Stefan Pfeiffer

Erste Erfahrungen mit Tiefpaßfilterung von elektrischen Feldern

Einleitung

Anhand eines 2D-Modells und synthetischer Daten untersuche ich die Wirkungsweise verschiedener räumlicher Tiefpaßfilter, angewendet auf ein Profil von E-Feld-Daten. Ziel ist es, die Verzerrungen, die durch Polarisationsladungen an der Oberfläche von Störkörpern erzeugt werden ("static shift"), zu beseitigen.

Die Daten sind mit 2D-Programmen von P. Weidelt berechnet.

Das Modell

Eine gutleitende, zweidimensionale Struktur mit Streichrichtung in x-Richtung ist oberflächennah in einen homogenen Halbraum mit $\rho_0 = 100 \Omega m$ eingelagert. Ich betrachte Perioden von 10^{-3} bis 10^2 sec, das entspricht Tiefenbereichen von ca. 0.2-80 km.

Die E-Feld-Daten werden längs eines Profils in y-Richtung (für z = 0) berechnet. Die ρ_s -und φ -Kurven beziehen sich im folgendem immer auf den Punkt $y_0 = 0$ (Symmetriepunkt der Anomalie).

Effekt von Polarisationsladungen

Bei der H-Polarisation (H_x, E_y, E_z) werden die E-Feld-Daten durch Polarisationsladungen verzerrt.

Bei der E-Polarisation (E_x, H_y, H_z) treten keine Polarisationsladungen auf, weil das Feld E_x parallel zur Streichrichtung der Anomalie ist und die Tangentialkomponente E_x stetig ist. Deshalb entsprechen die ρ_s - und φ -Kurven der E-Polarisation auch weitgehend denen der 1D-Daten (s.Abb.3), so daß hier bei eindimensionaler Inversionsrechnung die Struktur (unterhalb von y_0 !) recht gut wiedergegeben würde.

Die 1D-Daten entsprechen einem geschichteten Halbraum, der entstünde, wenn die zweidimensionale Anomalie auch in y-Richtung unendlich ausgedehnt wäre.

Die H-Polarisation gibt die 1D-Daten bis zu Perioden von 10^{-1} sec auch gut wieder. T=10⁻¹ entspricht einer Schwerpunktstiefe des induzierenden Stromsystems $z^* = \sqrt{\frac{T\rho_s}{2\pi\mu_0}} \sin \varphi(T)$ von 500 m. Aber für größere Perioden, also unterhalb der Anomalie, kann keine Aussage mehr über die Struktur des Untergrundes gemacht werden. Es wird ein sehr guter Leiter in sehr großer Tiefe vorgetäuscht.

Filterung

Normalerweise möchte man gemessene Daten eindimensional interpretieren. Der vohergehende Abschnitt hat gezeigt, daß dies bei zweidimensionalen Störkörpern im Untergrund nur für Daten der E-Polarisation annähernd möglich ist. Um auch die H-Polarisation eindimensional interpretieren zu können, versucht man, sie der E-Polarisation und damit den 1D-Daten anzugleichen. Dies ist möglich, wenn man nicht nur einen einzigen Meßwert bei y_0 hat, sondern ein ganzes Profil, weit über die Ränder der Anomalie hinaus. Solche Profile sind in den Abbildungen 4-6 für verschiedene Perioden für mein Modell dargestellt.(In den Abbildungen sind die E-Felder jeweils mit E_n normiert, so daß sie weit entfernt von der Anomalie den Wert 1 annehmen. E_n ist das E-Feld für den homogenen Halbraum.)

Aus den Profilen kann man folgende Tendenzen ablesen:

- 1. Für kleine Perioden sind die Profile sehr ähnlich.
- 2. Bei großen Perioden sind die E-Felder der E-Polarisation sehr geglättet, während die H-Polarisation viel Dynamik zeigt.
- 3. Für mittlere Perioden fällt besonders das unterschiedliche Verhalten der Imaginärteile der E-Felder ins Auge.

Die einfachste Möglichkeit, die Profile der H-Polarisation denjenigen der E-Polarisation anzugleichen, ist daher:

- für große Perioden eine arithmetische Mittelung über das gesamte Profil
- für kleine Perioden keine Mittelung

Dies wird durch eine Tiefpaßfilterung mit frequenzabhängiger Filterfunktion erreicht. Ein bekanntes Verfahren, das diese Filterung anwendet, ist das von F. X. Bostick entwickelte EMAP (ElektroMagnetic Array Profiling). Dort wird die Filterung im Ortsbereich durchgeführt. Die Länge des Profils, über das gemittelt werden soll, ist frequenzabhängig, und wird proportional zur Eindringtiefe $p = \sqrt{\frac{2}{\omega\mu_0\sigma}} = \sqrt{\frac{\rho T}{\pi\mu_0}}$ gewählt.

