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“To know what the future holds, in even the most general and probabilistic way, would serve as
a new and marvelous guide for our actions, one that humanity has never before had. ”

— Prelude to Foundation, Isaac Asimov
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Summary

Flooding poses great risks for residential buildings in Europe and is expected to
increase in the future, driven by climatic and socio-economic change. Current flood
risk models rely mostly on simple stage-damage curves for flood loss estimation. Es-
pecially continental applications rely on this approach due to low data requirements
and established methodology. This approaches oversimplifies flood damage pro-
cesses, can be inaccurate and harbour large uncertainties that often are not quantified
and transparently communicated.

This thesis presents research that integrates new data sources into probabilistic,
multi-variable loss models to improve their transferability. Tree- and graph-based
approaches are implemented to test novel data sources for flood loss estimation and
included uncertainty quantification. These new data sources and approaches are
used to estimate future fluvial flood risk change for residential buildings in Europe.
Contributions of the three risk components, hazard, exposure, and vulnerability are
analysed and compared independently and in combination.

OpenStreetMap (OSM) data are identified as a valuable source of information for
flood loss modelling and enables model transfers while retaining high predictive
performance. Integrating OSM derived building characteristics and flood experience
information from flood event databases into the Bayesian Network Flood Loss Es-
timation MOdel for the private sector (BN-FLEMOps) enables the spatio-temporal
and scale transformation of the model. The model is validated by comparison with
reported losses in multiple case studies in Europe. Model updating with local data
results in more accurate estimations with lower uncertainty for flood events with
sufficient empirical data. A detailed comparison with a model ensemble of 20 in-
ternationally published flood loss models reveals that BN-FLEMOps has a higher
average accuracy and covers the entire uncertainty range of the ensemble with its
probabilistic results. Thus, providing valuable information to decision-makers for
the evaluation of flood risk management measures. In a final study, the future flood
risk changes for residential buildings in Europe are modelled. Comparisons with an
historical baseline period reveal that the expected annual damage will increase up to
10-fold until the end of the 21st century. The high spatial resolution of the analysis
shows risk hotspots in urban centres. Most of Central Europe and the British Isles
have to expect strong risk increases. Parts of Scandinavia and the Mediterranean
on the other hand will see stagnating or decreasing fluvial flood risk. A separate
analysis of the risk drivers reveals that exposure increase has a stronger effect on
flood risk compared to the impacts of climate change. Furthermore, the study shows
that current flood protection levels reduce flood loss on average by 4.7 billion € per
year in Europe. Improving private precaution could reduce flood risk by 15 % on
average and up to 20 % in some European regions.
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Zusammenfassung
Hochwasser stellt ein großes Risiko für Wohngebäude in Europa dar, und es wird er-
wartet, dass das Risiko in der Zukunft aufgrund klimatischer und sozioökonomischer
Veränderungen zunehmen wird. Die derzeitigen Hochwasserrisikomodelle basie-
ren meist auf einfachen Wasserstands-Schadenskurven. Vor allem bei großskaligen
Anwendungen wird dieser Ansatz noch immer wegen seiner geringen Datenanfor-
derungen und der etablierten Methodik genutzt. Diese Ansätze vereinfachen die
Hochwasserschadensprozesse stark, können ungenau sein und bergen große Unsi-
cherheiten, die oft nicht quantifiziert und transparent kommuniziert werden. Diese
Doktorarbeit stellt die Integration neuer Daten in probabilistische, multivariable
Schadensmodelle zur Verbesserung deren Übertragbarkeit vor. Entscheidungsbaum
und Graphen Ansätze zur Schadensmodellierung werden implementiert, um neue
Datenquellen und die in den Ansätzen integrierten Unsicherheitsschätzungen zu
testen. Diese neuen Datenquellen und Modellierungsansätze werden verwendet, um
zukünftige Veränderung des Hochwasserrisikos für Wohngebäude in Europa abzu-
schätzen. Die individuellen und kombinierten Effekte der drei Risikokomponenten,
Gefährdung, Exposition und Vulnerabilität, werden analysiert.

OpenStreetMap (OSM) Daten liefern nützliche Informationen für die Modellierung
von Hochwasserschäden und ermöglichen Modelltransfers ohne starke Leistungs-
abnahme. Die Integration von aus OSM abgeleiteten Gebäudeeigenschaften und
Hochwassererfahrung aus Ereignisdatenbanken in das Bayes’sche Netzwerk basierte
Hochwasserschadensmodelle für den privaten Sektor (BN-FLEMOps) ermöglichte
die Implementierung des Modells auf der Mesoskala. Durch Vergleiche von Schadens-
schätzungen mit beobachteten Schäden in mehreren Fallstudien in Europa wurde
das Modell validiert. Die Aktualisierung des Modells mit lokalen Daten führt zu
genaueren Schätzungen mit geringerer Unsicherheit für Ereignisse mit ausreichen-
der Datengrundlage. Ein detaillierter Vergleich mit einem Modellensemble aus 20
Hochwasserschadensmodelle zeigt, dass BN-FLEMOps eine höhere durchschnitt-
liche Genauigkeit hat und mit seinen probabilistischen Ergebnissen den gesamten
Unsicherheitsbereich des Ensembles abbildet. Entscheidungsträgern können somit
wertvolle Informationen für die Bewertung möglicher Maßnahmen zum Risikoma-
nagement zur Verfügung gestellt werden. In einer abschließenden Studie werden
die zukünftigen Veränderungen des Hochwasserrisikos für Wohngebäude in Europa
modelliert. Vergleiche mit einem historischen Zeitraum zeigen, dass die erwarteten
jährlichen Schäden bis zum Ende des 21. Jahrhunderts um das 10-fache ansteigen
werden. Die hohe räumliche Auflösung der Analyse offenbart, dass urbane Zentren
einem besonders hohen Risiko ausgesetzt sein werden. Die Britischen Inseln und der
größte Teil von Zentral-Europa müssen mit einer starken Risikozunahme rechnen. Tei-
le Skandinaviens und des Mittelmeerraums werden dagegen ein stagnierendes oder
abnehmendes Hochwasserrisiko verzeichnen. Eine separate Analyse der Risikotreiber
zeigt, dass die Zunahme der Exposition, das Hochwasserrisiko stärker beeinflusst
als die Auswirkungen des Klimawandels. Zudem zeigt die Studie, dass das derzei-
tige Hochwasserschutzniveau in Europa den jährlich erwarteten Schaden um 4,7
Milliarden € senkt. Eine Verbesserung der privaten Vorsorgemaßnahmen könnte das
Hochwasserrisiko im Mittel um 15 % und in einigen europäischen Regionen um bis
zu 20 % verringern.
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Chapter 1

