
1.  Introduction
The fascination for machine-learning technology has taken the space weather community, as well as, the geophys-
ical scientific community in general by storm (Camporeale, 2019; Chantry et al., 2021). A large number of aston-
ishing and impressive performance of models supported by machine-learning technology have been reported in 
conferences and journal publications (Grönquist et al., 2021; Huntingford et al., 2019; Reichstein et al., 2019; 
I. S. Zhelavskaya et al., 2017), and Kashinath et al. (2021). One of the attractive aspects of machine learning 
techniques is the wide applicability of their framework. In particular, the basic concept of supervised learning 
in which a collection of paired input variables and desired outputs is used as training data to derive a predictor 
for the output variables from the new input values is widely applicable. However, behind the easy accessibility 
of these techniques are the complex construction of generic models and deep mathematical rationale to support 
the statistical validity of the model as a product of the training process. The widely used artificial neural network 
(ANN) is a perfect example for illustrating the challenges of adopting general machine learning techniques for 
geophysics and space weather applications.

As most people who have attempted to use ANN as a basic forecast model know, the usually already challenging 
task of deciding which of the available observable quantities a forecast should depend on becomes even more 
complex when the answer may also be linked to which structure of ANN one chooses to use. In fact, the more 
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variables we include as inputs to a model, the more complex an ANN tends to be. Since training of an ANN is 
essentially a high dimensional non-convex optimization process, we often run into the “curse of dimensionality” 
in which the space of parameters defining a model is so vast that the search for an optimal solution becomes illu-
sive. The increased complexity of a model also needs a proportionally increasing volume of training data for its 
calibration, thus compounding the difficulty for model development. In areas that have adopted machine learning 
techniques as dominant approaches for model development, such as image, handwriting, and voice recognition, 
considerable experiential knowledge often provides valuable guidelines for the structure and size of the ANN 
needed for a new application. This is not the case in most geophysics research areas in general and in the space 
weather community, specifically. Due to the vast diversity of applications, it is also unlikely that widely applica-
ble guidelines can be developed in the near future.

Emerging techniques in the machine learning community have begun to offer solutions to model structural selec-
tion. One example of these techniques is the Neural Decision Tree (NDT) (Biau et al., 2018; Lu & Wang, 2020). 
Unlike an ANN, a decision tree is grown by partitioning training data into subsets according to the criterion 
that intends to minimize overall information uncertainty entropy or simply the non-homogeneity in the subsets. 
Although a commonly used decision tree algorithm selects splitting criteria according to a single component of 
the vector of input parameters, the technique has shown to usually offer good partitions of the space of param-
eters to substantially facilitate regression modeling. The decision tree's growth strategy provides a self-limiting 
charac teristic that can provide a high-level assessment of the complexity of a problem. Once a decision tree estab-
lishes a preliminary partition of training data, an algorithm is developed to map a decision tree to a multi-layer 
neural network. The newly structured and initialized ANN is then iteratively optimized. This hybrid approach, 
referred to as Neural-Decision Tree, has been demonstrated in many benchmark AI classification applications to 
provide significantly superior performance than ad hoc selection of network structure with randomized initiali-
zation of weights (Lu & Wang, 2020).

Our research reported in this paper represents our first attempt to use NDT for a regression problem for space 
weather applications. Unlike classification problems in which the model outputs are integers representing the 
categories that a data point should belong to, the outputs of a regression problem tend to be real-valued variables 
continuously dependent on input parameters. Indeed, as shown in (I. S. Zhelavskaya et al., 2017), the purpose of 
a plasmasphere dynamic model is to predict electron density distribution in the Earth's plasmasphere at a given 
time based on available measurements of solar and geomagnetic activities. As explained in (I. S. Zhelavskaya 
et al., 2017), a 2-dimensional density field in the ecliptic plane can adequately represent a 3-dimensional density 
field. Computational experiments have led Zhelavskaya et al. to select an effective ANN model that can repro-
duce plasmasphere density for various historically known conditions. Indeed, the ultimately successful model 
was identified through a process of essentially trial-and-errors. Our collaboration stems from a desire to evaluate 
the capability of NDT in shortening the process of discovery of promising model structures. In particular, we are 
interested in investigating the following issues:

•	 �Can NDT automatically discover an ANN with comparable or less complexity as those found in (I. S. 
Zhelavskaya et al., 2017) that delivers similar performance in prediction?

•	 �Can NDT provide any computational advantage in terms of convergence rate in the training process?
•	 �Since a NDT is inherently multi-layer, do multiple hidden layers offer a substantial improvement over a single 

hidden layer ANN?

Our research has shown positive answers to all the above questions. Moreover, by focusing our attention on more 
physically relevant issues and basic mathematical frameworks for regression problems, we are able to produce 
more physically coherent and statistically meaningful models. We believe that our results demonstrate that NDT 
is a beneficial machine-learning technique specifically for new space weather forecast applications.

In this manuscript, we shall present the basic construct of a NDT and the statistical consistency theorem for the 
resulting ANN in Section 2. We shall compare the performance of NDT in terms of model complexity, prediction 
error RMSE reduction, and convergence rate in model training in Section 3. As we have indicated previously, the 
streamlining of the process of structuring an effective NDT allowed us to focus on more high-level issues related 
to the prediction model. In Section 4 we present our efforts to incorporate additional physical and statistical 
considerations in the generation of predictive plasmasphere models. In the concluding Section 5 we shall provide 
further discussions on NDT and potential benefits that it can offer to the space weather forecast community.
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2.  Construction and Theoretical Framework of Neural Decision Tree
Broadly speaking, machine learning (ML) is a set of methods that can systematically detect patterns in data 
and then use the uncovered patterns to make inference for future data or to support other decision-making in 
the presence of uncertainties (Murphy, 2012). The most widely formulated applications for ML are in the form 
of supervised learning problems. The goal is to establish a mapping from input x to output y. Two of the most 
commonly used supervised learning techniques are Decision Tree by Classification and Regression Tree (CART 
(Leo et al., 1984)), and ANN.

2.1.  CART and ANN

A Decision Tree models the output y by first partitioning the d-dimensional feature space for x into disjoint 
subsets and then fitting a simple function between x and y within each subset. For a regression problem, CART 
fits an average model within each subset. The evaluation criterion of a tree split is based on the mean square error 
(MSE) reduction in y as the following:

Δ𝑀𝑀𝑀𝑀𝑀𝑀 =
𝑁𝑁𝑝𝑝

𝑁𝑁
𝑀𝑀𝑀𝑀𝑀𝑀(𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝) −

𝑁𝑁𝑙𝑙

𝑁𝑁
𝑀𝑀𝑀𝑀𝑀𝑀(𝑙𝑙𝑙𝑙𝑙𝑙 𝑙𝑙_𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐) −

𝑁𝑁𝑟𝑟

𝑁𝑁
𝑀𝑀𝑀𝑀𝑀𝑀(𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟_𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐),�

where Np, Nl, Nr, and N are the number of data in parent, left child, right child, and the entire training set respec-
tively. The CART is then constructed by iteratively selecting the most discriminating attribute xj and value b to 
partition a parent set into left-child subset (xj < b) and right-child subset (xj ≥ b). The selection of xj and b in 
each partition is based on a greedy algorithm yielding the largest MSE reduction. Consequently, the decision tree 
provides a sub-optimal partition of the feature space. The growth of a decision tree is self-limited by a threshold 
for the minimal MSE reduction for each partition. Additionally, setting maximum tree depth can also effectively 
avoid overly complex trees. Indeed, an excessively complex tree usually does not perform well when tested with 
data that is not part of training data.

