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Abstract
Purpose Soil erosion by water yields sediment to surface reservoirs, reducing their storage capacities, changing their geom-
etry, and degrading water quality. Sediment reuse, i.e., fertilization of agricultural soils with the nutrient-enriched sediment 
from reservoirs, has been proposed as a recovery strategy. However, the sediment needs to meet certain criteria. In this study, 
we characterize sediments from the densely dammed semiarid Northeast Brazil by VNIR-SWIR spectroscopy and assess the 
effect of spectral resolution and spatial scale on the accuracy of N, P, K, C, electrical conductivity, and clay prediction models.
Methods Sediment was collected in 10 empty reservoirs, and physical and chemical laboratory analyses as well as spectral 
measurements were performed. The spectra, initially measured at 1 nm spectral resolution, were resampled to 5 and 10 nm, 
and samples were analysed for both high and low spectral resolution at three spatial scales, namely (1) reservoir, (2) catch-
ment, and (3) regional scale.
Results Partial least square regressions performed from good to very good in the prediction of clay and electrical conductiv-
ity from reservoir (< 40  km2) to regional (82,500  km2) scales. Models for C and N performed satisfactorily at the reservoir 
scale, but degraded to unsatisfactory at the other scales. Models for P and K were more unstable and performed from unsat-
isfactorily to satisfactorily at all scales. Coarsening spectral resolution by up to 10 nm only slightly degrades the models’ 
performance, indicating the potential of characterizing sediment from spectral data captured at lower resolutions, such as 
by hyperspectral satellite sensors.
Conclusion By reducing the costly and time-consuming laboratory analyses, the method helps to promote the sediment reuse 
as a practice of soil and water conservation.

Keywords Sediment characterization · Spectroscopy · Sediment reuse · Surface reservoirs · Semiarid · Brazil

1 Introduction

Soil is an essential component of the Earth’s system, linked 
directly with the hydrological cycle, sedimentological, geo-
chemical, biological, and ecological processes, as well as rep-
resenting a major source of goods, services, and resources for 
humanity (Brevik et al. 2015; Decock et al. 2015). However, 
the current production model to meet the increasing demand 
for food, fibre, and fuel from the world’s growing popula-
tion has accelerated land degradation (Tesfaye et al. 2015; 
Ollobarren et al. 2016).

The pursuit for increasing crop productivity and the 
expansion of new areas for cultivation increase the pressure 
on fragile lands and ecosystems, impacting hydrological pro-
cesses and favouring water erosion (Wohl et al. 2012; Santos 
et al. 2016). Soil erosion by water may occur at different 
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intensities depending on the characteristics of rainfall, as well 
as terrain, soil type, and land cover and use. Soils in the Bra-
zilian semiarid region are usually shallow with low organic 
matter content and low water retention capacity. These char-
acteristics, in association with the high intensity rainfall 
events typical of this region, and the absence of vegetation 
cover resulting from inadequate land use, can potentialize the 
erosive process (Calixto Júnior and Drumond 2014).

The material produced by erosion is exported to the river 
systems, and a significant portion may be deposited in res-
ervoirs used for water supply. In the semiarid region of Bra-
zil, sediment deposition causes a reduction of approximately 
1.6% of the storage capacity of surface reservoirs per decade 
(de Araújo et al. 2006). Thereby, sediment deposition also 
changes reservoir geometry, making them shallower and 
more susceptible to evaporation (de Araújo et al. 2006). 
Besides, soil erosion contributes to reservoir eutrophication, 
since the nutrient-enriched sediments increase ecosystem 
productivity and reduce the dissolved oxygen level (Coelho 
et al. 2017; Moura et al. 2020).

In theory, soil conservation practices are effective in 
reducing sediment yield and reservoir siltation; however, 
human and financial resources needed for land use control 
and monitoring may hamper implementation to large territo-
rial extensions. From the reservoir perspective, removal and 
reuse of the deposited sediment have potential to, simulta-
neously, reduce the nutrient content in the lake and replace 
its storage capacity lost by siltation (Lira et al. 2020). Sedi-
ment reuse has been proposed as a practice contributing 
to the circular economy concept, considering sediment as 
a resource rather than waste (Brils et al. 2014), and many 
studies emphasize its positive effects (e.g., Fonseca et al. 
1998; Sigua 2009; Junakova and Balintova 2012; Mattei 
et al. 2017; Braga et al. 2019). Capra et al. (2015) reported 
on the reuse of dredged sediment for the replacement of soil 
degraded by erosion, concluding that the addition of sedi-
ment had beneficial effects on the physicochemical proper-
ties of the soil and resulted in higher total dry matter produc-
tion in plants. Also, Sigua et al. (2004) observed increases 
in biomass production when they reused dredged sediment, 
and Braga et al. (2017) found that the addition of sediment 
in sunflower cultivation improved the relative chlorophyll 
content and total dry mass when compared to plants growing 
on substrate containing commercial fertilizers.

Although the economic feasibility of sediment reuse for 
soil fertilization has already been demonstrated for specific 
conditions (e.g., Braga et al. 2019), the agricultural sector 
has not yet adopted this practice to replace traditional fer-
tilization, which, via soil erosion, may further increase res-
ervoir eutrophication. Therefore, sediment characterization 
is essential to provide information about its suitability as 
fertilizer and to promote the idea of reuse, consolidating this 

practice in the agricultural production system as a measure 
of soil and water conservation, as well as financial benefit.

Such sediment characterization can be achieved by several 
means, such as time-consuming and costly physicochemi-
cal laboratory analyses. Currently, visible near-infrared and 
short-wave infrared (VNIR-SWIR) spectroscopy has proven 
to be an alternative for indirect analyses of soil or sediment 
attributes, as it (i) is cheaper and faster than the traditional 
laboratory procedures and thus (ii) favours repeatability 
and reproducibility at different temporal and spatial scales. 
Recent research has successfully established correlations 
between VNIR-SWIR spectroscopy and sediment or soil 
attributes, for instance Viscarra Rossel et al. (2006a), Vågen 
et al. (2006), Morgan et al. (2009), Kuang and Mouazen 
(2011), Nawar et al. (2017), Morellos et al. (2016), Cozzolino 
et al. (2016), Hu (2013), Wang et al. (2015), and Demattê 
et al. (2019a).

Thereby, sediment characterization is especially viable 
in semiarid regions due to the flood-drought dynamics: In 
Northeast Brazil, where this study was conducted, small 
and medium-sized reservoirs often fall dry during the intra-
annual dry season, exposing the silted sediment and mak-
ing it easily accessible. This increases the chance that the 
sediment can be periodically sampled and analysed, e.g., by 
VNIR-SWIR spectroscopy and, consequently, be easily exca-
vated and reused when proven efficient for soil fertilization.