Research motivation and
objectives

1.1 Flood loss and risk

In the sixth report, the Intergovernmental Panel on Climate Change (IPCC) concludes
that global temperatures have already risen by 1 °C at present and are expected to
increase to 2 °C as early as the middle of the 21st century in comparison to the pre-
industrial climate. At 2 °C global warming, the magnitude, and frequency of heavy
precipitation and flooding will increase globally and in most regions of Europe (IPCC,
2021). While this may seem like an abstract risk for the future, fluvial floods are
already the prevalent natural disasters and have increased in number and reported
economic losses in the past three decades (WMO, 2021). The number of people
directly affected by flooding grew globally by 58-86 million in the period from 2000
to 2015 (Tellman et al., 2021). The most recent floods of 2021 in Germany, Belgium,
Italy, Turkey, Russia, China and many other countries have again emphasized the
relevance of flood risk research.

In the past two decades over 1100 lives and 100 billion € have been lost to floods in Eu-
rope (Munich-RE, 2019; Petrucci et al., 2020). The 2002 floods alone have caused over
20 billion € losses in Central Europe (European Environment Agency, 2010), but have
also led to increased efforts to better understand and manage the risk posed by river
floods. In the future, combined effects of climate and socio-economic changes are pro-
jected to considerably increase the number of people affected, and the losses generate
by floods in Europe (Rojas et al., 2013; Dottori et al., 2018). Thus, it is vital to further
improved our understanding of flood risk on the European continent by developing
more accurate and reliable modelling approaches and transparently communicate
uncertainties to better inform climate adaptation and flood risk management. Many
fundamental insights into human-flood interactions and the risk they pose to the
lives and properties of people in affected areas were already conceptualized in White
(1936, 1945) and still influence flood hazard and risk research today (Macdonald et al.,
2012). White’s notion of human adjustment to floods is now more relevant than ever
in our efforts to adapt not only to floods, but to all climate related risks.

Risk is commonly understood as the probability and magnitude of adverse effects
associated with a hazardous event. Definitions of risk differ and heavily depend on
the respective scientific field. Vlek (1996) gives a comprehensive overview of risk
definitions used in research. The concept of risk as it applies to natural disasters
can be expressed as the intersection of hazard, exposure, and vulnerability IPCC
(2012):
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Hazard ∩ Exposure ∩Vulnerability = Risk

Hazard, in general, refers to a potentially damaging event such as a flood. All
elements of a system that may be impacted by the hazard are subsumed under the
term exposure, for example human health, buildings, vehicles, and infrastructure.
Vulnerability describes the susceptibility of the exposed elements to suffer damaged
by the hazard. Although the exact definitions may vary in literature (Jonkman, 2007),
flood damage is commonly organized into four categories by distinguishing the
origin of the damage and the ability to quantify it in monetary terms (Merz et al.,
2010b):

• Tangible: When the flood loss can be easily assessed in monetary values. This
includes for example damage to buildings, roads, vehicles, and agriculture.

• Intangible: Refers to damage to people, goods, and services that are not easily
measurable in monetary terms because they are not traded on a market.

• Direct: All damages that occur in the flooded area as a direct consequence of
the flood event.

• Indirect: All damages in time or space outside the flood area but attributed to
the flood event.

Modelling flood damages, calculating losses and estimating the risk should serve to
inform management decisions and ultimately contribute to foster a more resilient
society. Figure 1.1 shows the schematic process of identifying relevant data and
knowledge to develop and apply risk models that inform decision-making. Integrated
risk management recognizes the beneficial and harmful interactions between all
elements of the flood system, with the aim to retain positive and minimize negative
effects of flooding (Hall et al., 2003). Flood risk can be reduced not only by physical
flood defences (Willner et al., 2018), but also through improved flood resistance for
exposed buildings by measures such as wet and dry-proofing (de Moel et al., 2013)
and other means of private precaution (Kreibich et al., 2012), emergency response
(Molinari et al., 2013) and behaviour (Aerts et al., 2018), higher (local) retention
(Förster et al., 2005), more efficient drainage (Sohn et al., 2020) or relocation (Dottori
et al., 2021b). Risk may also be efficiently redistributed through insurance (Tariq et al.,
2014; Solín et al., 2018).

Data and
knowledge

Modelling
approaches

Risk
estimation

Risk
evaluation

Risk
management

Flood risk modelling Decision-making

Figure 1.1: Schema of the process chain from flood risk modelling to decision-making (based
on Aven (2016) and built using Walczak (2007))

In the context of this thesis, the three components of risk are more narrowly defined.
Hazard is the likelihood and magnitude of fluvial flooding. Fluvial or river floods
occur when the water level in a river rises until it overflows the river banks or
breaches embankments and inundates surrounding areas. Exposure is the monetary
value of residential building structures and the cost of repair or reconstruction. This
includes all costs of material and labour required to restore the building structure
after damages directly related to a flood. It does not represent a (speculative) market



1.1. Flood loss and risk 3

value of real estate assets. The research presented here does explicitly not include
losses originating from damage to household contents such as furniture, carpets,
electronic devices and other mobile items. Vulnerability describes susceptibility of
buildings and its residents to the adverse effects of the flood hazard. Vulnerability of
a residential building to the damaging effects of flooding is influenced by building
characteristics, the behaviour of residents and the level of adaptation (Few, 2003).
This thesis touches on all three risk components, but focuses on the vulnerability
aspect, as there is a clear need to better understand its influence and potential for
flood risk reduction (Kreibich et al., 2017a). Damage to residential buildings or their
complete destruction by a flood poses not only a financial and economic risk, but can
also have intangibles negative effects on the physical (Hajat et al., 2005; Burton et al.,
2016) and psychological (Stanke et al., 2012; Sedighi et al., 2021) health of residents.
Risks for human health, though, are not actively discussed in the following.

