boundary condition and do not represent 
the loss cone; effective loss within the loss cone is simulated through the f/τ term. PSD is set to zero at the lower K 
boundary, while the upper K boundary condition (also set to 0) is set to a zero-gradient PSD (which represents a flat 
distribution at 90°). PSD at the upper V boundary is set to zero, while PSD at the lower V boundary is set to an initial 
value and remains constant, representing the steady state balance between sources and losses of the low energy popu-
lation. The VERB code does not include convection with previous studies that have shown that a lower energy bound-
ary condition set at ∼tens of keV has little effect on radiation belt electrons (Castillo et al., 2019; Subbotin, Shprits, 
Gkioulidou, et al., 2011). To represent losses to the atmosphere, the lower boundary condition in L* is set to zero.

In keeping with previous VERB-3D code simulation studies (Kim et al., 2011; Subbotin, Shprits, & Ni, 2011), 
Kp-dependent electromagnetic (DLLm) radial diffusion coefficients derived from Brautigam and Albert (2000) 
were used. Though initially designed for Kp ≤ 6, we have used the functional dependence derived by Brautigam 
and Albert (2000) for the radial coefficient model to include the Kp > 6 values.

Wave particle interactions through gyro-resonance are also incorporated using previously derived parameterizations of 
waves occurring both inside and outside the plasmasphere. Within the plasmasphere, the simulation includes wave-par-
ticle parameterizations from Very Low Frequency (VLF) transmitter-generated whistler waves (Subbotin, Shprits, & 
Ni, 2011; Subbotin, Shprits, Gkioulidou, et al., 2011), plasmaspheric hiss (Zhu et al., 2019), and lightning waves 
(Subbotin, Shprits, & Ni, 2011; Subbotin, Shprits, Gkioulidou, et al., 2011). Beyond the plasmasphere, chorus waves 
were parameterized using wave amplitude and frequency measurements from the Van Allen Probes, corresponding 
to the dayside and nightside magnetosphere, respectively (Orlova et al., 2016). Following Saikin et al. (2021), EMIC 
wave-related diffusion coefficients (Drozdov et al., 2017) were included when the Kp index exceeded 2 with an assumed 
wave power of 0.1 nT 2. Diffusion coefficients were derived using the Full Diffusion Code (Orlova & Shprits, 2011; 
Shprits & Ni, 2009), based on the parameters obtained from those previous studies. They were then converted into the 
modified adiabatic invariants (V and K) following the methodology described by Subbotin and Shprits (2012). Those 
coefficients were used to perform 90-year simulations in the companion paper (Saikin et al., 2021). For this simulation, 
the plasmapause boundary was modeled using the Carpenter and Anderson (1992) model.

3.  Developing the NARX Model
3.1.  Optimizing Structure for the NARX Flux Model

To begin developing a NARX neural network for both flux measurements and BF, we must first optimize the 
architecture. This is done by determining the appropriate time series input delay and feedback delay with the 
highest correlations compared to the test data set, while also finding the appropriate number of hidden layers.
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We began with determining the input and feedback delays. Using the GOES-15 > 800 keV electron measure-
ments from June 2013 to June 2016, we trained 20 independent neural networks. These independently trained 
networks were then run on a 2-month test period (July–August 2016). Figure 2 shows the average of the top 
five CCs between the predicted and observed fluxes associated with the corresponding input (Figure 2a) and 
feedback delay (Figure 2b) for those 20 independent runs on the July–August 2016 test period (where each delay 
corresponds to a 5-min time step). The input delay for these test runs reaches its highest CC (∼0.74) when the 
input delay is set to 2 time steps (i.e., 10 min, the minimum of time steps possible for a NARX neural network) 
and proceeds to decrease down to a correlation of ∼0.71 at 40 time steps. However, the feedback delay similarly 
begins with a CC of ∼0.75 and begins to increase to ∼0.66 at 40 time steps (i.e., 200 min). From this point, the 
feedback delay CCs decrease with increasing time step inputs. With these results, we decided to use our model 
assuming an input and feedback delay of 2 and 2 time steps, respectively.