On the other hand, an ANN models the output y by applying a non-linear activation function to a linear combina-
tion of the outputs of the previous layer, starting with the input x as the outputs of the zero-th layer or input-layer. 
Initial weight parameters in the linear combination are typically randomly selected. Optimization of the weights 
is carried out by iterative gradient-based optimization methods.

A single tree node can be treated as a single network neuron with an indicator activation function. To compare a 
neuron and a tree node, let s represent an elementary neuron with input 𝐴𝐴 𝐴𝐴 ∈ ℝ

𝑑𝑑 :

𝑠𝑠(𝑥𝑥) = 𝑎𝑎
(

𝑤𝑤𝑇𝑇𝑥𝑥 − 𝑏𝑏
)

, 𝑤𝑤 ∈ ℝ
𝑛𝑛, 𝑏𝑏 ∈ ℝ,� (1)

where � ∶ ℝ↦ [0, 1] is referred to as an activation function. When 𝐴𝐴 𝐴𝐴 = 𝕀𝕀 is the indicator function for non-negative 
real numbers, the function s can be rewritten as

𝑠𝑠(𝑥𝑥) =

⎧

⎪

⎨

⎪

⎩

1 𝑤𝑤𝑇𝑇𝑥𝑥 − 𝑏𝑏 ≥ 0,

0 𝑤𝑤𝑇𝑇𝑥𝑥 − 𝑏𝑏 𝑏 0.
�

As a result, the neuron s essentially creates a partition of 𝐴𝐴 ℝ
𝑑𝑑 by the hyperplane w Tx − b = 0 into two subsets 

S1 = s −1(1) and S0 = s −1(0). The action of a decision node in a binary tree is indeed a such partition as well, except 
that a common decision tree partitions the feature space according to the value of a single component xj of feature 
vector x. Thus, by taking w = ej, the partitions created by s have the form

𝑆𝑆1 =
{

𝑥𝑥 ∈ ℝ
𝑑𝑑 , 𝑥𝑥𝑗𝑗 ≥ 𝑏𝑏

}

, 𝑆𝑆0 =
{

𝑥𝑥 ∈ ℝ
𝑑𝑑 , 𝑥𝑥𝑗𝑗 < 𝑏𝑏

}

.�

Consequently, by representing every decision node in a binary tree with an elementary neuron of the above form, 
it is possible to determine from the outputs of these neurons which leaf node an input vector x should be placed 
in. Since each leaf is assigned with a node average in a regression tree, it is therefore possible to reproduce 
the outcome of a regression tree exactly using a neural network in which activation functions are all indicator 
function.
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2.2.  Construction of the NDT

Once a decision tree is obtained by applying the CART algorithm on training data, the transition to a NDT 
requires two steps:

1.	 �We construct a neural network (NN) using the step function 𝐴𝐴 𝕀𝕀(𝑥𝑥) = 1 for x > 0 and 𝐴𝐴 𝕀𝕀(𝑥𝑥) = 0 for x ≤ 0, as 
activation function to replicate the input/output relationship of a decision tree and provide initial weights for 
the  NDT.

2.	 �We relax activation functions at various layers with strategically selected “smoother” activation function to 
relax the decision boundary from trees.

As a result, a typical NDT has two hidden layers that represent the set of decision and terminal nodes of the deci-
sion tree, respectively. We will denote the input 𝐴𝐴 𝐱𝐱 ∈ ℝ

1×𝑑𝑑 as a row vector for notation simplicity in this section. 
Consider a standard binary tree T with K decision nodes. At a decision node j, the decision for splitting has the 
form xq(j) < dj where xq(j) denote the q(j)'s attribute of the input x. As a binary tree, T has K + 1 leaves, and each 
leaf is assigned one single regression output.

The first hidden layer, h, is constructed to replicate the set of decision nodes in T. Hence, 𝐴𝐴 𝐡𝐡 ∈ ℝ
1×𝐾𝐾 contains K 

number of neurons. Given an input 𝐴𝐴 𝐱𝐱 ∈ ℝ
1×𝑑𝑑 as a row vector, let 𝐴𝐴 𝐴𝑗𝑗 = 𝕀𝕀

(

𝐱𝐱𝑊𝑊
(1)

𝑗𝑗
+ 𝑏𝑏

(1)

𝑗𝑗

)

 be the jth neuron of h. The 

initial weight vector 𝐴𝐴 𝐴𝐴
(1)

𝑗𝑗
∈ ℝ

𝑑𝑑 and a offset 𝐴𝐴 𝐴𝐴
(1)

𝑗𝑗
∈ ℝ for j = 1…Kn will be selected such that the output of the 

neuron equals to one when the criterion for the split of decision node j is verified, and zero otherwise. Note that 
the real-valued indicator function is

𝕀𝕀(𝑡𝑡) =

⎧

⎪

⎨

⎪

⎩

1 if 𝑡𝑡 𝑡 0,

0 otherwise,

�

and the vector-valued function � ∶ ℝ� ↦ℝ�, �(�) is generalized by element-wise operation, that is, 𝐴𝐴 [𝕀𝕀(𝐭𝐭)]𝑖𝑖 = 𝕀𝕀 (𝑡𝑡𝑖𝑖) . 

For the splitting criterion xq(j) < dj of the decision node j, the weight vector 𝐴𝐴 𝐴𝐴
(1)

𝑗𝑗
 and the offset 𝐴𝐴 𝐴𝐴

(1)

𝑗𝑗
 are initialized 

as the following:

� (1)
�,� =

⎧

⎪

⎨

⎪

⎩

−1 if � = �(�),

0 otherwise

�(1)� = ��

�

for i = 1…d. Hence, given any input x, the output

𝐡𝐡 = 𝕀𝕀
(

𝐱𝐱𝑊𝑊 (1)

+ 𝑏𝑏(1)
)

�

is a binary 0, 1 vector that represents the splitting results of the tree T where

𝐖𝐖
(1) =

[

𝑊𝑊
(1)

1
,… ,𝑊𝑊

(1)

𝐾𝐾

]

∈ ℝ
𝑑𝑑×𝐾𝐾, 𝐛𝐛

(1) =
[

𝑏𝑏
(1)

1
,… , 𝑏𝑏

(1)

𝐾𝐾

]

∈ ℝ
1×𝐾𝐾.�

The output of the second hidden layer 𝐴𝐴 𝐫𝐫 ∈ ℝ
𝐾𝐾+1 is designed as a binary vector with K + 1 entries representing 

the K + 1 leaves in a binary tree with K decision nodes. The jth entry of r, rj(x) = 1 if the input x should be in 
the partition represented by the jth leaves. It is important to note that each value of the binary vector h uniquely 
identifies a leaf on the tree. Thus for each neuron 𝐴𝐴 𝐴𝐴𝑗𝑗 = 𝕀𝕀