This thesis focuses on flood risk as the probability and severity of flood damage at
affected residential buildings, causing monetary loss. The need to advance the state
of flood risk modelling becomes apparent when we consider the historical record
of devastating flood losses and projections for a future climate in which extreme
flooding becomes even more likely in a world with growing concentration of assets
in dense urban environments. To improve flood risk estimations for residential build-
ings in Europe, the thesis identifies and integrates novel data sources into newly
developed and existing multi-variable approaches. Thus, enabling the transfer of
models from the local scale to a continent wide application with integrated uncer-
tainty quantification. Hereby, this research directly addresses priority 1 of the Sendai
Framework by the United Nations, “Understanding disaster risk” and informs disas-
ter risk management and investments for risk reduction (priority 2 and 3) (UNISDR,
2015).

The following sections in Chapter 1 introduce the current state of research in flood
loss modelling approaches, data sources and their inherent uncertainties with a focus
on vulnerability aspects. Subsequently, research objectives for the advancement of
probabilistic flood loss modelling are developed based on identified research gaps
and the opportunities of new data and modelling approaches. A concise overview
of the thesis is presented in Figure 1.4. Finally, the individual contributions of all
co-authors to each chapter are listed.

1.1.1 Modelling approaches

Two main approaches for the development of flood loss modelling are established
in literature and practice. Empirical models are based on the statistical analysis of
damage data (e.g., Thieken et al., 2005; Zhai et al., 2005), while synthetic approaches
consist of What-If scenarios combining expert knowledge and engineering informa-
tion (e.g., Penning-Rowsell and Chatterton, 1977; Dottori et al., 2016). A distinction is
also made between models that directly include exposure values and calculate abso-
lute losses in monetary terms (e.g., NR&M, 2002; Penning-Rowsell et al., 2018) and
models that provide relative degrees of damage that can be combined with external
exposure values to derive monetary results (e.g., Scawthorn et al., 2006; Pistrika and
Jonkman, 2010). Relative damage models are used in this study, because they are
considered more suitable for model transfer (Merz et al., 2010b).

Flood loss models use mathematical methods that conceptualize the damaging in-
teraction between flood hazard and exposed assets to quantify impacts in monetary



4 Chapter 1. Research motivation and objectives

terms. The relationship of water depth to the severity of flood damage called “stage-
damage curve” or “depth-damage function” is the most frequently used approach to
model flood losses (Penning-Rowsell & Chatterton, 1977; Smith, 1994; Dutta et al.,
2003; Meyer & Messner, 2005; Gerl et al., 2016). A schematic example of a stage-
damage curve is depicted in Figure 1.2. Depending on the model application and
asset at risk, a stage-damage curve can take many forms.

The complexity reduction of flood damage processes by utilizing only the inundation
depth at a certain location to infer flood loss has the clear advantage of requiring few
input data to train and apply a model. It is because of the low data requirements
and simple structure, that stage-damage functions are still widely used (Meyer &
Messner, 2005). The downside of this simplified approach are large inaccuracy and
uncertainty in the loss estimates (Middelmann-Fernandes, 2010). In comparison
with more complex multi-variable models, stage-damage curves underperform in
most applications (Schröter et al., 2014; Rözer et al., 2019). Multi-variable models
better capture the various processes influencing flood damage and, depending on
the method, inherently provide uncertainty information (Kreibich et al., 2017b).

Water depth
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Figure 1.2: Stage-damage curve

Despite the limitations, the latest developments
in continental flood risk modelling for current
and future climate conditions in Europe still rely
to a majority on simple stage-damage curves.
These curves are often specifically developed for
various asset types and countries (Huizinga, 2007;
Alfieri et al., 2015b; Huizinga et al., 2017; Dot-
tori et al., 2021a). Even for highly specialized
applications that only cover one asset type such
as rail (Bubeck et al., 2019), road (van Ginkel
et al., 2021), or port infrastructure, (Izaguirre et
al., 2021) stage-damage curves are the default
method.

Multi-variable models include a number of variables to represent flood damage
processes. Water depth is also, in multi-variable approaches, usually considered the
most important predictor of flood loss (Merz et al., 2013; Schoppa et al., 2020). Besides
water depth, other variables such as the return period and duration of a flood, the flow
velocity and water contamination are useful to characterize the flood hazard in a loss
model. Variables describing socio-economic status, building characteristics, warning
lead time and private precaution may represent the vulnerability of an exposed asset
(Scawthorn et al., 2006; Elmer et al., 2010; Merz et al., 2013; Wagenaar et al., 2017).
Recent studies by Paprotny et al. (2020a) and Schoppa et al. (2020) have shown the
prospects of probabilistic, multi-variable approaches for flood risk modelling for the
commercial sector. This thesis explores the potential of these approaches for flood
loss estimation for residential buildings on multiple scales.

Data for natural events such as extreme floods are rare by definition (El Adlouni
et al., 2008). Flood loss models are, therefore, often designed with data or knowledge
of a specific region and event to later be applied in other areas where local data
is not available or insufficient to create a dedicated model (Cammerer et al., 2013).
Transferring models in space, time, and scale generally introduces new uncertainties
and reduces estimation accuracy (Papathoma-Köhle et al., 2011; Meyer et al., 2013).
Multi-variable models, however, have shown to deliver more robust estimations
when transferred (Schröter et al., 2014; Wagenaar et al., 2018).
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The use of model ensembles, that consist of multiple flood loss models, can deliver
robust flood loss estimates and uncertainty quantification (Figueiredo et al., 2018).
(Re-)Insurance companies often run multiple models from various vendors to get a
picture of the uncertainty inherent in the estimations (Wüest, 2019). Implementing
multiple models for a study is not always a viable approach, because of data and time
constraints. Probabilistic multi-variable models can improve flood loss estimations
in comparison to simple stage-damage curves and inherently provide uncertainty
information without requiring the setup of multiple models (Merz et al., 2013; Schröter
et al., 2014; Hasanzadeh Nafari et al., 2016c; Kreibich et al., 2017b). In this thesis,
multi-variable models based on graphical networks and decision trees are developed
and applied.