To assess the potential of VNIR-SWIR spectroscopy for 
the characterization of reservoir sediments, we collected 
sediment samples, performed physicochemical and spectral 
analyses, and generated regression models with the goals to 
(i) characterize the sediment deposited in reservoirs in the 
semiarid Northeast of Brazil; thereby, we also aimed to (ii) 
assess the effect of spatial scale on the accuracy of predic-
tion models; in addition, to assess the potential of space-
borne imaging spectroscopy data that is currently becoming 
more available, we (iii) assessed the influence of spectral 
resolution on model performance.

2  Study area

This study was conducted in the semiarid region of Brazil, 
Federal State of Ceará, encompassing ten surface reservoirs 
of various sizes (flooded areas varying from 0.02 to 37  km2) 
distributed in three catchments (Benguê, Fogareiro, and 
Pentecoste, with approximately 1000, 5100, and 3200  km2, 
respectively), as illustrated in Fig. 1.

Climate in the region is semiarid, with annual potential 
evaporation ranging from approximately 1800 mm by the 
coast to up to 3000 mm in the upstream hinterland. Aver-
age annual precipitation presents an inverse gradient pattern, 
ranging from roughly 1100 to 550 mm, concentrated in a 
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well-defined rainy season, which generates 6 to 9 months 
per year of atmospheric water deficit, on average (INMET 
2018).

Additionally, shallow soils (usually < 1 m depth) on top 
of a crystalline basement make the rivers intermittent and 
promote low hydrogeological potential in the region, which 
led to the construction of dams for water supply. The res-
ervoir network, with an average density of the order of one 
reservoir per 8  km2, impacts the overall water resources (de 
Araújo and Medeiros 2013), and is particularly important 
on sediment retention (Medeiros et al. 2014; Mamede et al. 
2018). The accumulation of sediment and the adsorbed 
nutrients in the reservoirs results in a water quality effect, 
as described by Medeiros and Sivapalan (2020), negatively 
affecting water availability in terms of quantity (reservoir 
siltation) and quality (eutrophication). In this context, sedi-
ment reuse has been proposed for soil fertilization (Braga 
et al. 2019), also contributing to recovery of water quality 
(Lira et al. 2020).

The wide range of reservoirs and catchment areas 
assessed in this study enabled an analysis of the potential 
of sediment characterization by VNIR-SWIR spectroscopy 
at the reservoir (< 40  km2), catchment (900–6000  km2) and 
regional (82,500  km2) spatial scales. Analysis at the reser-
voirs Araras, Açude III, Boqueirão, Benguê, and Escola was 
not possible due to the limited number of sediment samples 
in each of those reservoirs, but such samples were included 
in the analysis at the catchment and regional scales. Table 1 
presents the reservoirs and catchments adopted in each of 
the spatial scales, and a description of each area is presented 
below.

The studied reservoirs and catchments were selected 
based on the following criteria:

– Variability in terms of soil type and hydrological 
regime, which control the sediment characteristics and 
flux;

Fig. 1  Study area in the semiarid northeast of Brazil
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– Existence of strategic reservoirs at the catchments’ out-
lets, monitored by the Water Resources Management 
Company of Ceará — COGERH, which provides sec-
ondary data on hydrological variability;

– Scientific research conducted by the authors in the 
regions during the last decades, which contributes to 
prior knowledge.

2.1  Benguê catchment

The Benguê catchment drains an area of roughly 1000  km2 
in the headwaters of the Jaguaribe Basin, with 560 mm aver-
age annual rainfall producing 47 mm of runoff (8% runoff 
coefficient) (Ceará 2009). Predominant soil types are luvi-
sols and neosols, though deep latosols prevail in the border 
regions (EMBRAPA 2011). The catchment is controlled by 
the Benguê reservoir at its outlet, with a storage capacity of 
19.6  hm3 and a flooded area of 3.5  km2. In addition to the 
Benguê reservoir, three small reservoirs with flooded areas 
ranging from 0.02 to 0.03  km2 were studied: Boqueirão (de 
Figueiredo et al. 2016), Araras, and Açude III. Figure 1 of 
the supplementary material (Fig. S1) presents the location of 
the studied reservoirs and the respective sediment sampling 
points in the Benguê catchment.

2.2  Fogareiro catchment

Alike Benguê, the Fogareiro catchment is located in the 
Jaguaribe Basin, with an area of approximately 5100  km2 
with predominance of neosols, but also luvisols and argisols 
(EMBRAPA 2011). Average annual rainfall is 680 mm and 
runoff 58 mm, which corresponds to 8% runoff coefficient. 
Four reservoirs were studied in the catchment: Fogareiro, 
Marengo, São Joaquim, and São Nicolau, with storage 
capacities of 118, 15.3, 5.0, and 0.9  hm3, and flooded areas 

of 20.5, 3.4, 1.2, and 0.4  km2, respectively. Studies have 
been conducted in the Fogareiro catchment for characteriza-
tion of surface reservoirs (Zhang et al. 2016, 2018) as well 
as the feasibility of the sediment reuse practice (Braga et al. 
2019). Fig. S2 (supplementary material) presents the loca-
tion of the studied reservoirs and the respective sediment 
sampling points in the Fogareiro catchment.

2.3  Pentecoste catchment

The Pentecoste catchment is located within the Curu Basin 
and extends over an area of approximately 3200  km2. Aver-
age annual rainfall and runoff account for 750 and 126 mm, 
respectively, corresponding to a runoff coefficient of 17% 
(Ceará 2009). Most of the area is on luvisols, though also 
small areas of planosols are indicated (EMBRAPA 2011). 
In this catchment, two reservoirs were selected for sediment 
sampling: the Pentecoste reservoir, located at the catchment 
outlet, with 360  hm3 storage capacity and a flooded area 
of 57  km2, and the Escola reservoir, located in the Vale do 
Curu Experimental Farm (FEVC), with a storage capacity 
of approximately 0.05  hm3 and a flooded area of 0.03  km2, 
monitored since 2015 (Silveira and Mamede 2021) (Fig. S3, 
supplementary material).

3  Material and methods

The study comprehends four steps: (1) sediment sampling in 
the studied reservoirs; (2) physicochemical laboratory analy-
ses; (3) spectral analyses; (4) correlation of physicochemical 
and spectral properties to elaborate models of reservoir sedi-
ment characterization by diffuse reflectance spectroscopy at 
different spectral and spatial resolutions.