The next step in optimizing the NARX structure is to determine the appropriate number of hidden layer neurons. 
Although the number of hidden layer neurons can be determined by the number of exogenous inputs included in 
the model and the number of outputs, experiments can yield better results. To determine the appropriate number 
of hidden neurons to include, using the optimal input and feedback delays found in Figure 2, we trained 20 differ-
ent NARX neural networks with the same training period. Once trained, we compared and correlated each model 
against the test period, again July–August 2016. After completing these correlations, we increased the number of 
hidden layer neurons and repeated the process. Figure 3 shows the averaged top five and maximum CCs deter-
mined from each of the variable number of hidden neurons chosen. The highest correlation (∼0.74) occurred 
when the number of hidden neurons was set at 16. While this number of hidden neurons is less than the number 
of neurons suggested by heuristic methods, higher values might cause overfitting. For the purposes of modeling 
the GOES-15 flux measurements, the input delay, the feedback delay, and the number of hidden layer neurons 
chosen for the neural network were set at 2 time steps (i.e., 10 min), 2 time steps (i.e., 10 min), and 16 hidden 
neurons, respectively, to produce a GOES flux model with a 5-min cadence.

Figure 2.  The correlation coefficients (CCs) of log10 results associated with testing the input (a) and feedback delay (b) time 
steps used in constructing the Nonlinear Autoregressive with Exogenous input flux model. Each CCrepresents the maximum 
derived value (maroon) and the average and top quartiles of the 20 independent neural network trials (blue), with each time 
step representing 5 min. The selected delays are denoted by the maroon dot.
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3.2.  Selection of Exogenous Inputs for NARX Flux Model

An essential component involved in the development of NARX models is 
the choice of exogenous inputs. While several inputs exist (e.g., Kp, Dst, AE, 
and Vsw, etc.), which can be used to train the neural network, it is impor-
tant to verify which indices provide the best outcome when compared to the 
0.8  MeV electrons measured by GOES. The inclusion of too much infor-
mation (i.e., too many inputs/indices) may damage the performance of the 
neural network due to overfitting. The second stage of optimizing our NARX 
neural network therefore pertains to determining the most efficient selection 
of indices.

For this testing, we decided to focus on seven parameters (Kp, MLT, Dst, AE 
geomagnetic indices, solar wind speed [Vsw], and solar wind dynamic pres-
sure) and one locational metric (magnetic local time [MLT]). All trial runs 
used the same training period (June 2013–June 2016) and the same architec-
ture were derived from Section 3.1 and were tested against the same testing 
period of July–August 2016.

Table  1 shows the CCs for the input tests when that respective metric is 
removed from the network training. Of the tested metrics, the best perform-
ing neural network with the highest CC is the one where none of the indices 
are omitted (∼0.74). Conversely, the lowest CC (∼0.25) appears when MLT 
is removed as an input, indicating the necessity of the MLT measurements. 
Since the omission of no index yielded the highest average correlation, for 
the purposes of this model, we have included all of the exogenous inputs: 
Vsw, MLT, Kp, Pdyn, AE, and Dst.

3.3.  Optimizing Structure for NARX BF Model

The same procedure outlined above was also used in determining the appropriate architecture for the BF model 
(to be used in the VERB-3D simulations). BF was determined (as described in Section 2) from GOES-15 meas-
urements with the period of 1 January 2011 to 25 July 2015, used as the training set. The testing period was set 
from 26 July 2015 to 30 April 2016. Figure 4a shows the matrix of CCs (correlated to the testing period) deter-
mined from varying combinations of input and feedback delays, each using intervals of 1-hr time steps. Figure 4b 
shows the corresponding standard deviation (over the 20 trial runs) associated with that respective input and 
feedback delay combination. The highest correlation (∼0.53) was found when both the input and feedback delays 
were set at 60 time steps (60 hr). This combination of input and feedback delay also corresponded to the lowest 
(∼0.022) standard deviation among all configurations examined.

We have repeated the same processes in determining the appropriate number of hidden layers to use for the BF 
model. Figure 5 shows the CCs as a function of the number of hidden layers used, in the same format as Figure 3. 
Unlike the hidden layers test for the flux model, which featured a singular peak number at 10 hidden layers 
followed by descending correlations, the number of hidden layers for the BF model peaks at its starting number of 
two hidden layers (the minimum possible number of hidden layers) and then proceeds to decline. As the number 
of hidden layers increases, so do the corresponding standard deviations. Since the VERB-3D code uses Kp as its 
driving geomagnetic index and the corresponding time data series, we have chosen only to use Kp as the exoge-
nous input for this model, which may explain why the choice of two hidden layers, fewer than the other model, 

Figure 3.  The maximum log10 correlation coefficient (maroon) over 20 
trials, determined from the testing period, against the number of hidden layer 
neurons (x-axis) used in the network. The mean top quartile (blue) is also 
plotted. The number of hidden layers initially began at 2 and was increased, 
in 2 step intervals, to a maximum of 30 hidden layers. The dot represents the 
selected number of hidden neurons.