Tree-based models also referred to as classification and regression tree (CART) models
use a number of split criteria to divide the feature space of predictor variables. At
each split, a decision following a predefined rule is performed to successively narrow
down the field of possible predictions in the leaf nodes of the tree (Figure 1.3a).
Ji et al. (2013), Chinh et al. (2015), Hasanzadeh Nafari et al. (2016c), Kreibich et al.
(2017b), and Sieg et al. (2017) provide examples for tree-based approaches in flood loss
modelling. In this thesis, the Random Forest (RF) algorithm (Breiman, 2001) was used
in its implementation in the R package “randomForest” by Liaw and Wiener (2002).
RF is an ensemble of n decision trees, were each split decision is based on a subset
of features (mtry). This approach combines bootstrap aggregation (bagging) with
randomized subspace selection. RF can be used for classification and regression, as
well as feature importance analysis. The results of all trees in a forest are aggregated
by majority vote or averaging. Thereby, these large, automatically build ensembles
generate quasi probabilistic results. RF is a non-parametric method that is robust
against overfitting and can be used with correlated input data. The calculation of the
so called Out-Of-Bag (OOB) error provides insight into the model performance (Biau
& Scornet, 2016). RF is well established and applied for a diverse set of modelling tasks
in research fields such as chemistry for predicting molecular interactions (Svetnik
et al., 2003), remote sensing for land-use classification from satellite imagery (Waske &
Braun, 2009; Steinhausen et al., 2018), and flood loss modelling for various economic
sectors (Merz et al., 2013; Sieg et al., 2017). In Chapter 2 RF models are developed to
test the importance of various input variables, and the transferability of flood loss
models.
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Figure 1.3: Schematic structure of multi-variable modelling approaches applied in this thesis.
(a) Decision tree with root (R), split (S) and leaf (L) nodes. Two decisions from
root to split nodes are indicated by split rule a and b. (b) Graph of a BN with seven
variables (A–G) and the joined probability of A given B and C. Blue coloured
leafs/nodes represent the model response values.

In graph-based models, variables are represented by nodes and connected via edges
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(Figure 1.3b). Graph-based models can be constructed with expert knowledge (Pitch-
forth & Mengersen, 2013) and/or with the help of data analysis and machine learning
techniques, e.g., (Heckerman et al., 1995; Yaramakala & Margaritis, 2005). Schröter et
al. (2014), Vogel et al. (2014), Jäger et al. (2018), and Wagenaar et al. (2018) show imple-
mentations of graph-based models following a Bayesian approach for the estimation
of flood loss. Bayesian (Belief) Networks (BN) are constructed as Directed Acyclic
Graphs (DAG) in which the state of the interconnected nodes represent the joint
probability of variables considering the conditional (in)dependency structure (Pearl,
1988). This approach offers great transparency for modellers and decision-makers,
because each node of an established network contains the conditional probabilities
in so-called node probability tables (NPT). Inference within a BN can be made in
each direction of an edge and at all nodes. This approach therefore also allows for
loss estimations with incomplete input data.The results of a BN are probabilistic and
inherently provide uncertainty information (Hanea et al., 2006; Fenton & Neil, 2013;
Hanea et al., 2015). BN based approaches are used to estimate flood loss in Chapter 3,
4, and 5.

1.1.2 New data sources

Empirical data from flood events are essential to the development of reliable empirical
flood loss models. Details about the hazard characteristics as well as the vulnerability
and exposure can be learned from data, acquired during, and after flood events. Data
are typically obtained via surveys of the affected population and other stakeholders,
insurance claims, expert assessment and remote sensing. Prominent examples for
empirical event databases are the NatCatSERVICE from Munich Re and EM-DAT
with data on multiple natural hazards globally (Choryński et al., 2012; EM-DAT, 2019;
Munich-RE, 2019). The HANZE database contains Europe-wide data for various
flood and asset types from 1870 to 2016 (Paprotny et al., 2018a). While these examples
contain event-specific data that are useful for model validation, the HOWAS 21
database stores object-specific data on flood affected properties from 1978 to 2013 that
can effectively be used for model development (Buck & Merkel, 1999; Kreibich et al.,
2017c). The database includes flood damage data on private households as well as
the commercial, industrial, and public sector assets (Kellermann et al., 2020).

Synthetic data for model development relies on engineering and expert knowledge
to create hypothetical curves independently of empirical flood data for a specific area
or event. Data is collected, for example, through surveys asking for expected damage
under What-If flood scenarios. This approach does therefore not rely on the often
resource demanding and difficult collection of in-situ damage data (Penning-Rowsell
& Chatterton, 1977; Parker et al., 1987; Penning-Rowsell et al., 2018). However,
synthetic data are not used in this thesis, because they are not consistently available
for Europe, are considered subjective and may result in higher uncertainties in loss
estimates (Merz et al., 2010b).

The development and training of the flood risk modelling approaches presented in
Chapters 2 – 5 rely on empirical ex post flood survey data collected via computer
aided telephone interviews (CATI) in Germany. CATI data is part of the HOWAS 21
database and was collected after flood events in 2002, 2005, 2006, 2010, 2011, and 2013
in the Rhine, Elbe and Danube catchments in Germany. In these survey campaigns,
flood affected households were asked questions about the properties of the flood,
their building and socio-economic status as well as the loss they had suffered. With
an average response rate of 15 % a total of 3056 interviews were completed. Thieken



1.1. Flood loss and risk 7

et al. (2005), Kienzler et al. (2015), and Thieken et al. (2017) report details on questions
asked during the surveys and the variables collected and computed.

New sources of data have become more readily available in recent years in the
form of Volunteered Geographic Information (VGI). VGI data is created by citizen
contributors and is in most cases not intentionally designed for the use in any specific
field of research. Sources for VGI include social media platforms, contributor driven
mapping projects such as OpenStreetMap (OSM) (OSM contributors, 2020), articles
and posts on news websites that include information on flooding in photographs or
videos with geolocation (Goodchild, 2007).