Abb.3: Phasen- und Widerstandskurven fuer E-, H-Pol. u. 1D-Daten

-127-

÷129-

Im Wellenzahlraum η bedeutet dies:

Denkt man sich die E-Feld-Daten mit einer diskreten Fouriertransformation in den Wellenzahlraum transformiert, erkennt man, daß für kleine Perioden das Profil nahezu identisch reproduziert wird (viele Fourierkoeffizienten), während für große Perioden nur $a(\eta = 0) = a_0$ = arithmetisches Mittel zugelassen ist.

Die einfachste Filterfunktion für einen Tiefpaß ist ein Rechteckfilter. Um etwas glattere Responsen zu erzielen, wird meist ein "Hanning-Filter" verwendet.

$$H(\eta) = 1/2 + 1/2\cos(\eta \frac{\pi}{\eta_{max}})$$

Diesen Filter habe ich auf meine H-Polarisations-Daten angewendet, wobei ich bei der Berechnung von η_{max} die Bedingung von Bostick zugrunde gelegt habe:

$$\eta_{max} = \nu \sqrt{\frac{\pi \mu_0}{\rho_a T}}$$
 ρ_a = scheinb. Widerstand der 1-D Struktur
 ν = Interpretationskonstante

An den Abbildungen 7 und 8 sieht man, daß dem Benutzer dieses Filters durch die Wahl von ν einige Freiheiten gelassen sind.

Einen Nachteil des Filters sieht man in der folgenden Abbildung.

Während der Realteil des E-Feldes der H-Polarisation bei dieser Filterung gut derjenigen der E-Polarisation angenähert wird, geschieht dies beim Imaginärteil nicht. Das wirkt sich besonders bei der Phasenkurve aus. Die Phase der H-Polarisation bleibt auch nach der Filterung größer als 45[°] und suggeriert damit immer noch einen guten Leiter, ist also nicht mit dem Informationsgehalt der ρ_s -Kurve konsistent.

Transformationsfilter

Die schlechte Anpassung des Imaginärteils gab Anlaß, einen anderen, noch mehr physikalisch motivierten Filter zu konstruieren, der die E-Felder der H-Polarisation direkt in E-Felder der E-Polarisation transformiert. Im folgenden wird dieser Filter berechnet. Dabei liegen zwei Annahmen zugrunde:

- die Anomalie ist zweidimensional (Streichrichtung in x-Richtung)
- der Leitfähigkeitskontrast σ_a zwischen Anomalie und Umgebung ist klein

Die E-Felder lassen sich als Fredholmsche Integralgleichungen 2. Art schreiben.

E-Polarisation:

$$E_{x}(y,z) = E_{nx}(z) - i\omega\mu_{0} \int J_{ax}(y_{0},z_{0})G_{n}(y-y_{0},z,z_{0})dy_{0}dz_{0}$$

Dabei bedeutet:

 E_{nx} Normalfeld des (im allgemeinen Fall) geschichteten Untergrundes ohne Anomalie

 $J_{ax}(y_0, z_0) := \sigma_a(y_0, z_0) E_x(y_0, z_0)$ die Stromdichte eines

Linienstroms in x-Richtung im anomalen Bereich G_n Greensche Funktion. Im homogenen Halbraum mit der

Leitfähigkeit σ_0 hat sie die Form:

$$G_{n}(y, z, y_{0}) = \frac{1}{4\pi} \int_{-\infty}^{+\infty} \frac{1}{\alpha} \{ e^{-\alpha |z-z_{0}|} + \frac{\alpha - |\eta|}{\alpha + |\eta|} e^{-\alpha (z+z_{0})} \} e^{i\eta y} d\eta$$
$$\alpha^{2} = k_{1}^{2} + \eta^{2}$$
$$k_{1}^{2} = i\omega \mu_{0} \sigma_{0}$$

In der Bestimmungsgleichung für E_x steht ein Faltungsintegral. Dies läßt sich durch eine Fouriertransformation in den Wellenzahlbereich:

$$f(y) = \frac{1}{2\pi} \int_{-\infty}^{+\infty} \hat{f}(\eta) e^{i\eta y} d\eta$$
$$\hat{f}(\eta) = \int_{-\infty}^{+\infty} f(y) e^{-i\eta y} dy$$

in eine Multiplikation verwandeln. Im folgenden betrachte ich die E-Felder an der Erdoberfläche z = 0. Dann ist:

$$G_n(y, 0, y_0) = \frac{1}{2\pi} \int_{-\infty}^{+\infty} \frac{e^{-\alpha z_0 + i\eta y}}{\alpha + |\eta|} d\eta$$

-132-

Für die Partialwellen $\hat{E}_x(\eta, 0)$ erhält man:

$$\hat{E}_{x}(\eta,0) = 2\pi E_{nx}(0)\delta(\eta) - \frac{i\omega\mu_{0}}{\alpha + |\eta|} \int \hat{J}_{ax}(\eta,z_{0})e^{-\alpha z_{0}}dz_{0}$$

 E_{nx} gibt nur noch einen Beitrag für $\eta = 0$.