Table 1  Reservoirs and catchments assessed in this study

a Number of sediment sampling points
b Reservoirs not analysed individually due to limited number of samples

Regional scale Catchment scale Reservoir scale Reservoir area 
(km2)

Reservoir na

Jaguaribe and Curu basins (82,500  km2) na = 138 Benguê (964  km2) na = 28 Ararasb 0.02 5
Açude  IIIb 0.02 5
Boqueirãob 0.03 12
Benguêb 2.23 6

Fogareiro (5106  km2) na = 80 São Nicolau 0.42 20
São Joaquim 1.20 20
Marengo 3.39 20
Fogareiro 20.46 20

Pentecoste (3238  km2) na = 30 Escolab 0.03 10
Pentecoste 36.88 20
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3.1  Sediment sampling

Sediment sampling was performed in empty reservoirs in 
the period of November 2016 to February 2017. Small res-
ervoirs dry out periodically in the study region due to the 
high evaporation rates, whereas medium and large size reser-
voirs retain water for longer periods. However, due to a long-
lasting drought (2012 to 2017), it was possible to obtain 
sediment samples also from larger strategic reservoirs. The 
sediment sampling from the reservoirs’ beds was preceded 
by removal of litter (Fig. 2). At each sampling point, an area 
of roughly 0.5 m diameter was delimited and approximately 
2 kg of sediment from the top layer (~ 2 cm depth) was col-
lected at 3 to 5 points, forming a composite sample. The 
number of composite samples varied according to the size 
of the reservoir, with twenty samples being the maximum 
for the largest reservoirs (see Table 1), totalling 138 in the 
10 studied reservoirs.

The sediment samples were air-dried, disaggregated, 
homogenized, and sieved to 2 mm, and then sent to physico-
chemical and spectral laboratories for the respective analy-
ses, as described below.

3.2  Physicochemical analyses of sediment

The sediment physicochemical analyses were performed in 
the Soil and Water Laboratory of the Federal University of 
Ceará (UFC). The attributes nitrogen (N), phosphorus (P), 
potassium (K), soil organic carbon (SOC), and electrical 
conductivity (EC) and granulometry (for clay content) were 
analysed according to the methods recommended in the 
Manual of Soil Analysis Methods of the Brazilian Agricul-
tural Research Corporation (EMBRAPA 2017):

– N (g  kg−1): Kjeldahl method, in which N is converted to 
ammonium sulphate through oxidation, and the released 
ammonia is determined by acidimetry;

– P (mg  kg−1): formation of blue phosphorus-molybdic 
complex after reduction of molybdate with ascorbic 
acid, and determination of the assimilable phosphorus 
by molecular absorption spectrophotometry;

– K  (cmolc  kg−1): extraction with dilute hydrochloric acid 
solution and subsequent determination of the exchange-
able potassium by flame spectrophotometry;

– SOC (g  kg−1): oxidation of organic matter via a wet pro-
cess with potassium dichromate in a sulfuric medium. 
The excess dichromate after oxidation is titrated with a 
standard solution of ferrous ammonium sulphate;

– EC (dS  m−1): preparation of a saturation paste by addi-
tion of water to the sediment sample until saturation, and 
direct reading with a conductivity meter;

– Clay fraction (g  kg−1): pipette method, with agitation and 
suspension of the silt and clay fractions in dispersing 
solution, and quantification of the suspended fraction 
after sedimentation.

During control procedures and uncertainty assessments, 
the laboratory performs triplicate analyses and usually 
observes < 2% differences, with a 5% difference being admit-
ted as the upper limit for reanalyses. Although no triplicate 
analyses were performed in this study, we assume the labora-
tory error to be < 5%.

3.3  Spectral analyses of sediment

For the spectral analyses, sediment samples were air-dried 
and placed in black cylindrical plastic containers with 6 cm 

Fig. 2  Study area and field 
work: A Fogareiro reservoir 
with low water level, B bed 
of an empty reservoir C litter 
removal at a sampling point, 
D sediment sampling
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diameter and 4 cm depth, totalling a volume of 113.1  cm3. 
The readings were taken at the Agricultural and Electronics 
Laboratory (LEMA) of UFC in a dark room with no reflec-
tive surfaces. A spectroradiometer covering the spectral 
range between 350 and 2500 nm (ASD  FieldSpec®3 Hi-Res) 
was used with a single artificial light source (halogen lamp) 
oriented to the sample with a 45° zenith angle and 71 cm 
distance. The distance between sensor head and sample was 
one-third of the container diameter, to avoid influence of 
the edges on the readings. Each spectrum was obtained by 
automatic averaging of 30 measurements, and three spectra 
were collected from each sample with 120° rotation between 
readings. During the analysis, three optimizations and white 
reference measures were performed, the first prior to the 
spectral readings and the last two when the equipment indi-
cated saturation.

The spectral reading comprises the range between 350 
and 2,500 nm with 1 nm spectral resolution. However, due 
to noise observed in the border areas of the measured spec-
tral range, only the region between 400 and 2400 nm was 
considered for subsequent analyses.

3.4  Models of sediment characterization 
from spectroscopy

Establishing relationships between soil/sediment physico-
chemical properties and reflectance data is challenging due 
to the large number of possible combinations. Currently, 
partial least squares regression — PLSR (see Wold et al. 
2001) is a widely used and successful technique for estimat-
ing target characteristics from spectral data (e.g., Viscarra 
Rossel et al. 2006a, 2008; Gomez et al. 2008; Lu et al. 2013; 
Ludwig et al. 2017). The PLSR algorithm selects orthogo-
nal factors that maximize the covariance between the pre-
dictor variables X (spectral data) and the response variable 
Y (sediment attribute, in this case) and decomposes both 
X and Y variables to find new components (scores), called 
latent variables, which are orthogonal. Regressions are cal-
culated between these new components of variables X and 
Y (Moreira et al. 2015).

In our study, we used the ParLeS version 3.1 software 
provided by Viscarra Rossel (2008) to estimate the con-
tents of N, P, K, SOC, EC, and clay from spectral data via 
PLSR-modelling. Prior to PSLR-modelling, pre-processing 
techniques were applied to improve the robustness of the 
models. First, detector jumps present in a few occasions 
were corrected routinely using in-house scripts. Then, Par-
LeS “spectral manipulation” options were applied, namely, 
(1) a SNV transformation (Barnes et al. 1989) for spectral 
normalization to remove interference due to light scattering, 

(2) a Savitzky-Golay filter (Savitzky and Golay 1964) for 
spectral smoothing, and (3) mean centring of the data. In our 
case, this selection was found to outperform other common 
pre-processing techniques such as e.g., spectral derivatives.