MLT Kp Dst AE Vsw Pressure None

Max correlation coefficient 0.25 0.65 0.69 0.73 0.63 0.73 0.74

Upper quartile average 0.19 0.63 0.68 0.69 0.62 0.72 0.70

Table 1 
Correlation Coefficient by Removed Index
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provided the best correlations. Furthermore, historical measurements of Kp exist as early as the 1930s, allowing 
this BF model in conjunction with the VERB code to simulate the radiation belts before satellite observations 
existed. Provided that Kp exists as an exogenous input, we may derive BF for a prolonged period.

4.  Results of NARX-Derived Models
4.1.  Results of the NARX Flux Model and Comparison With GOES-15 Observations

Using the parameters derived in Section 3, we trained a NARX geosynchronous flux model with the GOES-15 
observations during the period of (June 2013–June 2016). Figure 6a shows the comparison of 0.8 MeV electron 
flux (#/sr/s/cm 2/keV) between the GOES-15 observed electron flux (blue) and the NARX modeled electron 

flux (maroon, with the bias factor) over the period of July 2016 (after the 
training period, June 2013–June 2016), which was not included in the train-
ing or validation sets, with Figure 6b showing the corresponding Kp values. 
Overall, the model performs well with maintaining the cyclical nature of the 
GOES-15 measurements. Throughout this period, the modeled results are 
considered well correlated with the observations with a CC of ∼0.68 and a 
prediction efficiency (PE) of ∼0.39 over the month-long period. While Kp 
for this period remains relatively low (Kp ≤ 5), our simulation results for the 
March 2013 geomagnetic storm (Kp > 5) can be found within the Supporting 
Information S1.

4.2.  Results of the NARX BF Model, VERB Simulations, and 
Comparison With CRRES Observations

We have decided to compare our NARX-derived model BF to another period 
independent of the testing period to examine whether this new BF model 
can be used in radiation belt simulations independent of contemporaneous 
(i.e., another solar cycle) in-situ observations. We have chosen to examine 
a period which has been examined with previous VERB simulation studies 
(e.g., Saikin et al., 2021; Subbotin, Shprits, & Ni, 2011; Subbotin, Shprits, 
Gkioulidou, et al., 2011), the 1 MeV 85° pitch angle electron CRRES obser-
vations between 29 July and 4 November 1990.

Figure 4.  The averaged (over 20 trials) correlation coefficients associated with variable input delays and feedback delays in 
1-hr time steps for the (a) Nonlinear Autoregressive with Exogenous input-derived boundary scaling factor models, and (b) 
the respective standard deviation of those trials.

Figure 5.  The average correlation coefficients across 20 trials by number of 
hidden neurons used for the boundary scaling factor model derivation and the 
standard deviation. The selected number is denoted by the red dot.
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Figure 7 presents the NARX-derived (maroon) and CRRES-derived BF (blue) for the 1 MeV electrons (a) and the 
corresponding Kp activity (b) during the period 29 July–4 November 1990. For this period, the NARX-derived 
BF mostly overperforms compared to the CRRES-derived BF (between 19 August and 30 September); however, 
it resembles the variability of the data-driven BF. Figure 7c displays the 1.0 MeV 85° pitch angle (#/sr/s/cm 2/
keV) electrons CRRES observed during this period. Here, the CRRES data has been averaged into daily bins for 
comparison to the VERB simulations. To showcase the performance of the NARX-derived simulation, we have 
performed two VERB simulations for the 1.0 MeV 85° pitch angle electrons, one which assumes a constant upper 
boundary condition equal to 1 (Figure 7d), and one which uses the NARX-derived BF (Figure 7e). Note, Figure 7 
has been adapted and modified from Saikin et al. (2021).

The constant boundary condition scenario fails to reproduce significant flux enhancements observed by the 
CRRES observations both in time (ex., 17 August–22 August) and in L* range (ex., 12 October–21 Octo-
ber). Furthermore, with the constant boundary condition, there are no losses included at the upper L shells 
(i.e., ∼5.5–6.6), as this scenario forces the boundary condition to 1, regardless of magnetopause-related 
losses. Conversely, the NARX-derived BF VERB simulation performs better than the controlled constant 
upper boundary condition. The NARX VERB simulation appropriately recreates enhancement periods 
within L* = 3.6–5.8 (ex., 29 July–5 August; 24 August–26 August; 10 October–24 October). However, both 
the constant boundary and the NARX VERB code simulation do not accurately predict the decreases in the 
electron flux observed by CRRES (ex., 2 September–10 September). Lack of electron scattering may be 
attributed to the NARX-derived BF overperforming the CRRES-derived BF (the NARX BF is higher than 
the CRRES BF during the September period) or by the need for improvement in the diffusion coefficients 
related to wave-particle interactions (e.g., hiss, chorus, and VLF). The BF model derived for this paper and 
used in this simulation (Figure 7) is also the same model used to reconstruct the historical radiation belts 
used in the companion paper, Saikin et al. (2021).