H-Polarisation:

Hier lautet die Bestimmungsgleichung für das horizontale elektrische Feld:

$$E_{y}(y,z) = E_{ny}(z) - i\omega\mu_{0} \int \{J_{ay}(y_{0},z_{0})G_{yy}(y-y_{0},z,z_{0}) + J_{az}(y_{0},z_{0})G_{zy}(y-y_{0},z,z_{0})\} dy_{0}dz_{0}$$

Es gibt Ströme in y- und in z-Richtung. Bei langgestreckter Anomalie kann der Beitrag von J_{az} zu J_{ay} vernachlässigt werden, bei einer dünnen Schicht verschwindet er ganz.

$$\Rightarrow \qquad E_{y}(y,z) \cong E_{ny}(z) - i\omega\mu_{0} \int J_{ay}(y_{0},z_{0})G_{yy}(y-y_{0},z,z_{0})dy_{0}dz_{0}$$

Hier ist G_{yy} für den homogenen Halbraum:

$$G_{yy}(y,z,y_0) = \frac{1}{4\pi k_1^2} \int_{-\infty}^{+\infty} \alpha \{ e^{-\alpha |z-z_0|} + e^{-\alpha (z+z_0)} \} e^{i\eta y} d\eta$$

und bei z = 0:

$$G_{yy}(y,0,y_0) = \frac{1}{2\pi k_1^2} \int_{-\infty}^{+\infty} \alpha e^{-\alpha z_0 + i\eta y} d\eta$$

Für die Partialwellen $\hat{E}_y(\eta, 0)$ erhält man:

$$\hat{E}_{y}(\eta,0) = 2\pi E_{ny}(0)\delta(\eta) - \frac{i\omega\mu_{0}\alpha}{k_{1}^{2}}\int \hat{J}_{ay}(\eta,z_{0})e^{-\alpha z_{0}}dz_{0}$$

Das Verhältnis der Partialwellen \hat{E}_x zu \hat{E}_y ist: ($\eta \neq 0)$

$$\frac{\ddot{E}_x(\eta,0)}{\dot{E}_y(\eta,0)} = \frac{k_1^2}{\alpha(\alpha+|\eta|)} \cdot \frac{\int \hat{J}_{ax}(\eta,z_0)e^{-\alpha z_0}dz_0}{\int \hat{J}_{ay}(\eta,z_0)e^{-\alpha z_0}dz_0}$$

Zur Normierung sei $E_{nx} = E_{ny}$. Dann gilt für kleine anomale Leitfähigkeiten:

$$\hat{J}_{ax}(\eta, z_0) \cong E_{nx}(z_0)\hat{\sigma}_a(\eta, z_0) \hat{J}_{ay}(\eta, z_0) \cong E_{ny}(z_0)\hat{\sigma}_a(\eta, z_0)$$

und deshalb $\hat{J}_{ax} = \hat{J}_{ay}$, so daß:

$$\hat{E}_x(\eta, 0) \cong \frac{k_1^2}{\alpha(\alpha + |\eta|)} \cdot \hat{E}_y(\eta, 0) =: \hat{K}(\eta) \hat{E}_y(\eta, 0)$$
oder im Ortsbereich:

$$E_x(y,0) \qquad \cong \qquad \int_{-\infty}^{+\infty} K(y-y_0) E_y(y_0,0) dy_0$$

 $K(y - y_0)$ bzw. $\hat{K}(\eta)$ sind die gesuchten Filter- und Durchlaßfunktionen, die die E-Felder der H-Polarisation in E-Felder der E-Polarisation verwandeln. Sie sind in Abbildung 11 dargestellt.

Bei der Anwendung dieses Filters auf meine Modelldaten habe ich σ_0 (=Leitfähigkeit des homogenen Halbraums) durch $\nu^2 \sigma_1$ (σ_1 = Leitfähigkeit der 1D-Berechnung) ersetzt. Dadurch wird ein Bezug zum EMAP-Filter hergestellt. In Abbildung 10 sind die E-Felder mit ν =1 gefiltert. Man sieht, daß jetzt auch die Imaginärteile von E(y) nach der Filterung für die E- und H-Polarisation ungefähr gleich sind. Abbildung 12 zeigt die ρ_s und φ -Kurven einer Filterung mit ν =0.5.

Literatur

C. Torres-Verdin: Implication of the Born approximation for the magnetotelluric problem in three dimensional environments. M. S. Thesis in engineering, Univ. of Texas, Austin, 1985

D. Oldenburg: Inversion of electromagnetic data: An overview of new techniques. Workshop on Electromagnetic Induction in the Earth, Sochi 1988

-134-

JV