OSM as a global database for geographic information has potential to enable the
application and transfer of flood loss models. The OpenStreetMap project was created
in the UK in 2004 and is, similar to Wikipedia, build on the contributions of volunteers
with growing support of corporate editors. Users can contribute information to the
map, edit existing data and verify other users additions. Over 1 million contributors
have made at least one change, and over 700,000 have made more than ten changes
to the map (Anderson et al., 2019). Geodata are typically created based on local
knowledge, GPS surveys and from remote sensing imagery. Large datasets of official
cadastral data in France provided by Direction Générale des Impôts (Mooney &
Minghini, 2017), road networks for the Netherlands (Anderson et al., 2019) and
building footprints for Individual cities (Hecht et al., 2013) have been integrated
into OSM database. OSM as a user generated and not standardized open database
relies on the community to review and verify changes. There have been many
attempts at scrutinizing the quality and completeness of the OSM database, often
by comparison with official reference data (Senaratne et al., 2017). Mooney and
Minghini (2017) provide a general overview of the completeness of OSM data and
Barrington-Leigh and Millard-Ball (2017, 2019) find that over 80 % of the world’s road
network are included in OSM. The positional accuracy, semantic information, and
building footprint completeness of has also been analysed. Hecht et al. (2013) found
in case studies in Saxony, Germany in 2012 large regional differences in completeness
of building footprint data in OSM. Urban centres are generally more complete than
rural regions. For the city of Munich, Fan et al. (2014) stated that OSM buildings
cover almost all build up areas, but still lack many attributes such as name, type, or
height. Brückner et al. (2021), estimate the completeness of shops in the OSM data
for Saxony at 82 % and Baden-Württemberg at 88 %. Based on point and building
geometry comparisons Brovelli and Zamboni (2018) found that the quality of OSM
is comparable to the regional technical authoritative map for the Italian region of
Lombardy. Map completeness and data quality are generally higher in more densely
populated areas, with higher GDP and more contributors (Dorn et al., 2015; Zhou,
2018; Tian et al., 2019). Many of the recent advances in flood risk modelling make
use of OSM data in their approaches (Figueiredo & Martina, 2016; Sieg et al., 2019;
van Ginkel et al., 2021).

This thesis utilizes land use information included in OSM to extract all residential
buildings for further processing. In Chapter 2 the geometry of OSM building foot-
prints is used to derive information for building flood loss estimation. For the loss
modelling approaches in Chapters 3 – 5, the building footprint area is calculated
based on OSM data.
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1.1.3 Uncertainty sources, quantification, and perspectives

Uncertainty can originate from many sources in approaches and data for modelling
flood risk, as well as the natural processes of flooding itself. To conceptualize the
elusive term uncertainty, a distinction into two general types is useful. Uncertainty
may originate from incomplete knowledge (epistemic) or from the random nature
of a process (aleatory). In other words, aleatory uncertainty describes the properties
of a system and epistemic uncertainty results from the properties of its observer
(Cullen et al., 1999). Epistemic uncertainty refers to the limited ability to measure and
understand the processes of flooding and flood damage. Epistemic uncertainty is
therefore associated with the quantities used to describe flood risk, such as, the water
depth and the monetary loss. It further manifests in the structure of models that can
not represent every detail and interaction in the flood system. Aleatory uncertainty
describes the stochastic character of natural processes like the distribution of rainfall
over a catchment (Merz & Thieken, 2005) or the hysteresis of waves and spatio-
temporal course of inundation during floods (Apel et al., 2004).

The variability of flood damages even within one asset category is large and intro-
duces uncertainty into flood risk modelling. Two buildings of the same size and
type affected by the same water depth may show significant differences in loss. This
may result from different levels of precaution, contamination, or flow velocities
at the building location (Merz et al., 2010b). The impact of different uncertainty
sources varies with scale. On the microscale (object level) epistemic uncertainty in
the parametrization of hazard models is relevant. On the meso-scale (regional) many
studies have found substantial uncertainties related to flood event probability and
duration as well as the damage models used for flood loss estimation (de Moel et al.,
2015). On the macro-scale (national) especially, the necessary simplifications in hazard
and loss modelling and the limitations of coarse resolution in the underlying data
contribute uncertainties (Alfieri et al., 2015b). Inadequate data on dykes, potential
dyke breaches and general protection levels introduce considerable uncertainties on
all scales considered (de Moel et al., 2015). Model transfers between the scales as well
as in time and space are an additional source of uncertainty (Cammerer et al., 2013;
Wagenaar et al., 2018).

Research aims to reduce epistemic and describe aleatory uncertainties, and has an
obligation to acknowledge and report uncertainties where they can be identified
(Willows et al., 2003). Uncertainty is an indicator of the quality of knowledge about
flood risk. As described in section 1.1 risk assessments serve to inform flood risk
management and support decision-making. Information about uncertainties in mod-
elling approaches and data is therefore essential to the understanding of reliability of
modelling results and for decisions based on them.

This thesis expresses uncertainties in the language of probability and makes use of
both, the classical frequentists, and the Bayesian interpretation of probability. The
frequentist understanding builds on the relative frequency of an event observed in an
experiment repeated multiple times under the same conditions. While the Bayesian
probability, relies on a prior belief of likelihoods and the correction or updating of
these beliefs in light of new evidence (Weise & Woger, 1993; Fenton & Neil, 2013).
Bayes’ theorem formulates the method as:

P(H | E) =
P(E | H)× P(H)

P(E)
(1.1)
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The conditional probability P(H | E) of a hypothesis H is evaluated under the
assumption of evidence E being true. This term is referred to as the posterior (belief).
It is derived from the likelihood of the evidence E given the hypothesis H expressed as
P(E | H) and the two marginal probabilities, the prior P(H) and the data distribution
P(E) under the condition P(E) 6= 0. Bayes’ theorem builds the foundation for
the Bayesian Network approach used for integrated uncertainty quantification in
Chapters 3 – 5. Uncertainty, when numerically quantifiable, is communicated in this
thesis in terms of probability distributions or confidence intervals (quantiles) around
the first moment of a probability distribution (mean, median) as recommended by
van der Bles et al. (2019).

1.2 Research objectives and outline

Fluvial floods already pose a great risk to the communities living in flood plains.
Climate change and socio-economic developments will further increase this risk.
Simplified approaches to estimate flood risk based on limited available data are
still widely used and contain large uncertainties in the results that often are not
made transparent. However, probabilistic multi-variable models consider the most
influential hazard and vulnerability variables that control flood damage and can
therefore estimate flood losses more precisely while providing uncertainty informa-
tion. Requirements for large and detailed input data limit the use of these models to
small-scale applications. With the availability of new open data sources and greater
computing power, the development and implementation of these approaches be-
comes viable for larger applications. Utilizing open data sources and implementing
models in open source frameworks makes these advancements more reproducible
and accessible. Uncertainty inherent in all data and models are directly quantifi-
able with probabilistic approaches and should be transparently communicated to
stakeholders and decision-makers.