(

𝐡𝐡𝑊𝑊
(2)

𝑗𝑗
+ 𝑏𝑏

(2)

𝑗𝑗

)

 , the initial weights 𝐴𝐴 𝐴𝐴
(2)

𝑗𝑗
∈ ℝ

𝐾𝐾 and offsets 
𝐴𝐴 𝐴𝐴

(2)

𝑗𝑗
∈ ℝ for j = 1, …, K + 1 are defined such that when the value of input binary vector is associated with leaf j, 

the neuron produces an output of one, and zero otherwise. Let Pj ⊂ {0,1} K denote the set of all possible binary 
vectors from the first layer that is associated with leaf node j. If for all vectors p ∈ Pj the ith component pi = 1, 
then the criterion for the ith decision must be verified for leaf j. Similarly, if for all vectors p ∈ Pj, pi = 0 the 
criterion for the ith decision must be false. On the other hand if for some p ∈ Pj, pi = 0 and for some other p ∈ Pj, 
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pi = 1 then the ith decision does not determine the adherence of input x to leaf j. The weights 𝐴𝐴 𝐴𝐴
(2)

𝑗𝑗
 and offsets 𝐴𝐴 𝐴𝐴

(2)

𝑗𝑗
 

are given by: for i = 1…K

� (2)
�,� =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

1 if �� = 1, ∀� ∈ ��,

−1 if �� = 0, ∀� ∈ ��,

0 if �� can be either 0 or 1 ∀� ∈ ��.

�(2)� = −
⎡

⎢

⎢

⎣

∑

{

�∶� (2)
�,� =1

}

1
⎤

⎥

⎥

⎦

+ 1
2
.

�

Hence, the output of the second layer

𝐫𝐫 = 𝕀𝕀
(

𝐡𝐡𝑊𝑊 (2)

+ 𝑏𝑏(2)
)

�

is also a binary vector with only a single component equals to 1 which, for a given input x, indicates that it belongs 
to the designated partition of T.

The intuition of such initialization is the following: if an input x belongs leaf node j in T, then

�� (2)
� =

∑

{

�∶� (2)
�� =1

}

1

�� (2)
� + �(2)� =

∑

{

�∶� (2)
�� =1

}

1 + �(2)�

= 1
2
.

�

Otherwise, 𝐴𝐴 𝐡𝐡𝑊𝑊
(2)

𝑗𝑗
+ 𝑏𝑏

(2)

𝑗𝑗
< −

1

2
 . Consequently, an indicator activation yields

�
(

�� (2)
� + �(2)�

)

=

⎧

⎪

⎨

⎪

⎩

�(1∕2) = 1, if � belongs leaf j

�(−1∕2) = 0, if � does not belong leaf j.
�

The output layer has a single neuron for the regression problem, and it represent the final output from the tree 
T. The neuron will select the regression output from the associate leaf node. Let {C1, …CK+1} be the regression 
output for leaf node {1, …K + 1} and 𝐴𝐴 𝐴𝐴 (3) ∈ ℝ

(𝐾𝐾+1)×1, 𝑏𝑏(3) ∈ ℝ be the weight and offsets from the layer r to the 
output layer. The initialization of W (3) and b (3) are given by

� (3)
� = ��

�(3) = 0
�

for j = 1, …K + 1. At last, the neural network output is

𝑦𝑦(3) = 𝐫𝐫𝑊𝑊 (3)

+ 𝑏𝑏(3).�

Essentially, the NDT here is the regression version of the NDT in Lu & Wang (2020). The main purpose of 
initializing an ANN with a decision tree is that the partition of the feature space created by CART offers a rough 
approximation of the level sets of the true classifier. However, the restrictive use by CART of only hyperplanes 
perpendicular to axes of the feature space is unlikely to be optimal for an efficient approximation.

In order to enable optimization techniques such as stochastic gradient descent (SGD) to train the ANN that 
initialized with a decision tree, we replace the indicator 𝐴𝐴 𝕀𝕀(𝑥𝑥) by a smooth (differentiable almost everywhere) 
activation function σ(x) in the second step of constructing a NDT. The selection of activation functions can have 
a significant impact on the performance of the final NDT. Our experience indicates that the lacking of a strategic 
selection of activation functions, a NDT may gain significantly fewer advantages from the CART initialization 
compare to an arbitrarily constructed ANN.
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From the input x to the first hidden layer h, our experience suggests the use of bounded Rectified Linear (ReL) 
activation function

𝜎𝜎1(𝑥𝑥) = min(max(0, 𝑥𝑥), 1)� (2)

where σ1(x) is the activation for 𝐴𝐴 𝐴𝑗𝑗 = 𝜎𝜎1

(

𝐱𝐱𝑊𝑊
(1)

𝑗𝑗
+ 𝑏𝑏

(1)

𝑗𝑗

)

 . This selection ensures that σ1(x) has a strict 0 as a lower 
bound. The upper bound of 1 also yield clear indication of whether the input x belongs to the left or right child. 
Therefore, h partially preserves the splitting criterion of the decision tree. For second layer 𝐴𝐴 𝐴𝐴𝑗𝑗 = 𝜎𝜎2

(

𝐡𝐡𝑊𝑊
(2)

𝑗𝑗
+ 𝑏𝑏

(2)

𝑗𝑗

)

 , 
we suggest using the standard logistic function 𝐴𝐴 𝐴𝐴2(𝑥𝑥) =

1

1+𝑒𝑒−𝑥𝑥
 . Because the second layer corresponds the leaf node 

that represent the rigid decision boundary of CART, having a “smoother”(differentiable everywhere) logistic 
function can effectively optimize the decision boundary. At last, the output layer is given by 𝐴𝐴 𝐴𝐴

(3)

𝑗𝑗
= 𝐫𝐫𝑊𝑊

(3)

𝑗𝑗
+ 𝑏𝑏

(3)

𝑗𝑗
 .

2.3.  Statistical Consistency of the NDT

An essential characteristic of a desirable algorithm is the convergence of the optimally constructed regression 
map toward the “true” regression map as the volume of training data, and the degree of freedom of the regression 
map tend toward infinity. Algorithms with these characteristics are referred to as statistically consistent. Proof of 
the consistency of NDT for binary classification is provided in Lu & Wang (2020) which can be easily general-
ized to multi-classification. One significant difference between a regression problem and a classification problem 
is that there is not necessarily a lower and an upper bound for the output y of a regression problem. Preliminary 
data processing and transformation is often required to map the application-specific output y to an output vector 

𝐴𝐴 𝐴𝐴𝐴 that only takes value in a bounded interval. In general, we assume the processed output will be bounded by the 
constant 1.

In the theorem below, we use μX(dx) and EX(g(X)) to denote the probability measure for a random variable X and 
expected value of function g of X, respectively. When there is no ambiguity, we sometimes drop the subscript X 
in the above notation.