Figure 6.  (a) The logged comparison between the GOES-15 observed 0.8 MeV electrons (#/sr/s/cm 2/keV) (blue) and the corresponding Nonlinear Autoregressive with 
Exogenous input-derived flux measurements (maroon) during June and July 2016. (b) The corresponding Kp index.
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Figure 7.  The Kp index (a) and the comparison between the normalized boundary scaling factor (BF) (upper boundary condition) index modeled by Nonlinear 
Autoregressive with Exogenous input (NARX) (blue) and the BF derived from the Combined Release and Radiation Effects Satellite (CRRES; orange) observations 
between 29 July 1990 and 4 November 1990 (b). Displayed are the corresponding 1.0 MeV 85° pitch angle electrons observed by CRRES (c), produced by the Versatile 
Electron Radiation Belt (VERB) code, assuming a constant upper boundary condition (set equal to 1) (d), and produced by the VERB code using the NARX-derived 
boundary condition (e). This figure has been adapted and modified from Saikin et al. (2021).
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5.  Discussion
In this study, we have utilized a NARX neural network to develop two models: a flux-based model trained on 
direct GOES-15 observations of 0.8 MeV electrons, and a model based on an upper boundary scaling factor, 
which can be used in simulations (i.e., VERB) to reconstruct the radiation belts. This marks one of the few 
attempts in using the NARX neural network to derive a flux model at geosynchronous orbit (Camporeale, 2019) 
and the first time to derive an upper boundary condition independent of in-situ observations (see the companion 
paper, Saikin et al. (2021), for more details). For the flux model, Vsw, Dst, MLT, Kp, AE, and Pdyn were deter-
mined to be effective predictive indicators and used as exogenous inputs. Since the VERB code is Kp-driven, 
the upper boundary scaling factor model used Kp as its only input. In this discussion section, we will discuss the 
interpretation and understanding of our results as well as potential future applications.

5.1.  Model Performance, Comparisons, and Future Modifications

Concerning the flux model, the NARX-derived flux was able to successfully replicate the cyclical nature of the 
0.8 MeV electrons observed by GOES-15. However, consistently, the model failed to reproduce the high peak 
electron flux measurements. This is not uncommon when using NARX neural networks as a prediction system. 
Using two metrics of training sets (a sliding window method and a direct method), Ayala Solares et al. (2016) 
sought to use NARX neural networks to predict values of Kp. Ayala Solares et al. (2016) found that when using 
the sliding window method (i.e., where the training set is partitioned into time windows of variable hours which 
are used to predict the next data point; this new data point replaces the oldest data point and is used to train a new 
neural network), the NARX model had difficulty in matching the lowest (Kp < ∼ 2.3) and highest (Kp > 5.3) 
Kp values by either overpredicting or underpredicting, respectively. The direct method (which uses a singular 
training data set, like our method) performed much better with predicting the lower Kp values, yet still struggled 
to match the higher Kp observations.

Similar results were found using NARX to predict and model AE and Dst. Using their novel Cloud-NARX model, 
Gu et al. (2019) sought to predict and estimate the AE index using solar wind dynamic pressure, density, speed, 
and the interplanetary magnetic field as the exogenous inputs. While their model has a CC and PE of ∼0.87 and 
∼0.76, respectively, Cloud-NARX was still unable to consistently predict AE values greater than ∼500 nT. Like-
wise, predictions with NARX were also able to make suitable estimates for Dst except for minimum Dst during 
geomagnetic storms or quick magnetospheric compressions (i.e., positive Dst values; Wei et al., 2004). Though 
these studies focused on geomagnetic indices, there is a pattern of NARX-derived neural networks underestimat-
ing the higher values of those respective indices (or in this study's case, flux).

While the above comparisons focused on predicting singular geomagnetic indices, other neural network studies 
have examined the prediction of either GOES-13 or GOES-15 measurements. Shin et al. (2016) derived neural 
network models for GOES-13 and GOES-15, based on a variable time prediction forecast ranging from 1 hr to 
24 hr during March 2015. Their model was trained at several different energy channels (40 keV, 75 keV, 150 keV 
275 keV, 475 keV, >0.8 MeV, and >2 MeV) and used numerous input variables (e.g., the respective flux chan-
nels, Vsw, solar wind density, IMF [Bx, By, and Bz], Sym-H, Kp, AE, and the Akasofu parameter). The MLT 
location of GOES (although incorporated into their model design) was not as heavily weighted as the other input 
parameters. As such, when examining the PE as a function of MLT, Shin et al. (2016) found a sharp decrease in 
their model performance for the non-dayside MLTs (especially for the lower energies). Shin et al. (2016) used 
more inputs overall, so it is possible that the other metrics used may have biased their simulation.