The main objective of this thesis is to advance flood risk modelling for residential
buildings in Europe to improve our understanding of flood risk under current and
future climatic and socio-economic conditions. This requires the identification and
integration of new data sources into probabilistic multi-variable loss models. Thus,
enabling the implementation and transfer of advanced loss models to the European
continent and the transparent quantification of inherent uncertainties. To accomplish
these objectives, the following four research questions are addressed in Chapters 2 –
6:

1. Which new data sources can advance multi-variable approaches for flood loss
modelling? (Chapter 2 and 3)

2. What is required to improve the transferability of loss models with included
uncertainty quantification? (Chapter 2 and 3)

3. How does a probabilistic, multi-variable model, built on novel data, perform in
comparison with traditional approaches? (Chapter 4)

4. How will flood risk for residential buildings in Europe change throughout the
21st century? (Chapter 5)

This cumulative thesis is structured into six chapters. The first chapter introduces the
principal concepts of flood loss data and modelling and formulates the main research
objectives. The following four chapters present the conducted research and detailed
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findings to answer the research questions. The final chapter discusses results, con-
cludes the main findings, and gives an outlook of future research opportunities.

Chapters 2 and 3 describe the identification and integration of large new data sets
into multi-variable loss models. Chapter 2 also explores novel variables to represent
vulnerability in flood loss models. Both chapters present approaches to enable
spatio-temporal and scale transfer of models. In Chapter 4 the performance of a
multi-variable model is tested and the utility of probabilistic flood loss estimates for
decision-making is examined. Chapter 5 combines the research presented in Chapters
2 – 4 into an application of a probabilistic multi-variable loss model to estimate
present and future flood risk in Europe under climate and socio-economic change.
Furthermore, the potential of private precaution to reduce flood risk for residential
buildings in Europe is examined. The final Chapter 6 discusses the main findings
presented in Chapters 2 – 5 and draws conclusions for the research questions posed
in Chapter 1. Moreover, opportunities for further research are presented. All chapters
except Chapter 4 are in written and published in English language. Chapter 4 is
written and published in German language, but has translations into English for the
title, abstract, all figure and table captions and the conclusion section. An overview
of all thesis chapters and key findings is presented in Figure 1.4.
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Chapter 1

Research motivation and objectives
Multi-variable approaches, build on new data sources, with integrated uncer-
tainty quantification are required to advance flood risk modelling in Europe.

Data integration and model transfer

Chapter 2

Are OpenStreetMap building
data useful for flood

vulnerability modelling?
OSM-based models show
better predictive performance
than a stage-damage curve and
similar performance as a multi-
variable model. OSM data
improves the transferability
of flood loss models between
regions.

Chapter 3

A Consistent Approach for
Probabilistic Residential
Flood Loss Modelling in

Europe
BN-FLEMOps delivers consis-
tent flood loss estimates on the
meso-scale and inherently pro-
vides uncertainty information.
The model is validated in three
European case studies in Italy,
Austria, and Germany.

Model testing and uncertainty quantification

Chapter 4

The probabilistic flood damage model for residential buildings —
BN-FLEMOps

BN-FLEMOps outperforms a model ensemble in a comparison with
reported losses. The probabilistic loss estimates provide comprehensive
uncertainty information for decision-making.

Model application in Europe

Chapter 5

Drivers of future fluvial flood risk change for residential buildings in
Europe

Under the combined effects of exposure and climate change, fluvial flood
risk for residential buildings in Europe is estimated to increase up to
ten-fold until the end of the century. Improved private precaution would
reduce flood risk on average by 15%.

Chapter 6

Results, discussion, conclusion, and outlook
What did this thesis contribute to flood risk research? What does that mean?
What is next?

Figure 1.4: Overview of thesis chapters
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1.3 Author contributions

This thesis comprises four manuscripts in chapters 2 – 5 which have been published
in or submitted to peer-reviewed journals. These manuscripts have been created
in a collaborative effort by the author of this thesis (M.S.) and several co-authors
(initials). Individual contributions are outlined in detail for each chapter below. The
introduction Chapter 1 and the concluding Chapter 6 are the sole work of the author
of this thesis (M.S.).

Chapter 2: Are OpenStreetMap building data useful for flood vulnerability mod-
elling?

M.C. and K.S. conceived and designed the study. M.C. prepared and analysed the
data with major contributions from M.S. and K.S.. M.C., M.S. and K.S. wrote the first
draft of the paper. H.K. helped guide the research through technical discussions. All
authors reviewed the draft of the paper and contributed to the final version. M.S.
provide and revised some of the figures.

Chapter 3: A Consistent Approach for Probabilistic Residential Flood Loss Mod-
elling in Europe

S.L., K.S. and M.S. designed the research with support from H.K.. M.S. and S.L. anal-
ysed the data with support from L.W., developed the model and implement the case
study applications. M.S. and S.L. prepared all figures, tables, and support material
published as separate data publication in Lüdtke et al. (2019b). M.S., L.S., K.S., and
H.K. interpreted the results and contributed together with R.F. to the original draft.
The revision was performed by M.S., L.S., K.S. and H.K. M.S contributed signifi-
cantly to data analysis, model development and the presentation and interpretation
of results. M.S. wrote large parts of the data and methods, results and discussion
chapters.

Chapter 4: The probabilistic flood damage model for residential buildings —
BN-FLEMOps

The study design was conceived by M.S., S.L., K.S. and H.K.. Data analysis and
modelling was performed by M.S.. R.F. contributed data and advised in the writing
of the draft. The original draft was mainly written by M.S.. K.S. and H.K. contributed
with support from S.L.. All figures were created by M.S.. M.S. K.S. and H.K. revised
the draft during review.

Chapter 5: Drivers of future fluvial flood risk change for residential buildings in
Europe

The conceptualization of the study was led by M.S. in collaboration with D.P., F.D.,
N.S., L.A., H.K., and K.S.. M.S., S.L. and D.P. developed the methodology and
software. Data analysis and curation was performed by M.S. with contributions of
D.P.. D.P. created the exposure baseline and projections. The hazard maps and flood
protection standards were provided by F.D.. All authors contributed to the original
draft. M.S. wrote the majority of the text with contributions of the co-authors to the
introduction, methods and discussion chapters. All but one figure was created by M.S.
with supporting advice from the co-authors. Figure B.4 was provided by L.M..
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Chapter 2

Are OpenStreetMap building data
useful for flood vulnerability
modelling?