Theorem 2.1 (Main Result: Strongly Universal Consistency) Let 𝐴𝐴 (𝑋𝑋𝑋 𝑋𝑋 ) ∈ ℝ
𝑑𝑑 × [−1, 1] be a random vector 

with joint probability distribution μX,Y. We denote the minimum variance regression map by m(x) = E(Y|X = x) 
which is considered the “true” regression map. Let (X1, Y1), …, (Xn, Yn) be i.i.d. samples of (X, Y). We denote the 
empirical variance minimizer mn that depends on 𝐴𝐴 {(𝑋𝑋𝑖𝑖, 𝑌𝑌𝑖𝑖)}

𝑛𝑛

𝑖𝑖=1 by

𝑚𝑚𝑛𝑛 = argmin
𝑓𝑓∈𝑛𝑛

1

𝑛𝑛

𝑛𝑛
∑

𝑗𝑗=1

|𝑓𝑓 (𝑋𝑋𝑗𝑗) − 𝑌𝑌𝑗𝑗|
2.�

where 𝐴𝐴 𝑛𝑛 is the set of 2 layer NDT functions that depends on the sample size n. Let Kn denote the number of deci-
sion node from the tree that initializes NDT. If

𝐾𝐾2
𝑛𝑛 log

(

𝐾𝐾4
𝑛𝑛

)

𝑛𝑛
→ 0�

and 𝐴𝐴 inf𝑓𝑓∈𝑛𝑛𝔼𝔼𝑋𝑋(𝑓𝑓 (𝑋𝑋) − 𝑚𝑚(𝑋𝑋))
2
→ 0 as n → ∞, then for any distribution for (X, Y),

𝐸𝐸𝑋𝑋 (𝑚𝑚𝑛𝑛(𝑋𝑋) − 𝑚𝑚(𝑋𝑋)) =
∫

|𝑚𝑚𝑛𝑛(𝑥𝑥) − 𝑚𝑚(𝑥𝑥)|2𝜇𝜇𝑋𝑋(𝑑𝑑𝑑𝑑) → 0 𝑎𝑎𝑎𝑎𝑎𝑎�

Note that the notation “inf  S”, the infimum of the set S, is the greatest lower bound of the set S and a.s., stands 
for ”almost surely” which indicates that the subset where the convergence holds has a probability of 1. Both 𝐴𝐴 𝑛𝑛 
and Kn depend on the sample size n. The specific construction of 𝐴𝐴 𝑛𝑛 can be found in Lu & Wang (2020) Section 3 
Statistical Consistency.
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3.  Developing a Regression Based Neural Decision Tree 
Model for Forecasting Plasmasphere Dynamics
The initial goal of our work is to evaluate the NDT's ability to produce an 
ANN model with comparable performance to the PINE model reported in (I. 
S. Zhelavskaya et al., 2017) with minimal manual adjustment. Unlike PINE 
which is a single hidden layer neural network, ANN models generated by the 
NDT algorithm always have at least two hidden layers which is structurally 
more complex.

As reported in zhelavskaya2017empirical, the plasmasphere electron density 
used to train PINE is derived from the upper hybrid frequency, which is 
retrieved from measurements by the Electric and Magnetic Field Instrument 
Suite and Integrated Science Instrumentation Suite (EMFISIS) on the Van 
Allen Probes satellites using the Neural-network-based Upper hybrid Reso-
nance Determination (NURD) algorithm (I. Zhelavskaya et al., 2016). The 
input variables for the models are selected through repeated experimentation 
by Zhelavskaya et al. to include recent time-history of solar and geomagnetic 
parameters originally obtained from NASA's OmniWeb data service. Table 1 
below shows a complete list of attributes for the model inputs X.

It is helpful to note that plasma density data are retrieved along the spacecrafts' orbit over time; therefore, the 
sampling in spatial variables L and MLT are entirely dependent on the trajectory of the Van Allen Probes. The 
sampling frequency for the rest of the input variables varies from 3 hr to 1 min. The moving averaged values over 
intervals of different lengths help to provide stability of the model. While the training data consists of an exten-
sive collection of matched pairs Xi, yi where yi is the plasmasphere electron density at a specific location given 
by (Li, MLTi), the actual utility of the resulting model for predicting the plasmasphere dynamics is to produce 
the entire electron density field over the ecliptic plane for a given set of solar and geomagnetic data X. This 
constitutes an extension of the traditional supervised learning paradigm in the sense that for each input vector X, 
the actual intended output is a 2-dimensional scalar field. However, the training data available to us consists of 
point-wise values of the desired field at different times. An analogy in the context of image recognition would be 
trying to determine if an image is that of a dog when instead of given the entire image, we have only one single 
pixel of the image at a given time. This extension substantially increases the challenge for model training. Conse-
quently, there are essential features for the desired output field that are not explicitly represented by the data. We 
shall discuss these additional properties in the next section. In this section, we focus our attention on constructing 
a regression model using NDT that can accurately reproduce the plasmasphere electron density at discrete points. 
In particular, we would like to attempt to answer the following questions:

1.	 �Can a NDT-initiated neural network with similar model complexity automatically produce the performance in 
terms of prediction least square error similar to PINE?

2.	 �Does NDT provide substantially favorable initialization that the convergence rate for the training process is 
accelerated compared with a randomly initiated network as seen in Lu & Wang (2020)?

3.	 �Does NDT initiate neural network deliver robustness in optimization similar to what we have seen for other 
problems Lu & Wang (2020)?

4.	 �Can NDT-initiated neural networks with reduced model complexity produce comparable performance in 
terms of prediction error?

Before presenting the NDT's construction of plasmasphere dynamics models, it is helpful to provide a brief 
description of our use of the data set prepared by Zhelavskaya and her colleagues. As mentioned previously, the 
total data set available consists of matched pairs of solar and geomagnetic measurements to plasmasphere elec-
tron density at a specific altitude L and geomagnetic local time MLT covering the time period from 1 October 
2012 to 12 May 2016. In the training and model selection work by Zhelavskaya and her colleagues, this data set is 
partitioned into training 𝐴𝐴   and testing or validation subsets 𝐴𝐴  with a ratio of 9 to 1 in data volume by randomized 
sampling without repetition. To simplify the direct comparison of model performance, we use the equivalent 
partitions as Zhelavskaya et al. in all comparisons of RMSE among the models.

Row 
index Name Time stamp

1 AE Current

2 kp Current

3 SymH Current

4 F107 Current

5 L Earth Radii RE

6 MLT Magnetic local time

7–12 AE avg Averages for AE over previous 3,6,12,24,36,48 hr

13–18 kp avg Averages for kp over previous 3,6,12,24,36,48 hr

19–24 SymH avg Averages for SymH over previous 3,6,12,24,36,48 hr

25–30 F10.7 avg Averages for F10.7 over previous 3,6,12,24,36,48 hr

Table 1 
Attributes in the Input for PINE and Neural Decision Tree (NDT) Models for 
Plasmasphere Dynamics
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In selecting a suitable network structure for PINE, Zhelavskaya et al. consider single-hidden layer neural networks 
with {23,30,38,45,53} neurons as candidates structures. To decide on an appropriate size for the network, they 
have used the approach of 5 fold cross-validation to select a structure with the lowest RMSE. That is, by partition-
ing the training subset 𝐴𝐴   into 5 equal-sized subsets and using any four of them for model training and the remain-
ing one for measuring RMSE performance. The average of the 5 RMSE values represents the performance for 
the specific size of the neural network. It is worth reminding us that since all training of neural network for PINE 
follow the typical approach of random initialization of the weights defining a network, a single model evaluation 
involves two sources of randomization: selection of data making the 4-subsets of the 5 folder cross-validation and 
the randomization of the initial weights. As a result, a meaningful assessment of the performance of a network 
structure also involves a repeated training process for each training-validation step in the 5 fold cross-validation 
to average out the effect of randomized initialization. The enormous computational efforts required to select 
suitable models among candidate designs render consideration of more elaborate network structures prohibitively 
expensive. Indeed, with just 5 candidate model structures and m randomized initialization for each step in the 5 
fold cross-validation, a total of 25m model training and validation process is required. If the approach is to be 
extended to two hidden layers structures, the combinatorial explosion of candidates will make the selection nearly 
impossible computationally.