Another neural network flux-derived study, Ukhorskiy et al. (2004), used GOES-7 (1995) and GOES-8 (1996–
2000) measurements of >2 MeV electrons. This study used Vsw, the convective electric field, solar wind dynamic 
pressure, Sym-H, and AsyH as their input variables, and identified that the solar wind speed and Sym-H as the 
most relevant parameters for geosynchronous MeV electron prediction. Unlike our flux model, the Ukhorskiy 
et al. (2004) predictive model often overpredicted MeV fluxes, with prediction efficiencies of 0.66 and 0.77, for 
different time periods. A follow-up work used a variation of the NARX neural network, NARMAX, with the 
same input parameters as Ukhorskiy et al. (2004) to model >2 MeV electrons (Wei et al., 2011). This NARMAX 
study incorporated “time lags” deriving 2 models with a 1- and 3-day time lag, respectively, and found that using 
a longer time delay (i.e., 3 days) yielded a higher PE (0.78–0.91) compared to the 1-day model.
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NARMAX has also been used to determine daily averaged predictions of >0.8 
and > 2.0 MeV electron flux derived from GOES-13 observations (Boynton 
et al., 2015). Here, solar wind density, velocity, Dst, and IMF Bz were chosen 
to be the exogenous inputs. The predictions for the >0.8 and  >  2.0  MeV 
models are largely accurate. However, the >0.8 MeV forecast often overpre-
dicts the flux observations, as in Wei et al. (2011). Given the results of the 
Boynton et al. (2015) study, it may be more accurate and easier to predict daily 
averages instead of hourly derived flux measurements, like we have done in 
this work. Similar results were found in Balikhin et al. (2016) (again using 
NARMAX). In Balikhin et al. (2016), two models (REFM and SNB 3GEO) 
were used to predict geosynchronous flux measurements. Each model could 
predict either daily (SNB 3GEO) or up to 3  days (REFM). However, each 
model used different input parameters with the SNB 3GEO using solar wind 
velocity, solar wind density, and the percentage of time that IMF remained 
southward. Conversely, the REFM model used only solar wind velocity.

PreMevE (Chen et al., 2019) incorporates Linear Predictive Filters (LPFs) to model MeV and multi-MeV (Pires 
de Lima et al., 2020; Sinha et al., 2021) electrons within the radiation belts. Each L shell (in bin sizes of 0.1, from 
L = 3–6) has its own LPF and outputs predictions in 5-hr, 1 day, and 2-day time steps. This model was developed 
utilizing MeV electron measurements from RBSP, GEO, and one of NOAA's Polar Observational Environment 
Satellites (POES). PreMevE is comprised of two submodels (1 and 2). Submodel 1 focuses on timing the arrival 
of MeV electrons, while Submodel 2 specifies the evolving electron flux. For the purposes of this comparison, 
we will focus on Submodel 2. Overall, PreMevE performs very well when predicting the onset of all major 
MeV electron enhancement events. Our NARX derived BF-VERB simulation tends to overproduce electron flux 
during these enhancement events while PreMevE sometimes underpredicts during enhancement periods at low 
L (e.g., L = 3).

Another radiation belt neural network model, SHELLS (Claudepierre & O’Brien, 2020), uses a combination of 
POES and MagEIS observations in conjunction with both a daily averaged Kp and a maximum Kp value over the 
preceding 24 hr. Unlike both models presented in this study, the SHELLS model produces daily averaged predic-
tions. While SHELLS produces reconstructions well in agreement with MagEIS observations of the radiation 
belts, CC decrease with increasing L shell (ranging from r 2 = 0.1–0.9, per L shell and Kp index).

To assess the performance of our model predictions, we have employed two metrics: a CC of the logged flux and 
the PE taken over the entire period. PE has been defined as:
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is the sample mean of y. We have also added a calculation of bias and precision for which to judge our model's 
performance:
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where 𝐴𝐴 𝑀̄𝑀 and 𝐴𝐴 𝑂̄𝑂 denote the averaged measurement (or model) and the averaged observation (the GOES-15 and 
CRRES measurements, respectively). The precision metric is defined as:
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where �� and 𝐴𝐴 𝐴𝐴𝑂𝑂 are the standard deviation of the measurement (model) and the observations (the GOES-15 and 
CRRES measurements, respectively).