The regression models were developed individually for 
each of the reservoirs and catchments presented in Table 1, 
except those with less than 20 sediment samples, resulting 
in five reservoir models, three catchment models, and one 
basin model per sediment property (totalling 54 calibrated 
models). Due to the low number of samples in individual 
reservoirs (n < 20) and for reasons of comparability between 
model performances, we did not separate the datasets into 
calibration and validation, but performed leave-one-out 
cross validation, whereas a maximum number of 12 factors 
were allowed. Further, we provide regression coefficients 
(intercept and slope) and bias of the calibrated models. 
Mean, standard deviation and range of observed versus pre-
dicted sediment attributes are presented in the supplemen-
tary material.

Performance of the regression models was assessed as 
the best combination of high coefficient of determination 
(R2) and low root-mean-square error (RMSE), while aiming 
for a ratio of performance to deviation (RPD) > 1.4. Usual 
ranges of RPD are taken as excellent (RPD > 2.50), very 
good (2.00 < RPD ≤ 2.50), good (1.80 < RPD ≤ 2.00), moder-
ate (1.40 < RPD ≤ 1.80), weak (1.00 < RPD ≤ 1.40), and very 
poor (RPD ≤ 1.00) (Viscarra Rossel et al. 2006b). In addi-
tion, Nash–Sutcliffe efficiency (NSE) coefficient was calcu-
lated as measure of model performance, according to which 
the model can be considered very good (0.75 < NSE ≤ 1.00), 
good (0.65 < NSE ≤ 0.75), satisfactory (0.50 < NSE ≤ 0.65), 
or unsatisfactory (NSE ≤ 0.50) (Moriasi et al. 2007).

To analyse the influence of spectral resolution on the 
accuracy of sediment attribute estimation from spectroscopic 
data, the original spectral curves of 1 nm resolution (2001 
spectral bands) as provided by the instrument were resam-
pled to 5, and 10 nm resolution, resulting in 400, and 200 
bands, respectively. For each of the abovementioned spectral 
resolutions, the model presenting highest correlation with 
each sediment attribute, estimated from the physicochemical 
analyses, was selected. Again, the respective coefficients of 
determination (R2) were used as a measure of the goodness 
of fit.

To assess the influence of spatial scale on the estimations, 
the physicochemical data of the sediment sampling points 
were grouped at spatial scales varying from reservoir (< 100 
 km2) to regional (> 10,000  km2), according to Table 1. R2 
were calculated for all combinations of sediment attributes 
and spatial scales, enabling to interpret how the correlation 
evolves.
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4  Results and discussion

4.1  Physicochemical and spectral characterization 
of the sediments

Sediment properties in the 10 studied reservoirs are sum-
marized in Table 2, from which the variation within and 
between reservoirs can be observed. The largest variation 
among the reservoirs was observed in P content, with a mini-
mum of 2 mg  kg−1 in a sample of the Benguê reservoir and 
a maximum of 289 mg  kg−1 in São Nicolau. Mean P values 
in those same reservoirs were 7 mg  kg−1 and 82 mg  kg−1, 
respectively.

Nitrogen, K, and SOC tend to be less variable among the 
studied reservoirs, with mean values ranging from 1.3 to 
1.9 g  kg−1, 0.8 to 2.0  cmolc  kg−1, and 13.4 to 19.0 g  kg−1, 
respectively. As for P, clay contents showed a large variation, 
with the highest value observed in the Pentecoste reservoir 
(maximum of 744 g  kg−1), where the mean was 528 g  kg−1, 
and lowest in the Escola reservoir (minimum and mean of 
37 and 249 g  kg−1, respectively). Mean values of EC ranged 
from a minimum of 1.5 to a maximum 6.7 dS  m−1 in the 
Benguê and Escola reservoirs, respectively. Within each res-
ervoir, the standard deviation ranged from 0.6 to 5.6 dS  m−1.

The spectra of the sediment in all sampling points are 
shown in Fig. 3 (Benguê catchment), Fig. 4 (Fogareiro 
catchment), and Fig. 5 (Pentecoste catchment). There is 
little, visually expressive contrast among the different 
catchments. Some variability can be observed in the VNIR 
between 500 and 900 nm (likely linked to Carbon and sedi-
ment colour), slope between 1500 and 1800 nm (Carbon, 
grain size), and the water absorption features around 1400 
and 1900 nm; all sediment spectra seem to contain a more 
or less distinct clay feature around 2200 nm. The overall 
reflectance (brightness) varies within each reservoir, in a 
narrow range for the Boqueirão reservoir (Fig. 3) and a 
wide range, e.g., for the Marengo reservoir (Fig. 4).

4.2  Performance of models for sediment 
characterization from spectroscopy

4.2.1  Reservoir‑scale

Performance of the models for characterization of sediments 
from spectroscopy at the reservoir-scale (< 40  km2) using 
partial least squares regressions is presented in Fig. 6 and 
Table 3, which show the cross-validation results for N, P, 
K, SOC, clay, and electrical conductivity. Please consider 
that the models were established for each of the five reser-
voirs individually, although results are presented together in 
Fig. 6A–F for comparison.

In general, regression models to estimate clay, EC, and 
SOC presented the highest correlations between spectra 
and sediment properties (with R2 in the range of 0.49 to 
0.85) and best performances, varying from satisfactory 
to very good according to NSE coefficient (values in the 
range of 0.48 to 0.84) and from moderate to excellent as 
interpreted according to RDP (most models falling in the 
range of 1.40 < RPD < 2.00, classified as moderate to good). 
Models for N presented moderate correlations as well (R2 
in the range of 0.52 to 0.69), with performances classified 
as satisfactory to good according to NSE (in the range of 
0.47 to 0.66) and moderate according to RPD (minimum of 
1.42 and maximum of 1.75). However, the models for P and 
K performed unsatisfactorily to satisfactorily according to 
NSE coefficient (0.22 ≤ NSE ≤ 0.51 and 0.05 ≤ NSE ≤ 0.62, 
respectively) and from weak to moderate according to RPD 
ranges (1.16 ≤ RPD ≤ 1.47 and 1.05 ≤ RPD ≤ 1.67, respec-
tively). Among the reservoirs, models for Marengo and Fog-
areiro performed better (R2 in the ranges of 0.45 to 0.85 and 
0.49 to 0.75, respectively; NSE from 0.44 to 0.84 and 0.46 
to 0.75, respectively; RPD in the ranges of 1.37 to 2.59 and 
1.40 to 2.06, respectively), whereas the results for Pentecoste 
presented high variation (NSE, R2, and RPD varying from 
0.05 to 0.83, 0.08 to 0.83 and 1.05 to 2.47, respectively).