As presented in Section 2, NDT selects the network architecture and the initial weights for neurons based on 
the decision tree, which is created through preliminary processing of training data. This removes the need for 
repeated training to average out the effect of random initialization as was the case in a common neural network 
evaluation. Moreover, a single criterion on either the minimum threshold for RMSE reduction when creating a 
new decision node in the tree or the maximum number of nodes required automatically allows the construction 
process of the NDT to select a promising network layout involving two hidden layers with appropriate initial 
weights for the neurons. In fact, since the construction of CART is relatively insensitive to the volume of data 
used as shown in Lu & Wang (2020), it allows us to bypass the cross-validation step in establishing a reliable and 
representative performance measure for a given network structure. As a result, in this section, all performance 
comparisons between the final selection for the PINE model with 45 neurons and models created by the NDT 
algorithm are derived using the entire subset 𝐴𝐴   for training and evaluated on the subset 𝐴𝐴  . Table 2 compares 
model selection approaches for NDT and PINE.

The most popular optimization algorithm for training a neural network is the Stochastic Gradient Descent (SGD) 
method, for which the gradient with respect to the weight vector of the performance of a single data point or a 
small patch of data points is evaluated using the highly efficient backward propagation algorithm. The weights 
are then updated by a small fixed fraction, often referred to as a step, in the negative direction of the gradi-
ent vector. SGD is particularly attractive for applications involving continuous learning when incremental data 
availability allows continuous improvement of a model. As a first-order optimization technique, SGD does have 
a tendency, in some cases, to be slow in final convergence to a local minimum. In these situations, quadratic 
quasi-Newton methods such as Levenberg-Marquardt (LM) often provide improved convergence. However, the 
price for “faster” convergence in terms of the number of iterations is often much more computationally intensive 
iterations. As a result, LM algorithm-based training typically uses gradient evaluation on the model performance 
over the entire training data set. Our experiments indicate that NDT-created neural networks can achieve signif-
icantly faster convergence than the network structure used by PINE with randomized weights when the SGD 
algorithm is used. As shown in Figure 1, the decrease in RMSE is much faster during the training for NDT than 
for PINE. In these experiments, the entirety of the nearly 3 million training data points is group into 293 patches 
for 10,000 data points each for a SGD update of weights defining a network. When all 293 have been used once, 

NDT PINE

Candidate architectures 2 hidden-layers 1 layer

Network initialization Replicating CART Random weights

Scoring RMSE Training 𝐴𝐴   and validation 𝐴𝐴  5-fold cross-validation using 𝐴𝐴 

Training 𝐴𝐴   and validation 𝐴𝐴 

Table 2 
Approaches for Model Selection for PINE and for NDT Based Approach
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the optimization process is said to have reached one epoch. The patches are then being reused in a new epoch 
of the training process. At the end of each epoch, the RMSE is evaluated on the entire training data set 𝐴𝐴   and 
validation data set 𝐴𝐴  . From Figure 1 we observe that not only a much faster reduction of RMSE for NDT as the 
training progress than that for PINE, the rate of decrease also shows a smoother approach in Figure 1 (Left) to 
a local minimum without the intermediate slowing down as seen for PINE. As we can see in Figure 1 (Right), 
the RMSE for NDT is 15%–20% lower than PINE toward the end of optimization process after 40 epochs. This 
difference over the large training and verification data set is statistically highly significant.

In the previous efforts by Zhelavskaya et  al., it was found that the deterministic Levenberg-Marquardt (LM) 
optimization technique using the entirety of the training set at every step was necessary to deliver slightly lower 
RMSE for both training and validation. Our experiments also confirm their observation. However, a common 
variant of the SGD method, Adaptive Moment Estimation (Kingma & Ba, 2014), often referred to as Adam algo-
rithm with similar efficiency as SGD method, can produce near-identical performance in terms of final RMSE 
level as LM algorithm as shown in Table 3 below. As we can see in Table 3, using the Adam algorithm, the RMSE 
level for NDT is nearly identical to that of PINE when trained with the LM algorithm, although LM seems able 
to reduce RMSE of NDT to an even lower level for both the training and validation data. We note that one reason 
LM is not widely used in training ANN is that the requirement that the entire training data set be used for every 
step precludes its use in continuous learning applications. In our current application, the major drawback of 
LM algorithm is its considerable computational intensity. A relevant question is whether or not these minuscule 
differences between LM and Adam algorithm have any significance statistically or in terms of model prediction 
accuracy. We shall address this issue later.

The NDT model used in the comparison shown in Table 3 above is a model for which we limited the total number 
of decision nodes in CART to 25 so that the overall dimension of the weight vector for the resulting NDT is nearly 
identical to the PINE model with 45 neurons. We have also experimented in NDT models with a much lower 
degree of freedom involving a much smaller number of neurons in the network. Indeed, as shown in Table 4, 

compared with the default NDT initiated by a CART with 25 decision nodes, 
CARTs with 15 or 10 decision nodes initialize the NDT to produce compa-
rable or even lower RMSE levels when optimized with the LM algorithm.

Since the ultimate goal of our work is to produce a predictive model for plas-
masphere dynamics, or more concretely, generate electron density field on 
the equatorial plane for a given solar and magnetic condition specified by 
the input vector X, we plotted in Figure 2 the predicted electron density field 
for all four models listed in Table 4 for a time period of known plasmasphere 

Figure 1.  Comparison of the rate of RMSE reduction over Epochs for Neural Decision Tree (NDT) and PINE using first order gradient descent type of optimization 
methods. Each epoch means the gradient descent goes through the entire training data once. (Left) is trained through Stochastic Gradient Descent (SGD), and (Right) is 
trained through the Adaptive Moment Estimator (Adam).

NDT PINE

Optimization Algorithm SGD Adam LM SGD LM

Training RMSE 0.3226 0.3158 0.3043 0.3649 0.3145

Testing RMSE 0.3316 0.3282 0.3204 0.3811 0.3282

Table 3 
Robust Optimizer
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storm from 26 June to 27 June 2001.As we can see in Figure 2, the differ-
ence in the model predictions are not easily eye-catching which is consistent 
with their RMSE performance despite their substantial difference in model 
complexity. However, the computation intensity in training these models can 
be vastly different as presented in Table 5 below. As we can see, the time 
required for training a model with a higher number of weights can be orders 
of magnitude longer than one that requires a fraction number of weights. 
In addition to being more robust and stable, models with fewer parameters 
tend to have much higher information content measured by AIC or BIC indi-
ces. The ability of NDT technique to leverage the power of more elaborated 
network structure to achieve comparable RMSE performance with substan-
tially low model degrees of freedom than PINE demonstrates a significant 
advantage of the new approach. The fast training process also allows us to 

explore other critical issues relevant for developing a regression-based model as we shall discuss in the next 
section. Our experimental results demonstrate that the NDT algorithm can deliver high-performance regression 
neural network models through inherently sophisticated multiple hidden layer structures.