Table 2 shows the results of these calculations, including those for the geosynchronous flux model, the BF model, 
and the corresponding radiation belt reconstructions at L*  =  4, 5, and 6 an. Our GOES-15 flux correlation, 
PE, bias, and precision yields values of 0.74, 0.42, −0.13, and 0.04 while, depending on which L*, the corre-
lations for the radiation belt reconstructions range from 0.22 (L* = 6) to 0.86 (L* = 4). PE in the radiation belt 

CC PE Bias Precision

Geo. flux model 0.74 0.42 −0.13 0.42

BF model 0.15 0.39 0.11 0.86

CRRES 1.0 MeV, L* = 4 0.86 0.75 0.6 0.4

CRRES 1.0 MeV, L* = 5 0.64 0.74 0.13 0.49

CRRES 1.0 MeV, L* = 6 0.22 0.24 0.32 0.42

Table 2 
Correlation Coefficients (CC) and Prediction Efficiency (PE) Between the 
Geosynchronous Flux Model, VERB Simulations With the GOES-15, and 
CRRES Observations (Respectively) at the Respective Energies and L*
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reconstructions also vary with L*, with L* = 6 yielding the lowest PE (0.24), and L* = 4 giving the highest PE 
(0.75). Despite having low CC and PE scores (0.15 and 0.39, respectively), the BF model still is able to deliver 
reasonable results for the VERB code radiation belt reconstructions with low bias and precision numbers (see 
Table 2 for details).

For ease of comparison, we have also included Tables 3 and 4, which showcase the PE, CC, and coefficient of 
determination (r 2) when appropriate, of the previously mentioned studies.

While we have calculated similar metrics (i.e., CC and PE) to compare to the previous studies, differences 
remain in the quantity that other studies predict (e.g., >0.8  MeV electrons, > 2.0  MeV electrons, etc.); the 
satellite missions used (GOES-7 (Ukhorskiy et al., 2004), GOES-8 (Ukhorskiy et al., 2004), GOES-13 (Boynton 
et al., 2015; Shin et al., 2016, Wei et al., 2011), GOES-15 (Shin et al., 2016), and the Van Allen Probes (Chen 
et al., 2019; Claudepierre & O’Brien, 2020)); and the time step of the forecast (e.g., 1 day ([Chen et al., 2019; 
Claudepierre & O’Brien, 2020; Ukhorskiy et al., 2004)] or 2 days [Chen et al., 2019)]. Unlike the other models, 
our geosynchronous flux model predicts in 5-min time steps, specifically for the 800 keV electrons, and only 
uses the measurements required for the initial input delay (and does not recalibrate itself daily). Once our NARX 
model begins, it becomes solely driven by just the geomagnetic and solar wind related parameters.

The above-mentioned studies each used their own respective combinations of geomagnetic indices. For our study, 
we initially began by determining which indices were more predictive of geosynchronous flux, only to determine 
that excluding none of the parameters yielded the best results. Future work using NARX neural networks to 
model the radiation belts may wish to consider testing unique combinations of the input parameters (i.e., using 
only Kp and MLT, or Vsw and AE, etc.).

Study Simulated property Metric Score

Claudepierre and O’Brien (2020) a , b Sub MeV electrons PE ∼0.9 (L ∼4)

Claudepierre and O’Brien (2020) a , b Sub MeV electrons PE ∼0.9 (L ∼5)

Claudepierre and O’Brien (2020) a , b Sub MeV electrons PE ∼0.75 (L ∼6)

Claudepierre and O’Brien (2020) a , b Sub MeV electrons PE ∼0.5 (L ∼6.6)

Chen et al. (2019) a , c 1 MeV electrons PE ∼0.89 (L = 4)

Chen et al. (2019) a , c 1 MeV electrons PE ∼0.76 (L = 5)

Chen et al. (2019) a , c 1 MeV electrons PE −0.55 (L = 6)

Chen et al. (2019) a , c 1 MeV electrons PE −0.93 (GEO)

 aL dependent.  bKp dependent.  cChen et al. (2019) Submodel 2, 5-hr time step model.

Table 3 
Prediction Efficiency (PE) and Coefficient of Determination (r 2) of the Variable Dependent Flux Studies for Comparison

Study Simulated property Metric Score

Boynton et al. (2015) >0.8 MeV electrons PE and CC 0.7 and ∼0.85

>2.0 MeV electrons ∼0.79 and 0.89

Wei et al. (2011) >2.0 MeV electrons PE 0.78–0.91

Ukhorskiy et al. (2004) a >2.0 MeV electrons PE 0.66–0.87

CC 0.80–0.92

Shin et al. (2016) b >0.8 MeV electrons PE ∼0.9 (1 hr)

>0.8 MeV electrons PE ∼0.5 (24 hr)

Balikhin et al. (2016) >2.0 MeV electrons PE and CC 0.63 and 0.82

Note. All studies are daily predictions unless specified otherwise.
 aPeformed for multiple years.  bTime dependent.