4.2.2  Catchment‑scale

Results of models for sediment characterization at the 
catchment-scale (900–6000  km2) are presented in Fig. 7, 
whereas performance of the models is presented in Table 4. 
Again, please consider that the models were established for 
each catchment individually, although they are presented 
altogether in the graphs of Fig. 7A–F for comparison.

Alike the performance at the reservoir scale, regression 
models to estimate clay and EC usually presented coeffi-
cients of determination in the range of 0.4 to 0.8 and per-
formances classified from satisfactory to very good accord-
ing to NSE coefficient and from moderate to very good 
according to RPD. However, low correlation was observed 
between spectra and EC at the Pentecoste catchment 
(R2 = 0.12), where the model performed unsatisfactorily 
(with NSE = 0.06 and RPD = 1.05), strongly influenced by 
an extreme value equivalent to almost five times the average. 
It is important to note that removal of such extreme value did 
not considerably improve the modelling results; therefore, 
we decided to keep all values.

The SOC, N, P, and K models performed unsatisfacto-
rily based on NSE (NSE < 0.5) and weak based on RPD 
(RPD < 1.4) in general, with some specific ones present-
ing satisfactory/moderate results: SOC and N at the Fog-
areiro catchment and P and K at the Benguê catchment. 
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Table 2  Statistics of sediment attributes for the three study catchments

Catchment Reservoir N (g kg−1) P (mg kg−1) K (cmolc kg−1) SOC (g kg−1) Clay (g kg−1) EC (dS m−1)

Benguê catchment Araras* Mean 1.6 45.6 1.6 16.1 350 2.4
SD 0.4 56.8 0.4 4.2 138 1.1

Min 0.9 14.0 1.0 9.2 112 1.4

Max 1.9 147.0 2.0 20.3 473 4.1
Skewness  − 1.9 2.2  − 1.9  − 1.4  − 1.8 1.3

Açude III* Mean 1.8 16.4 1.6 17.8 337 1.6
SD 0.9 7.5 0.7 9.3 103 1.6
Min 0.3 8.0 0.8 2.8 190 0.2
Max 2.5 28.0 2.3 27.2 447 3.9
Skewness  − 1.6 0.9  − 0.4  − 1.2  − 0.6 1.0

Benguê* Mean 1.8 7.3 0.8 17.9 273 1.5
SD 0.8 6.5 0.4 7.9 161 0.7
Min 0.4 2.0 0.2 4.4 36 0.4
Max 2.6 19.0 1.2 24.2 445 2.5
Skewness  − 1.3 1.4  − 0.5  − 1.3  − 0.8  − 0.5

Boqueirão* Mean 1.5 14.9 1.3 15.3 344 1.6
SD 0.4 3.6 0.5 3.6 78 0.6
Min 1.2 9.0 0.7 11.4 225 0.7
Max 2.1 22.0 2.4 22.7 431 2.4
Skewness 0.6 0.2 0.7 0.9  − 0.4  − 0.6

Fogareiro catchment Fogareiro Mean 1.9 22.0 1.2 19.0 474 4.0
SD 0.5 8.3 0.6 5.0 171 1.9
Min 0.8 9.0 0.4 7.1 66 0.4
Max 2.6 52.0 3.6 24.4 665 7.8
Skewness  − 0.8 2.5 2.7  − 1.2  − 1.3 0.0

Marengo Mean 1.3 10.9 1.6 13.4 273 2.8
SD 0.7 4.8 1.3 6.2 251 4.3
Min 0.3 4.0 0.3 3.5 10 0.2
Max 2.5 20.0 4.9 23.4 704 17.2
Skewness 0.2 0.1 1.1 0.2 0.6 2.4

São Joaquim Mean 1.8 26.2 2.0 18.5 368 1.9
SD 0.7 12.9 0.9 5.9 172 1.2
Min 0.5 10.0 0.7 5.8 34 0.5
Max 2.7 62.0 4.3 24.8 668 4.5
Skewness  − 0.8 1.5 0.6  − 1.0  − 0.3 0.6

São Nicolau Mean 1.7 81.9 0.9 17.0 269 3.2
SD 0.7 68.7 0.6 7.5 124 4.0
Min 0.4 17.0 0.2 4.3 130 0.5
Max 2.5 289.0 2.9 29.6 563 15.2
Skewness  − 0.3 2.0 1.9  − 0.1 1.1 2.1

Pentecoste catchment Escola* Mean 1.7 15.7 1.7 16.6 249 6.7

SD 0.9 6.3 0.8 8.4 165 5.6

Min 0.5 7.0 0.5 5.0 37 0.7

Max 2.5 27.0 2.9 26.0 541 21.6

Skewness  − 0.6 0.3  − 0.3  − 0.5 0.3 2.3

2564 Journal of Soils and Sediments (2022) 22:2557–2577



1 3

Correlations were also lower than those obtained for the 
previous properties, with R2 usually below 0.6 and as low 
as 0.01. It is important to note the very poor performance of 
SOC and N models at the Benguê catchment, with NSE < 0 
and RPD ≤ 1.0. Negative NSE indicates that taking the aver-
age values of the samples is a better estimate than adopting 
the tested model.

4.2.3  Regional‑scale

Figure 8 illustrates the results of sediment characterization 
from spectroscopy at the regional-scale, which comprises 
the sediment samples from all reservoirs in the Jaguaribe 
and Curu basins (total area of 82,500  km2). Contrary to 
Figs. 6 and 7, these graphs show only one model each. Mod-
els’ performance is shown in Table 5.

At the regional scale, the models for clay and EC pre-
sented good and moderate to good performance according 

to NSE (values of 0.65 and 0.69, respectively) and RPD 
(values of 1.70 and 1.81, respectively). The coefficients of 
determination were 0.65 and 0.69, indicating some level of 
correlation. The models for SOC, N, P, and K presented NSE 
values ranging from 0.20 to 0.39 (classified as unsatisfac-
tory) and RPD values ranging from 1.12 to 1.29 (classified 
as weak), at this scale. Lower correlations were obtained 
between spectra and those properties, with 0.24 ≤ R2 ≤ 0.42.