4.  A Broader View of the Task of Modeling Plasmasphere Dynamics
As we have indicated, at the beginning of Section 3, that the construction of a plasmasphere dynamics model 
based on the type of data available to us is particularly challenging. Unlike most supervised learning applications, 
for each solar and magnetic condition, our training data is not the ultimate model response which should be the 
electron density field in the Earth's equatorial plane. Instead, each data point merely provides the density at a 
specific point in the plasmasphere. Since data are collected along the orbit of Van Allen Probes, the amount of 
data available over a 24 hr time period covers only a small fraction of the space in the plasmasphere as shown in 

NDT PINE

# of Decision nodes for NDT 25 15 10

Dimension of weight params 1,478 738 443 1,441

Fraction to dimension of PINE 100% 50% 30% 100%

Training RMSE 0.3043 0.3081 0.3198 0.3145

Testing RMSE 0.3204 0.3162 0.3256 0.3282

Table 4 
Comparison of Final RMSE for Different Neural Decision Tree (NDT) 
Constructed Models and PINE

Figure 2.  Model predictions of electron density field for 26–27 June 2001 storm.
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Figure 3 (Top left). It would take several months worth of data to cover a significant portion of the plasmasphere. 
The underlying values for the solar and magnetic conditions can undergo substantial changes over this period of 
time. Consequently, the problem of obtaining a predictive model of electron density distribution for plasmasphere 
using solar and magnetic field observation is extremely challenging and even seemly unrealistic. We will give 
more discussions on this aspect of the model in the next section. We also note that the spatial distribution of data 
is highly non-uniform as shown in Figure 3 (Bottom right). This is, of course, a result of the orbit for the Van 
Allen Probes where the orbit reaches its highest point and tangential to the circle at L = 6 on the equatorial plane. 
Consequently, a much larger number of training data is available at altitude L = 6. A closer examination of the 
preliminary descriptive statistical analysis of the available data shows both the average and empirical standard 
deviation of electron density are systematically spatially dependent (Figure 3 Bottom).

We recall the fundamental assumptions that leads to statistical consistency of the regression analyses include the 
following:

1.	 �Residual errors in data points are independent and identically distributed. Thus, the least square regression 
leads to the optical estimation of the mean electron density.

2.	 �The distribution of training data should reflect the distribution of conditions that require prediction. Since 
the true goal of our prediction is the electron density on the entire equatorial plane at a given time, ideally, 
the data points should be uniformly distributed. Moreover, the electron density of all points on the equatorial 
plane is clearly not identically distributed. Indeed, the density at lower altitude is substantially higher than 
high altitude region as shown in Figure 3 (Bottom left).

The main purpose of the above assumptions is to ensure a trained model delivers, statistically, similarly accu-
rate prediction for general inputs. The partitioning of available data set into training set and verification set is 
intended to provide demonstration of model's ability to make prediction for system output based on inputs that 
have not been used in model training. In the report of model RMSE performance given in the previous section, we 
randomly selected 80% of available data for model training and using the remaining 20% for performance veri-
fication. While this approach satisfies the requirement that the training and verification data sets are statistically 
consistent, it is reasonable to question the independence of the two data sets when measurements are collected in 
time along the orbit of a spacecraft. Indeed, as the spacecraft moving through a spatially slow varying electron 
density field and collecting data at high temporal resolution, data collected during a short period of time may be 
essentially identical. During a random sampling of data, it is possible that for any data point in the training data 
set, a near identical copy exists in the verification data set. This phenomenon should make the residual RMSE for 
training and verification data sets nearly identical. Our previous report of RMSE reports indicate that there are 
still meaningful difference in the training and verification RMSEs.

In order to further address this potential issue, we used an alternative partition of the entire data set by splitting the 
time series sequentially into 5 equal length intervals. The training data will be the earliest (in time) 4 sub-intervals 
be the training data and the remaining one be the testing data. Figure 4 demonstrate the training and testing result 
of NDT and PINE when the data is divided time sequentially using Adaptive Moment Estimation. Comparing to 
results when dividing the data randomly as in the previous section, the NDT maintains a similar advantages (as 
in Figure 1 Right) over PINE by roughly 15%.

NDT PINE

# of nodes for NDT 25 25 15 10

Optimization Algorithm Adam LM LM LM LM

Train/test RMSE 0.32/0.33 0.30/0.32 0.31/0.32 0.32/0.33 0.31/0.33

Time (minutes) 13.13 162.16 28.76 11.91 158.06

Note. The times are measured on a personal computer with a Intel® Core™ i7-4790 Processor CPU, a NVIDIA GeForce 
GTX 970 GPU and a total of 32 GB RAM.

Table 5 
The Models and Training Algorithms Are Select for Similar Final RMSE Performance

 23335084, 2022, 7, D
ow

nloaded from
 https://agupubs.onlinelibrary.w

iley.com
/doi/10.1029/2021E

A
002175 by H

elm
holtz-Z

entrum
 Potsdam

 G
FZ

, W
iley O

nline L
ibrary on [25/10/2022]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



Earth and Space Science

LU ET AL.

10.1029/2021EA002175

12 of 20

Another property inherent in our understanding of physics is that electron density should be spatially continuous. 
However, when spatial coordinates L and MLT are used, the spatial input data are defined over a rectangular area 
of [0, 6] × [0, 24]. As far as the training algorithm is concerned, no information is indicating at the boundary 
at MLT = 0 and MLT = 24 are actually the same spatial point. On the other hand, a transformation to Cartesian 
coordinate xm = L cos 2π ⋅ (MLT/24), and ym = sin 2π ⋅ (MLT/24) would explicitly guarantee the continuity across 
the boundary at MLT = 0. This is an well-known issue to the community (Bortnik et al., 2016). Naturally, when 
training data volume is large and densely covers all areas of the space for input variables, the optimal regression 
predictor would generally produce a spatial continuous electron density field. However, data from the Van Allen 
Probes are not sufficiently dense near the region where MLT = 0. As a result, we can clearly see spatial disconti-
nuity at MLT = 0 in the PINE prediction for a storm period of 26–27 June 2001, when the model is trained with 

Figure 3.  Since Van Allen Probes collect data along their orbits, instantaneous global imaging of the plasmasphere density field is obviously unavailable, and spatially 
non-uniform distribution of the data is inherent to the measurement approach. (Top left) shows the data available for a period of 24 hr from the Van Allen Probes. (Top 
right) is the spatial distribution of the data. Local statistics of training data shows distinct spatial variability in both average and standard deviation of electron density. 
(Bottom left) is the average electron density in the plasmasphere. (Bottom right) is the local statistics of training data shows distinct spatial variability in both average 
and standard deviation of electron density.
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geolocation of data is registered in polar coordinates, see Figure 5 PINE model at MLT = 0. Figure 5 also shows 
that spatial discontinuity is removed for NDT prediction when training data is gelocated in Cartesian coordinates.