Abstract
Flood risk modelling aims to quantify the probability of flooding and the resulting
consequences for exposed elements. The assessment of flood damage is a core
task that requires the description of complex flood damage processes, including
the influences of flooding intensity and vulnerability characteristics. Multi-variable
modelling approaches are better suited for this purpose than simple stage–damage
functions. However, multi-variable flood vulnerability models require detailed input
data and often have problems in predicting damage for regions other than those
for which they have been developed. A transfer of vulnerability models usually
results in a drop of model predictive performance. Here we investigate the questions
whether data from the open-data source OpenStreetMap is suitable to model flood
vulnerability of residential buildings and whether the underlying standardized data
model is helpful for transferring models across regions. We develop a new data set
by calculating numerical spatial measures for residential-building footprints and
combining these variables with an empirical data set of observed flood damage. From
this data set, random forest regression models are learned using regional subsets and
are tested for predicting flood damage in other regions. This regional split-sample
validation approach reveals that the predictive performance of models based on
OpenStreetMap building geometry data is comparable to alternative multi-variable
models, which use comprehensive and detailed information about preparedness,
socio-economic status and other aspects of residential-building vulnerability. The
transfer of these models for application in other regions should include a test of
model performance using independent local flood data. Including numerical spatial
measures based on OpenStreetMap building footprints reduces model prediction
errors (MAE — mean absolute error — by 20 % and MSE — mean squared error
— by 25 %) and increases the re liability of model predictions by a factor of 1.4 in
terms of the hit rate when compared to a model that uses only water depth as a
predictor. This applies also when the models are transferred to other regions which
have not been used for model learning. Further, our results show that using numerical
spatial measures derived from OpenStreetMap building footprints does not resolve
all problems of model transfer. Still, we conclude that these variables are useful
proxies for flood vulnerability modelling because these data are consistent (i.e., input
variables and underlying data model have the same definition, format, units, etc.)
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and openly accessible and thus make it easier and more cost-effective to transfer
vulnerability models to other regions.

Published as:
Cerri, M., Steinhausen, M., Kreibich, H., & Schröter, K. (2021): Are OpenStreetMap building data
useful for flood vulnerability modelling? Natural Hazards and Earth System Sciences, 21(2), 643–662.
https://doi.org/10.5194/nhess-21-643-2021

https://doi.org/10.5194/nhess-21-643-2021
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2.1 Introduction

Floods have huge socio-economic impacts globally. Driven by increasing exposure, as
well as increasing frequency and intensity of extreme weather events, consequences of
flooding have sharply risen during recent decades (Lugeri et al., 2010; Hoeppe, 2016).
Therefore, effective adaptation to growing flood risk is an urgent societal challenge
(UNISDR, 2015; Jongman, 2018). With the transition to risk oriented approaches in
flood management, flood risk models are important tools to conduct quantitative
risk assessments as a support for decision-making from continental to local scales
(Winsemius et al., 2013; de Moel et al., 2015; Alfieri et al., 2016b). While macro- or
meso-scale risk assessment approaches target regional, national or continental studies,
risk assessment on the microscale is needed to guide urban planning, optimize
investment for protection and other mitigation measures considered in flood risk
management plans (Meyer et al., 2013; de Moel et al., 2015; Rehan, 2018). Flood
risk models include components to represent the key elements of flood risk: hazard,
exposure and vulnerability (Kron, 2005). Flood hazard is usually modelled with
high spatial resolutions in order to realistically capture variability in flood hazard
intensity in consideration of local topographic characteristics (Apel et al., 2009; Teng
et al., 2017). For consistent risk assessments, exposure, and vulnerability need to be
analysed on similar scales and with appropriate spatial resolution. With an increasing
availability of new exposure data sets including for instance information about the
number, occupancy, and characteristics of exposed objects, (Figueiredo & Martina,
2016; Pittore et al., 2017; Paprotny et al., 2020b) microscale exposure and vulnerability
modelling gains much traction (Schröter et al., 2018; Lüdtke et al., 2019a; Sieg et al.,
2019).

Both synthetic (e.g., Penning-Rowsell and Chatterton (1977), Blanco-Vogt and Schanze
(2014), and Dottori et al. (2016)) and empirically based models (e.g., Thieken et
al. (2005) and Zhai et al. (2005)) have been proposed for microscale vulnerability
modelling. As flood damaging processes are complex, a large diversity of influencing
factors needs to be taken into account to capture and appropriately represent flooding
intensity and resistance characteristics of exposed elements in flood vulnerability
models (Thieken et al., 2005). In this context, multi-variable modelling approaches
are an important advance from simple stage-damage curves, which relate only water
depth to flood loss. While multi-variable vulnerability models usually outperform
traditional stage-damage functions (Merz et al., 2004; Schröter et al., 2014), the
downside of these approaches is an increased need for detailed data on the level of
individual objects, (Merz et al., 2010b; Merz et al., 2013) which are often not available
in the target area of the analysis (Apel et al., 2009; Cammerer et al., 2013; Dottori
et al., 2016). Missing standards for collecting comparable and consistent data are one
reason for this problem (Changnon, 2003; Meyer et al., 2013). Hence, providing the
input variables for multi-variable flood vulnerability models on the microscale is a
key challenge for their practical applicability. Another challenge is the generalization
of locally derived vulnerability models. A number of studies confirm a model
performance mismatch between regions where models have been developed and the
target areas for application (Jongman et al., 2012a; Cammerer et al., 2013; Schröter
et al., 2016; Wagenaar et al., 2018). It is argued that the generalized application of
vulnerability models to different geographic and socio-economic conditions needs to
consider an adequate representation of local characteristics and damage processes
(Felder et al., 2018; Figueiredo et al., 2018; Sairam et al., 2019b). Hence, consistency
in input data is an important requirement for the spatial transfer of vulnerability
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models (Lüdtke et al., 2019a; Molinari et al., 2020). The availability, accessibility, and
consistency of data sources are important requirements for generalized vulnerability
model applications, but also poses requirements on modelling approaches. With
an increased number of input variables and an enlarged diversity of data sources
used for vulnerability modelling, we usually deal with heterogeneous data in terms
of different scaling, degrees of detail, resolution, and complex interdependencies
(Schröter et al., 2016; Schröter et al., 2018).