Table 4 
Prediction Efficiency (PE) and Correlation Coefficients (CC) of the Other Geosynchronous Flux Studies for Comparison
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Concerning the NARX-derived BF model, Kp was the sole exogenous input used. This was chosen since VERB 
is a Kp-driven code, and historical Kp measurements exist as early as the 1930s, unlike other parameters. The 
derived upper boundary condition was able to predict the enhancement periods observed by the CRRES mission 
during the test period of July–November 1990. While the peak enhancement periods observed by CRRES were 
reproduced, the simulation did not scatter enough electrons to match the corresponding dropouts present in the 
CRRES data. This test simulation period of July–November 2020 is the same as the one used in the Subbotin, 
Shprits, and Ni (2011); Subbotin, Shprits, Gkioulidou, et al.’s (2011) radiation belt reconstruction. In that study, 
the authors examined how the inclusion of radial, pitch angle, energy, and mixed diffusion terms impacted VERB 
code simulations of the radiation belts, all while using a data-derived BF. While the inclusion or exclusion of any 
diffusion terms impacts the scattering rates produced by the simulation, by using a data derived BF, the Subbo-
tin simulations accurately reproduce the timing of electron dropouts and enhancements. Their most accurate 
simulation occurs with the inclusion of all diffusion terms in conjunction with the data driven BF. As described 
in Section  2, we also include all energy, pitch angle, and mixed diffusion terms like Subbotin, Shprits, and 
Ni (2011); Subbotin, Shprits, Gkioulidou, et al. (2011) (along with updated diffusion coefficients and the contri-
bution of EMIC waves). While Subbotin, Shprits, and Ni (2011); Subbotin, Shprits, Gkioulidou, et al. (2011) 
had performed stronger in reproducing the CRRES observed radiation belts because of the data-derived BF, this 
study's goal is to produce an upper boundary condition for historical reconstructions when in-situ observations 
are unavailable. Therefore, we must address a few reasons why the VERB code produced this result.

First, the NARX-derived BF was, at times, too high, compared to the CRRES-derived BF, thereby causing the 
VERB code to produce more electron flux. Second, as described in Saikin et al. (2021), current parameterizations 
of wave-particle interactions may need to be improved. For example, an improved parameterization of plasmas-
pheric hiss may be required to produce more effective scattering of electrons, especially for the sub-MeV elec-
trons (Malaspina et al., 2020), thereby making post-enhancement periods more consistent with CRRES obser-
vations. Finally, our plasmapause location model is based exclusively on Kp (Carpenter & Anderson, 1992). 
Since the plasma density does not evolve with time, the plasma model both inside and outside the plasmasphere 
remains constant. This will alter the energy and pitch-angle range through which wave-particle interactions may 
occur, causing electron scattering when appropriate. Alternative models of the plasmasphere exist (e.g., O’Brien 
& Moldwin, 2003; Zhelavskaya et al., 2017) and should be considered in future simulation studies.

5.2.  Possible Applications

The use of neural networks, machine learning, and modeling to develop and to train models has become more 
common in recent years (Camporeale, 2019). Applications have ranged from the prediction of and modeling 
of geomagnetic indices (e.g., Ayala Solares et al., 2016; Balikhin et al., 2011; Boynton et al., 2011; Campore-
ale, 2019; Wei et al., 2004) to real-time measurements (e.g., Ganushkina et al., 2015; Shin et al., 2016; Smirnov 
et al., 2020; Ukhorskiy et al., 2004; Wei et al., 2011; Zhelavskaya et al., 2017). The work performed in this study 
pertaining to the training of the upper boundary scaling condition has predictive implications beyond the scope 
of simply modeling contemporaneous in-situ observations.