The deviation from the basic statistical assumptions for regression underlying model training may mean in prac-
tice that the same relative residual errors in electron density region weigh significantly more in the model training 
process than low-density regions or regions where a higher abundance of data have oversized importance. The 
ability of NDT to easily select a suitable network configuration enables us to quickly explore the approaches that 
can address these high-level data analysis issues that stem from our understanding of the physical properties of 
the plasmasphere. A usual remedy for the disparity in spatial and statistical data distribution is by re-scaling of 
raw data. In particular, we can partition the plasmaspheric region into areas where data density and statistics are 
similar. In our case, the partitions are according to altitudes. Let 𝐴𝐴 𝑘𝑘, 𝑘𝑘 = 1,… , 𝐾𝐾 be defined by

𝑘𝑘 = {(𝑙𝑙𝑙 𝑙𝑙𝑙𝑙𝑙𝑙), 𝑙𝑙𝑘𝑘−1 ≤ 𝑙𝑙 𝑙 𝑙𝑙𝑘𝑘} .�

Consider localized sample mean and standard deviation defined by

𝑦̄𝑦𝑘𝑘 =
1

𝑁𝑁𝑘𝑘

∑

(𝑙𝑙𝑖𝑖 ,𝑚𝑚𝑚𝑚𝑚𝑚𝑖𝑖)∈𝑘𝑘

𝑦𝑦𝑖𝑖, 𝜎𝜎𝑘𝑘 =
1

𝑁𝑁𝑘𝑘 − 1

∑

(𝑙𝑙𝑖𝑖 ,𝑚𝑚𝑚𝑚𝑚𝑚𝑖𝑖)∈𝑘𝑘

(𝑦𝑦𝑖𝑖 − 𝑦̄𝑦𝑘𝑘)
2
,�

where �� = |{(��, ����) ∈ �}| . Then a normalized version of electron density is defined by

𝑦̂𝑦𝑖𝑖 =
𝑦𝑦𝑖𝑖 − 𝑦̄𝑦𝑘𝑘

𝜎𝜎𝑘𝑘

, ∀ (𝑙𝑙𝑖𝑖, 𝑚𝑚𝑚𝑚𝑚𝑚𝑖𝑖) ∈ 𝑘𝑘.� (3)

When a new regression neural network is trained to predict 𝐴𝐴 𝐴𝐴𝐴 instead of y, the training data are more consistent 
with the statistical assumptions for regression analysis. In the subsequent discussion, we refer to a model trained 
with data scaled by local statistics as statistically scaled models. Naturally, the output 𝐴𝐴 𝐴𝐴𝐴(𝑥𝑥) of a statistically scaled 
model must be restored to the original scale by

𝑦𝑦(𝑥𝑥) = 𝑦̂𝑦(𝑥𝑥)𝜎𝜎𝑘𝑘 + 𝑦̄𝑦𝑘𝑘, ∀(𝑙𝑙𝑙 𝑙𝑙𝑙𝑙𝑙𝑙) ∈ 𝑘𝑘.�

Similarly, we could remedy the non-uniform spatial distribution of data by scaling. Let ρk be the number density 
of data points in the region 𝐴𝐴 𝑘𝑘 . We can replace the standard deviation in (3) by 𝐴𝐴 𝐴𝐴𝐴𝑘𝑘 = 𝜎𝜎𝑘𝑘∕

√

𝜌𝜌𝑘𝑘 . We refer to a model 
trained with variable weights for data points as a weighted model. The scaling and weighing of data are equivalent 

Figure 4.  Comparison of the rate of RMSE reduction for Neural Decision Tree (NDT) and PINE using the first-order 
gradient method. The training and testing data are divided time sequentially.
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to the change of the regression performance metric. It is therefore expected that the new models would produce 
larger RMSE in their predictions when tested against validation data set than previous training when lowering 
RMSE is the optimization criterion. However, these new variants of models may provide a better representation 
of plasmasphere dynamical features when compared to actual imagery of the plasmasphere electron density field. 
To illustrate the effects of our data transformation, we simulated plasmasphere electron density field during the 
storm of 26–27 June 2001 as in (I. S. Zhelavskaya et al., 2017), see Figure 5.

As a reference, we show the prediction of plasmasphere density under normal conditions defined by the mean 
values of the solar and magnetic input parameters in Figure 6. Not surprisingly, all four variant models show 
essentially the same density field. However, comparing with Figure 6, we observe in Figure 5 that all four models 
show the enhancement of electron density in the mid-afternoon (low-left) region of the equatorial plane as a 
clockwise rotation during the on-set of the storm at around 12 UTC on 26 June 2001. As the storm progressed, 
we observe a significant depletion of electron density at high altitudes. At the same time, a remnant of the 

Figure 5.  When Cartesian coordinates are used for the geolocation of training data in the Neural Decision Tree (NDT) training process, the spatial continuity in the 
prediction of electron density field is achieved. Since polar geolocation is used in PINE's training, the electron density field produced by PINE can have visible spatial 
discontinuities.

Figure 6.  Effect of weighted stat scaled and stat scaled only on the average of the entire data set.

 23335084, 2022, 7, D
ow

nloaded from
 https://agupubs.onlinelibrary.w

iley.com
/doi/10.1029/2021E

A
002175 by H

elm
holtz-Z

entrum
 Potsdam

 G
FZ

, W
iley O

nline L
ibrary on [25/10/2022]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



Earth and Space Science

LU ET AL.

10.1029/2021EA002175

15 of 20

enhancement at around 15 MLT persisted for at least 6 hr until 0 UT on 27 June 2001, before the density field 
returned to a near-normal state. The four variant models give somewhat different predictions of this temporary 
period. In fact, all NDT models with Cartesian spatial registration of data show a much slower process with 
enhancement persists strongly in the afternoon (lower-left) region. Also, the progression of the decline of the 
enhanced region seems more detailed in NDT predictions with a much more localized enhanced region toward 
the end of the storm at around 0 UT on 27 June. Although a determination of which of these variant models are 
consistently capable of producing more realistic predictions of plasmasphere dynamics during storm conditions 
cannot be resolved by anecdote comparison shown here, the NDT variants presented show that careful data 
representation can alter the final construction of the trained model. The different scaling and weighing of train-
ing data provide effective ways to construct a plurality of models that may deliver more reliable predictions for 
plasmasphere conditions in an ensemble.

As shown in (I. S. Zhelavskaya et al., 2017), comparison with EUV images can provide useful validation of model 
predictions. Reproduction of Figure 7 in (I. S. Zhelavskaya et al., 2017) shows examples of global density recon-
struction by the resulting neural network model for four different events during the main phase plume forma-
tion. Compare to Figure 7, predictions provided by different versions NDT in comparison to the PINE model 
in Figure 8 (left and right) shows similar characteristics in these model predictions. With limited independent 
observation, quantitative comparison of performance among these models remains extremely challenging for the 
foreseeable future.

5.  Principal Component and Perturbation Analysis
Our numerical experimental results presented in Sections 3 and 4 show that NDT provides appropriate selection 
for the structure of neural network based on the available training data, and the method also leads to good initiali-
zation for the neural network. These features not only yield excellent performance in reducing residual regression 
errors as shown in Sections 3, but the fast convergence of NDT also enables us to focus on the physics and theo-
retical statistical aspect of the modeling problem.