4.2.4  Discussion

In this study, models’ performances expressed by NSE and 
RPD tend to decrease in models with low slope, i.e., when 
the dependent variable is less sensitive to the variation of 
the input data. For instance, slopes of the calibrated models 
at the reservoir scale are mostly in the range of 0.5 to 0.9. 
Some exceptions are K in the São Nicolau and Pentecoste 
reservoirs, and also P for the latter, in which the lowest NSE 

* Reservoirs not analysed individually, but only as part of a catchment, due to limited number of samples

Table 2  (continued)

Catchment Reservoir N (g kg−1) P (mg kg−1) K (cmolc kg−1) SOC (g kg−1) Clay (g kg−1) EC (dS m−1)

Pentecoste Mean 1.6 10.3 1.8 15.7 528 4.4

SD 0.6 4.3 0.8 5.4 221 2.5

Min 0.2 5.0 0.4 2.6 11 0.4

Max 2.4 22.0 3.9 23.5 744 8.2

Skewness  − 0.6 1.7 0.6  − 0.6  − 1.2  − 0.2
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Fig. 3  Spectra of the sediment samples in the Benguê catchment, before pre-processing
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(0.23, 0.05, and 0.22, respectively) and RPD (1.17, 1.05, and 
1.16, respectively) are observed.

In summary, the models for clay and EC performed in 
the range of good to very good at the spatial scales ranging 
from reservoirs (< 40  km2) up to regional (> 82,500  km2), 
with some specific ones rated as satisfactory. SOC models 
performed satisfactorily to very good at the reservoir scale, 

but degraded to unsatisfactory at the other scales. Similar 
results were found for N, whose models were satisfactory 
at the reservoir scale but tended to be unsatisfactory at the 
catchment and regional scales. The models for P and K pre-
sented high variation, from unsatisfactory to satisfactory at 
all investigated scales.
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Fig. 4  Spectra of the sediment samples in the Fogareiro catchment, before pre-processing
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Fig. 5  Spectra of the sediment samples in the Pentecoste catchment, before pre-processing
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Fig. 6  Results of cross-validation (leave-one-out) of models for individual reservoirs (< 40  km2): A nitrogen, B phosphorus, C potassium, D soil 
organic carbon, E clay, and F electrical conductivity
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The overall performance at the reservoir scale benefits 
from their relatively small areas, which tend to present more 
homogeneous factors controlling the sediment characteristics 
and transport conditions: soil type, land use, and hydrological 
regime. Similar findings have been reported by other authors 
investigating soil attributes with spectral data. For instance, 
Morellos et al. (2016) found good N and SOC estimations 
(R2 > 0.70) for small areas (~ 0.30  km2), and Franceschini 
et al. (2015) also found good model performance to estimate 
organic matter, K and clay in small areas (~ 0.02  km2) using 
PSLR.

At the catchment and regional scales, slight overestima-
tion of lower values and underestimation of higher values are 
observed for SOC. In fact, Ward et al. (2019) reported a sim-
ilar effect, and explained that it is caused by the skewness of 
the SOC distribution and changes in the relationship between 

SOC and spectra for higher values. In our study, out of the 
60 data samples (combination of six sediment properties in 
10 reservoirs), 45% are highly skewed (|skewness|≥ 1), 33% 
are moderately skewed (0.5 ≤|skewness|< 1), and only 22% 
are approximately symmetric (|skewness|< 0.5).

Whereas the models for estimating sediment attributes 
from spectral data seem reliable and potentially replicable in 
areas up to 40  km2 at the reservoir scale in the study region, 
application to larger extents on a regional basis is challeng-
ing. At the catchment scale (Benguê, Pentecoste, and Foga-
reiro catchments, with areas ranging from approximately 
1000 to 5000  km2) and regional scale (which embraces two 
large basins: Jaguaribe, with 74,000  km2 and Curu, with 
8500  km2), performance of the models degraded. This find-
ing indicates that estimating sediment attributes from spec-
troscopy seems not to be feasible at very large spatial scales: 

Table 3  Calibrated models 
and their performance for 
characterization of sediments 
from spectroscopy at the 
reservoir-scale

a Number of sediment sampling points
b Number of factors in the PLSR models

Reservoir Attribute Calibrated models Models’ performance

NFb Intercept Slope Bias R2 RMSE RPD NSE

São Nicolau (na = 20) N 3 0.63 0.627  − 0.001 0.58 0.46 1.57 0.58
P 9 36.00 0.519 3.308 0.50 47.40 1.45 0.50
K 2 0.50 0.443 0.015 0.30 0.55 1.17 0.23
SOC 3 5.45 0.666 0.226 0.61 4.59 1.64 0.61
Clay 6 81.30 0.704  − 1.713 0.61 77.16 1.61 0.60
EC 8 1.00 0.659 0.107 0.69 2.21 1.83 0.69

São Joaquim (na = 20) N 4 0.45 0.741 0.029 0.58 0.44 1.50 0.53
P 4 8.53 0.679  − 0.118 0.55 8.77 1.47 0.51
K 10 0.79 0.608  − 0.010 0.62 0.54 1.67 0.62
SOC 4 5.42 0.698 0.178 0.54 4.08 1.45 0.50
Clay 2 94.80 0.743  − 0.187 0.66 99.30 1.73 0.65
EC 10 0.69 0.634  − 0.011 0.63 0.71 1.70 0.63

Marengo (na = 20) N 3 0.29 0.813  − 0.042 0.69 0.37 1.75 0.66
P 1 5.46 0.495 0.023 0.45 3.49 1.37 0.44
K 5 0.38 0.722 0.071 0.63 0.81 1.64 0.61
SOC 4 2.85 0.755 0.427 0.75 3.07 2.03 0.74
Clay 4 26.10 0.901 0.972 0.85 96.90 2.59 0.84
EC 8 1.14 0.529 0.156 0.49 2.98 1.43 0.48

Fogareiro (na = 20) N 7 0.66 0.662  − 0.024 0.66 0.30 1.74 0.65
P 5 8.57 0.612  − 0.028 0.49 5.93 1.40 0.46
K 9 0.54 0.548 0.005 0.54 0.42 1.52 0.54
SOC 7 6.22 0.683  − 0.197 0.60 3.12 1.61 0.59
Clay 8 152,0 0.693  − 6.482 0.62 104.27 1.64 0.61
EC 6 1.06 0.730 0.024 0.75 0.93 2.06 0.75

Pentecoste (na = 20) N 8 0.49 0.670 0.036 0.52 0.40 1.42 0.47
P 3 6.15 0.384 0.200 0.27 3.66 1.16 0.22
K 1 1.60 0.128  − 0.023 0.08 0.74 1.05 0.05
SOC 8 3.77 0.744 0.250 0.64 3.25 1.67 0.62
Clay 5 96.80 0.836  − 10.475 0.83 89.19 2.47 0.83
EC 4 1.24 0.714 0.026 0.59 1.59 1.56 0.57
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Fig. 7  Results of cross-validation (leave-one-out) of models for catchments (900–6000  km2): A nitrogen, B phosphorus, C potassium, D soil 
organic carbon, E clay, and F electrical conductivity
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heterogeneity of sediment sources and processes contribut-
ing to sediment transport and deposition in reservoirs might 
not be captured by regression models.