Previous studies, when using neural networks to model the radiation belts, tended to focus on geostationary orbit 
flux measurements (e.g., Shin et al., 2016; Ukhorskiy et al., 2004; Wei et al., 2011). These studies would limit 
themselves to geostationary orbit without any expansion to examine multiple L shells. The use of the NARX-de-
rived upper boundary condition in the VERB code allows for the complete simulation and reconstruction of 
the radiation belts, while providing a reasonable agreement with observations (e.g., CRRES and the Van Allen 
Probes). Conversely, the assumed constant upper boundary condition simulation failed to reproduce the appropri-
ate flux enhancements observed by CRRES. A previous attempt using the VERB code and a NARMAX-derived 
upper boundary condition has been performed using GOES-13 measurements and solar wind parameters from L1 
as inputs. The 892 keV radiation belt electrons during August, September, and October 2013, were reconstructed 
and compared against the then-contemporaneous Van Allen Probes observations. The resulting radiation belt 
reconstructions spanned L* = 3–7, and underestimated fluxes compared to the in-situ Van Allen Probes (Pakhotin 
et al., 2014).

The complimentary paper, Saikin et al. (2021), performed a long-term reconstruction of radiation belt electrons 
at three respective energies over a period of 8 Solar Cycles (Solar Cycle 17–24 and 1933–2017), using the tech-
niques pioneered in this study (NARX instead of NARMAX, as in Pakhotin et al. (2014)). Unlike other long-term 



Space Weather

LANDIS ET AL.

10.1029/2021SW002774

15 of 18

simulations studies (e.g., Glauert et  al.,  2018; Subbotin, Shprits, & Ni, 2011; Subbotin, Shprits, Gkioulidou, 
et al., 2011, etc.), Saikin et al. (2021) were able to hindcast radiation belt dynamics absent in-situ observations, 
instead of using a NARX-developed upper boundary scaling factor condition trained on GOES-15 measurements. 
The ability to reconstruct radiation belts absent in-situ observations allows us to examine the dynamics of the 
historical radiation belts, provided there is a guiding geomagnetic index (e.g., Kp).

Gray-box models are cases in which physics-based models are supported with machine learning that can provide 
future advantages for space weather and radiation belt applications (Camporeale, 2019). Our successful use of 
BF predictions in Saikin et al. (2021) is a compelling example of the importance of gray-box models in the recon-
struction of the radiation belts. Furthermore, the derivation of an upper boundary condition showcases the unique 
ability of machine learning to fill gaps in the parameters of physics-based models.

6.  Conclusion
This paper focused on using a NARX neural network to derive a flux model for 0.8 MeV electrons with a 5-min 
cadence and an upper boundary scaling factor to be used in VERB code simulations. The flux model was trained 
on GOES-15 measurements from June 2013 to June 2016, with Kp, MLT, Dst, Vsw, AE, and Pdyn being used 
as the respective exogenous inputs. The NARX flux model reproduces the cyclical nature of the GOES-15 meas-
urements while underperforming the peak flux values by an average of ∼46%. The underestimation of peak 
flux values was consistent with previous neural network forecasts. Unlike previous NARX neural network stud-
ies, which focused primarily on predicting singular geomagnetic indices, this study represents one of the early 
attempts to use NARX to predict and model flux observations.

The NARX upper boundary scaling factor (BF) model was also derived using GOES-15 measurements and only 
Kp as an exogenous input (since it is easier to use for radiation belt predictions). This constructed BF model was 
used in conjunction with the VERB 3-D code to produce a hindcast simulation of the 1.0 MeV radiation belt elec-
trons during July–November 1990. Unlike previous attempts with modeled BF used with the VERB code (i.e., 
Pakhotin et al., 2014), this reconstruction was able to simulate flux values on par with the then-contemporaneous 
CRRES measurements of 1.0 MeV electrons. However, the simulation did provide enough electron scattering to 
reproduce the observed electron dropouts. The Kp-driven hindcast simulation represents one of the first radia-
tion belt reconstructions absent in-situ observations and allows for the reconstruction of the historical radiation 
belts from 1933 to 2017 and Solar Cycles 17–24, with an improved performance over a constant upper boundary 
condition (Saikin et al., 2021).

Data Availability Statement
Measurements from the CRRES mission were found at https://cdaweb.gsfc.nasa.gov/pub/data/crres/particle_
mea/. GOES measurements were obtained from https://satdat.ngdc.noaa.gov/sem/goes/data/avg/. Historical Kp 
measurements were found at ftp://ftp.gfz-potsdam.de/pub/home/obs/kp-ap/. The data produced and shown (PSD 
for the electron flux data for Solar Cycles 22 (i.e., the CRRES era), the NARX-derived BF) in this manuscript 
can be found at this location: https://doi.org/10.25346/S6/HY1DNT. The data relating to the derivation of the 
geosynchronous flux model can be found at this location: https://doi.org/10.25346/S6/O1ZAZH. This work used 
computational and storage services associated with the Hoffman2 Shared Cluster provided by the UCLA Institute 
for Digital Research and Education's Research Technology Group.
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