Even though the comparison between models with different degrees of adherence to standard statistical theoreti-
cal assumptions and physical constraints seem to produce qualitatively similar predictions for the storm event of 
26–27 June 2001, a deeper examination of these models can reveal substantial differences among them. For this 
purpose, we first perform a principal component analysis of the input parameters, that is, AE, Kp, F10.7, SymH, 
and their near-time histories. More precisely, we first normalize each component of vector X as follows:

Figure 7.  The top row is EUV images for the times indicated in the titles, and the bottom row is the PINE model output for those times. Events are ordered from left to 
right according to Kp (from low to high). The Kp index is shown in the titles as well.
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𝑉𝑉𝑖𝑖𝑖𝑖𝑖 =
𝑋𝑋𝑖𝑖𝑖𝑖𝑖 − 𝑋̄𝑋𝑖𝑖

𝜎𝜎𝑖𝑖

, where 𝑋̄𝑋𝑖𝑖 =
1

𝑁𝑁

𝑁𝑁
∑

𝑗𝑗=1

𝑋𝑋𝑖𝑖𝑖𝑖𝑖 , 𝜎𝜎2
𝑖𝑖 =

1

𝑁𝑁 − 1

𝑁𝑁
∑

𝑗𝑗=1

(

𝑋𝑋𝑖𝑖𝑖𝑖𝑖 − 𝑋̄𝑋𝑖𝑖

)2
,� (4)

for each of the components i = 1, …, 28 of input vector Xj with j = 1, …, N by removing the components for L and 
MLT. Consider the eigenvalues 𝐴𝐴 𝐴𝐴2

𝑖𝑖
 and eigenvectors ui of the matrix VV T. The values λi and vectors ui are therefore 

principal values and principal components of the normalized data set Vj, j = 1, …, N. Figure 9 shows that there 
are 5–6 dominant principal components for our training data set.

One way to visualize the leading principal components is to show the behavior of current and average values of 
the 4 attributes AE, Kp, SymH and F107 relative the the average value as shown in Figure 10 where the 5 leading 

Figure 8.  (Left) are predictions given by Neural Decision Tree (NDT) models trained with different scaled data. (Right) are predictions given by NDT models with 
different degree of freedom. Conditions characterized with different time and Kp index as those in Figure 7.

Figure 9.  Distribution of Singular Values and projection of data onto principal directions.
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principal components (PCs) for the model input are shown. It is expected that the leading PC correspond to broad 
deviation of components from the overall means of the attributes. Indeed, the first 2 leading PCs correspond to 
large but persistent deviation from the mean values of the attributes. Staring from the third leading PC, large 
changes over recent history values in AE, Kp and SymH play a much more significant role. As a all PCA, the 
principal components of the inputs characterize the major dependencies between input parameters. Instead of 
associating these components with physical explanation for these dependencies, the focus of our discussion is on 
the model responses to these characteristic variations in the input parameters. In fact, our aim is to highlight the 
differences in different versions of models that are trained with identical data for difference performance criteria. 
Examining the projections of data onto the principal components also reveals that outliers for the first and second 
principal components are clearly either all negative or all positive. Given the small number of these outliers and 
the fact that electron density data over the period of time when these outliers occur are very limited, we there-
fore do not expect the training neural network model for plasmasphere dynamics to be capable of modeling the 
extreme conditions represented by these outliers. Indeed, the prediction of plasmasphere density under conditions 

𝐴𝐴 𝐴𝐴 = 𝑋̄𝑋 ± 𝜆𝜆𝑖𝑖𝑢𝑢𝑖𝑖diag (𝜎𝜎1,… , 𝜎𝜎28) for the first 5 principal components in Figure 11 show signs of model saturation 
indicated by near-zero density at high altitude.

Note from the right panel in Figure 9 that the outliers in the first five principal components often are far beyond 
one standard deviation away from the mean value. However, perturbation of input parameters by more than one 
standard deviation can sometimes lead to non-physical input. Therefore, results in Figure 11 actually understate 
the issues of model saturation. These results are entirely expected because of the limited availability of data 
during extreme conditions. The model saturation also reveals the limitation of data-driven models trained with 
our data regarding their ability to predict plasmasphere density under extreme conditions.

Figure 10.  The 5 leading principal components are shown as columns of the plots.
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6.  Discussion and Conclusion
We are also interested in the systematic difference among the model variants in moderate conditions. In particu-
lar, we would like to understand whether or not the principal components identified in the solar and magnetic 
inputs of the models lead to physically meaningful characteristics in the predicted electron density field. To do 
this, we evaluate the difference in the predicted electron density field with input parameters perturbed by ±1 
standard deviation from the mean values, or the difference of difference for the predicted fields. In Figure 12, 
these differences are shown for the first five principal components for the weighted NDT and PINE. In addition 
to the spatial discontinuity at mlt = 0 that is visible in the PINE predicted electron density field in perturbation of 
principal components, there are also noticeable differences in perturbation of input parameters along with other 
principal components. In particular, for both the second and fourth principal components, the enhancement of 
electron density near midnight at high altitudes has much more finely resolved structures for the NDT model.

Further comparison among the variant NDT model shown in Figure 12 shows a progression of changes in the 
perturbation patterns. Indeed, when only the geolocation registration is changed from polar to Cartesian coordi-
nates, the pattern produced by NDT are similar to those predicted by PINE without the spatial discontinuities at 
mlt = 0. However, other spatial features in the perturbed electron density fields emerge as additional scaling of 
data is introduced.

Without extensive independent validation data, it is difficult or impossible to conclude which model variants 
are more appropriate at representing the changes in the plasmasphere electron density field under characteristic 
changes in the input parameters. However, the models generated by NDT based on different physical and statistical 
considerations provide a wide range of alternative models for the prediction of the plasmasphere dynamics. When 
taken as an ensemble, we are more likely to capture the diversity of dynamical behavior of the plasmasphere.

In this paper, we have presented a new approach for constructing a regression neural network for plasmasphere 
dynamic model construction. The NDT approach naturally leads to a more sophisticated neural network structure 

Figure 11.  Electron density fields predicted by Neural Decision Tree (NDT) and PINE for input parameters perturbed by one standard deviation in direction of the first 
5 principal components respectively.
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than the traditional single hidden layer network. It is known in the machine-learning community that deep learn-
ing, which typically involves more hidden layers in neural networks, has the potential to capture a more complex 
relationship between input and output of a system. Our experience also reveals that even with a substantially 
smaller degree of freedom, a 2-hidden layer NDT trained model can outperform a single-layer model. However, 
the most attractive aspect of the NDT approach is its ability to identify appropriate network structures based on 
the decision tree initialization without prior experience. This feature is particularly relevant for the space weather 
community when only limited experience in machine-learning methods exists for many areas of applications.

Data Availability Statement
The software proposed in this paper, NDT, is provided in the Zenodo repository. The PINE data originated from 
(I. Zhelavskaya et al., 2016) is now also deposited in the repository (Lu, 2022)

•	 �Link: https://doi.org/10.5281/zenodo.6416609
•	 �Data Citation (Lu, 2022).
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