Xu et al. (2018) reported that the performance of models 
to estimate soil or sediment attributes depends largely on the 
variability of the dataset. Due to differences in the source 
materials, sediments may have different physical and chem-
ical characteristics, affecting the spectral response. In the 
future, methods to separate the dataset according to physico-
chemical and/or spectral similarity rather than spatial origin, 
such as cluster analysis (Ward et al. 2019), may help improve 
model robustness.

Still, the indirect characterization of sediment from res-
ervoirs’ beds supports the practice of sediment reuse as fer-
tilizer, by reducing the need for costly and time-consuming 
laboratory analyses. Thereby, the overall good performance 
of the models to predict clay content is crucial, as clay is 
a major physical characteristic controlling water flux and 
retention in the soil, impacting crop growth and productiv-
ity, especially in dry environments. Also, good model per-
formance for EC at all the investigated scales is useful as a 
first assessment of the feasibility of sediment for reuse, by 
indicating reservoirs with high salinity that are unsuitable 
as nutrient sources for soil fertilization.

On the other hand, the low performance of most mod-
els for N, P, and K, especially at larger spatial scales, pre-
vents accurate estimations of such fundamental nutrients for 

crop production and, therefore, indicates a limitation of the 
approach adopted by us. Such results suggest that spectros-
copy should not be the sole method to estimate nutrient con-
tent in sediments, but rather that it complements laboratory 
analyses. Improvements might be achieved with revision of 
the approach, e.g., by applying prior data transformations 
and/or clustering analyses as proposed by Ward et al. (2019), 
or adapting the (PLSR) model.

4.3  Influence of the spatial scale on sediment 
attribute estimation

Spatial scale is an important feature to consider when propos-
ing regression models for sediment characterization, since 
higher heterogeneity of the factors controlling sediment com-
position (soil types, land use, sediment transport conditions) 
is expected as the spatial scale increases. Figure 9 presents 
the coefficients of determination (R2) of the regression mod-
els, according to the spatial scales as defined in Table 1.

From the graph, one can depict that an increase in the spa-
tial scale of the reservoirs and from the aggregation of data 
of several reservoirs worsen the correlations, indicating that 
catchment and regional-scale models tend to be less accu-
rate. This is particularly notable for P (to which the reduc-
tion of R2 is high, from roughly 0.5 to 0.25 at the reservoir 
and regional scales, respectively) and the other nutrients, 

Table 4  Calibrated models and their performance for characterization of sediments from spectroscopy at the catchment-scale

a Number of sediment sampling points
b Number of factors in the PLSR models

Catchment Attribute Calibrated models Models’ performance

NFb Intercept Slope Bias R2 RMSE RPD NSE

Benguê catchment (na = 28) N 2 1.61 0.033  − 0.019 0.01 0.59 0.98  − 0.08
P 12 3.95 0.794  − 0.024 0.66 15.45 1.68 0.63
K 10 0.44 0.692  − 0.038 0.56 0.39 1.48 0.52
SOC 2 15.70 0.053  − 0.126 0.02 5.81 1.00  − 0.04
Clay 4 103.0 0.684 35.944 0.57 80.24 1.52 0.55
EC 6 0.49 0.726  − 0.014 0.60 0.60 1.56 0.57

Fogareiro catchment (na = 80) N 4 0;72 0.574 0.003 0.54 0.45 1.48 0.54
P 2 29.10 0.163 0.348 0.12 41.71 1.06 0.10
K 5 0.89 0.357 0.035 0.26 0.87 1.14 0.23
SOC 5 6.29 0.629 0.009 0.58 4.24 1.53 0.57
Clay 8 49.10 0.853 18.249 0.80 90.32 2.22 0.79
EC 7 0.95 0.682  − 0.002 0.59 2.07 1.54 0.57

Pentecoste catchment (na = 30) N 6 0.98 0.392 0.003 0.26 0.59 1.14 0.20
P 3 6.10 0.477  − 0.014 0.40 3.71 1.29 0.38
K 6 0.93 0.499  − 0.035 0.32 0.68 1.15 0.22
SOC 7 7.93 0.506  − 0.015 0.38 5.17 1.24 0.33
Clay 4 82.20 0.823  − 5.158 0.79 108.10 2.23 0.79
EC 2 4.01 0.210 0.079 0.12 3.70 1.05 0.06
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Fig. 8  Results of cross-validation (leave-one-out) of models at the regional scale (82,500  km2): A nitrogen, B phosphorus, C potassium, D soil 
organic carbon, E clay, and F electrical conductivity
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whereas for clay and EC, the models tend to be more stable, 
with R2 around 0.7 in all scales.

From the abovementioned figure, three ranges of R2 can 
be identified according to the scale: for the reservoir scale 
(< 40 km2), R2 tends to be higher and less variable (gener-
ally in the range of 0.5 < R2 < 0.8); for the catchment scale 
(900–6000 km2), a decrease in R2 and higher variability can 
be observed (0.1 < R2 < 0.7); for the regional scale (82,500 
 km2), there is a strong tendency of degradation of the regres-
sion models’ accuracy, with R2 usually below 0.4.

This result shows the role of spatial scale in estimating 
sediment attributes: sediment generated in larger areas tends 
to present higher heterogeneity (Silva et al. 2018), hamper-
ing its characterization from VNIR-SWIR spectroscopy 
and reducing the performance of prediction models. This 
finding suggests that homogeneous areas be established, for 
which the models could be transferred from one reservoir 

to another without (re)calibration requiring physicochemi-
cal laboratory data. For instance, Ward et al. (2019) dem-
onstrated that spectral clustering can improve soil organic 
carbon model performance compared to a reference model 
that was calibrated on the whole database without cluster-
ing. Furthermore, establishment of soil and sediment librar-
ies, such as the Brazilian Soil Spectral Library — BSSL 
(Demattê et al. 2019b), has proven to potentially improve the 
capacity to predict the attributes at various spatial scales by 
identifying patterns of spectral signatures.

4.4  Influence of the spectral resolution on sediment 
attribute estimation

By decreasing the spectral resolution down to 10 nm inter-
vals, it was possible to assess its influence on the estimation 
of sediment attributes. Figure 10 presents the coefficients of 

Table 5  Calibrated models and their performance for characterization of sediments from spectroscopy at the regional-scale

a Number of sediment sampling points
b Number of factors in the PLSR models

Basin Attribute Calibrated models Models’ performance

NFb Intercept Slope Bias R2 RMSE RPD NSE

Jaguaribe and Curu basins (na = 138) N 8 0.84 0.503  − 0.010 0.38 0.52 1.23 0.34
P 7 18.10 0.333  − 0.229 0.24 33.10 1.12 0.20
K 3 1.10 0.263  − 0.002 0.24 0.77 1.15 0.24
SOC 8 7.77 0.537  − 0.063 0.42 4.91 1.29 0.39
Clay 2 123.0 0.663  − 0.996 0.65 117.62 1.70 0.65
EC 10 0.82 0.735 0.026 0.69 1.80 1.81 0.69
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Fig. 9  Influence of the spatial scale on the accuracy of regression models for estimating sediment attributes
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determination (R2) of the models, at the reservoir (Fig. 10A) 
and catchment/regional scales (Fig. 10B).

Generally, very little impact is observed on the correlations 
between physicochemical and spectral characteristics when 
the spectral resolution is coarsened from 1 to 5 nm intervals: 
on average, the coefficient of determination is reduced by 1% 
at the reservoir scale, with only two models (out of 30 at this 
scale) with R2 decreasing more than 10%. At the catchment/

regional scale, the average reduction of R2 was 6%, and 4 mod-
els (out of 24) presented R2 reduction by more than 10%.

By decreasing the spectral resolution further down to 
10 nm intervals, the correlations are maintained at the same 
level, with little influence of the spectral resolution on sedi-
ment attribute estimation. At the reservoir scale, average 
reduction of R2 (from 1 to 10 nm resolution coarsening) 
accounts for 2%, with over 10% reduction of R2 in 5 models. 
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Fig. 10  Influence of the spectral resolution on the accuracy of regression models for estimating sediment attributes at the reservoir A and catch-
ment/regional B scales
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At the catchment/regional scale, average reduction of R2 
is 5%, and for 3 models, R2 reduction is higher than 10%. 
This is particularly important when analysing data that are 
originally captured at lower spectral resolutions, such as by 
hyperspectral satellite sensors, since coarsening of spectral 
resolution does not produce much degradation of the mod-
els’ performance.

Similar results were found by Knadel et al. (2013), who 
tested the influence of different spectral resolutions up to 
8 nm to estimate clay and SOC and found that lower spectral 
resolution did not affect model performance. Adeline et al. 
(2017) reported in their study that to estimate soil attributes, 
a reduction of spectral resolution caused a slight decrease in 
model prediction performance. Peng et al. (2014) performed 
spectral resampling between 2 and 10 nm on VNIR spectral 
data to estimate SOC, and found that, in general, there was 
little variation in the accuracy of the models. Yang et al. 
(2012) observed that calibration models for estimating soil 
N and C are insensitive to reduction of spectral resolution, 
and models with coarser resolution (e.g., 100 nm) presented 
very similar accuracy to those with 1 nm resolution.

Modelling based on spectroscopy, such as in this study, 
helps to build the knowledge necessary for the use of hyper-
spectral satellite imagery for soil and sediment characteriza-
tion (Viscarra Rossel et al. 2006a). For instance, we demon-
strate that model predictability is only slightly impacted by 
coarsening the spectral resolution up to 10 nm, which is in 
the range of the spectral sampling distance of the PRISMA 
hyperspectral satellite (lower than 11 nm in the VNIR and 
SWIR) (Cogliati et al. 2021) and the upcoming EnMAP 
hyperspectral satellite (6.5 nm in the VNIR and 10 nm in 
the SWIR) (Guanter et al. 2015). As argued by Braga et al. 
(2019), satellite-based remote sensing approaches may help 
not only to identify sediment properties, but also areas with 
nutrient deficiency in soils, enabling an optimization of the 
nutrient balance in catchments. However, the large pixel size 
of current and planned hyperspectral satellite missions, the 
limitation to the topsoil layer as well as soil and sediment 
cover, e.g., by litter can be challenging.

5  Conclusions and outlook

The use of VNIR-SWIR spectroscopy to estimate phys-
icochemical sediment attributes in the semiarid region of 
Brazil has shown to be a promising approach for the char-
acterization of sediments silted in surface water reservoirs.

Partial least square regression models performed in the 
range of good to very good in the prediction of clay and 
EC at spatial scales ranging from reservoirs (< 100  km2) 
up to regional (> 10,000  km2). The models for other sedi-
ment properties performed worse: for instance, SOC and 
N models were satisfactory to very good at the reservoir 

scale, but degraded to unsatisfactory at the other spatial 
scales, whereas the models for P and K presented high 
variation, from unsatisfactory to satisfactory at all inves-
tigated scales. Such findings indicate that model perfor-
mance is affected by heterogeneity of the factors control-
ling the sediment characteristics and transport conditions 
(soil type, land use, and hydrological regime), which tend 
to be higher in larger extents. Therefore, models tend to be 
more accurate when applied at small scales.

Coarsening of the spectral resolution in the range of 1 to 
10 nm reduced the models’ performance only slightly, not 
impacting the overall capacity of estimating the sediment 
attributes. This conclusion highlights the importance of 
field-based studies to estimate sediment attributes from 
VNIR-SWIR spectroscopy, as a step towards the applica-
tion of hyperspectral satellite imagery to characterize the 
sediment from surface reservoirs’ beds. Spectral resolution 
of satellites like PRISMA, EnMAP, and others are in the 
range tested by us in this study, but some hindrance still 
prevails, like the need for sediment exposure during the 
satellite passage, which implies empty reservoirs with no 
litter covering the bed. Despite the increasing availability 
of spaceborne imaging spectroscopy data, the method-
ology is not fully operational in terms of regular Earth 
observation yet and the temporal stability of sediment 
characteristics (in this region) needs to be assessed.

In general, spectroscopy-based indirect characterization 
of sediment supports the practice of sediment reuse as ferti-
lizers, by reducing the costly and time-consuming laboratory 
analyses. The good performance on the estimation of clay is 
crucial, as it is a key feature controlling water flux and reten-
tion in the soil. Furthermore, reliable estimations of EC help 
to indicate the feasibility of sediment reuse, by identification 
of reservoirs with high salinity that are, therefore, unsuitable 
as nutrient source for soil fertilization.

However, lower performances for N, P, and K sug-
gest that the proposed method needs improvement and be 
applied complementarily to laboratory analyses, as these 
are fundamental nutrients for soil fertilization.

Supplementary Information The online version contains supplemen-
tary material available at https:// doi. org/ 10. 1007/ s11368- 022- 03281-1.
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