Tree based algorithms are a suitable approach to handle heterogeneous data, represent
non-linear and non-monotonic dependencies, and, as a non-parametric approach,
do not require assumptions about independence of data (Merz et al., 2013; Schröter
et al., 2014; Wagenaar et al., 2017; Carisi et al., 2018). The Random Forest (RF) algo-
rithm (Breiman, 2001) is broadly used in many disciplines, due to its high predictive
accuracy, simplicity in use and flexibility concerning input data. In the domain of
flood risk modelling, Wang et al. (2015) have successfully applied RF for flood risk
assessment and Bui et al. (2020) used RF for flood susceptibility mapping. Merz et al.
(2013) demonstrated the suitability of tree-based algorithms for flood vulnerability
modelling. Following this, Chinh et al. (2015), Hasanzadeh Nafari et al. (2016a), Sieg
et al. (2017), Wagenaar et al. (2017), and Carisi et al. (2018) have used RF and other
tree-based algorithms for flood loss estimation in flood prone regions in Vietnam,
Australia, the Netherlands, and Italy. In these studies, vulnerability modelling using
RF was based on site specific empirical data sets which had been collected ex-post
major flood events. In contrast, the framework proposed by (Amirebrahimi et al.,
2016) successfully used 3D building information for flood damage assessment of
individual buildings. Gerl et al. (2016) and Schröter et al. (2018) investigated the
suitability of alternative more general data sources for flood vulnerability modelling
using urban structure type information derived from remote sensing images, virtual
3D city models and numerical spatial measures which describe the extent and shape
complexity of residential buildings. It was shown that geometric information such as
building area and height are useful variables to describe building characteristics rele-
vant for estimating flood losses (Schröter et al., 2018). From these studies, it has been
concluded that data about building geometry work as a proxy to describe resistance
characteristics of buildings. However, further analyses are needed to understand
whether building geometry data enable consistent flood vulnerability modelling with
high resolution and are suitable to characterize differences in flood vulnerability
across regions.

With new data sources emerging from crowdsourcing projects and open data initia-
tives, detailed building data are increasingly available and accessible (Irwin, 2018).
Open and/or standardized building data are a promising data source to coherently
describe exposure and characterize vulnerability of residential buildings, and to im-
prove the spatial transfer of vulnerability models given a consistent underlying data
model and clear specification of input variables across regions. Data science methods
are predestined to make use of these data in flood vulnerability modelling. Against
this backdrop, we investigate the suitability of the open data source OpenStreetMap
(OSM) (OSM contributors, 2020) for flood vulnerability modelling of residential build-
ings. OSM is a geographic database with a worldwide coverage which is nowadays
considered as reliable (Barrington-Leigh & Millard-Ball, 2017). The information about
building footprints is freely available and straightforward to obtain from public on-
line servers. The OSM contributors’ community is constantly growing and assures
regular updates in terms of accuracy and completeness of the data (Hecht et al.,
2013).
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We test the hypothesis that numerical spatial measures derived from OSM building
footprints provide useful information for the estimation of flood losses to residential
buildings. From the underlying consistent OSM data model and standardized calcu-
lation of spatial measures, we expect an improvement of the spatial transfer of flood
vulnerability models across regions. Accordingly, the research objectives are (i) to un-
derstand which building-geometry-related variables are useful to describe building
vulnerability, (ii) to learn predictive flood vulnerability models, and (iii) to test and
evaluate model transfer across regions. In section 2.2 the data sources, the derived
variables and the preparation of data sets are described. Section 2.3 introduces the
methods to identify predictor variables and to derive predictive models. Further, it
describes the set-up for testing and evaluating model performance in spatial transfers.
The results from these analyses are reported and discussed in section 2.4. Conclusions
are drawn in section 2.5.

2.2 Data

We use an empirical data set of relative loss to residential buildings and influencing
factors, which has been collected via computer-aided telephone interview (CATI)
data during survey campaigns after major floods in Germany since 2002. Another
data source is OSM (OSM contributors, 2020), providing information about building
locations, geometries, occupancy and other characteristics. OSM data are comple-
mented with numerical spatial measures calculated from geometries of OSM building
footprints. Details on data and software used in this study are listed in Appendix
A.2.

2.2.1 Computer aided telephone interview data

CATI surveys were conducted with affected private households ex post major floods
in Germany. The regional focal points of flood impacts were the Elbe catchment
in Eastern Germany and the Danube catchment in southern Germany. Particularly
noteworthy are the floods of 2002 and 2013, which caused economic losses of 11.6
billion € (reference year 2005) and 8 billion € respectively in Germany (Thieken et
al., 2006b; Thieken et al., 2016). With 1 billion € in economic damage, the city of
Dresden at the Elbe River in Saxony had been a hotspot of flood impacts during the
August 2002 flood (Kreibich & Thieken, 2009). In August 2002, flash floods triggered
by record-breaking precipitation and numerous dyke failures caused widespread
flooding along the Elbe River and its tributaries in Saxony and Saxony-Anhalt, as
well as along the Regen River and other southern tributaries to the Danube River
in Bavaria (Schröter et al., 2015). The magnitude of flood peak discharges along
these rivers well exceeded a statistical return period of 100 years (Ulbrich et al.,
2003). In May 2013 a pronounced precipitation anomaly with subsequent extreme
precipitation at the end of May and beginning of June caused severe flooding in June
2013, especially along the Elbe and Danube rivers, with new water level records and
major dike breaches both at the Elbe and Danube rivers (Conradt et al., 2012; Merz
et al., 2014b; Schröter et al., 2015). The magnitude of flood peak discharges exceeded
statistical return periods of 100 years along the Elbe, Mulde and Saale tributaries and
along the Danube and Inn River in Bavaria (Blöschl et al., 2013; Schröter et al., 2015).
With 180 questions, the CATI surveys cover a broad range of flood-impact-related
factors including building characteristics, effects of warnings, precaution and the
socio-economic background of households. The survey campaigns for different floods
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are consistent in terms of acquisition methodology, type, and scope of questions. The
interviewees were randomly selected from lists of potentially affected house- holds
along inundated streets which have been identified from satellite data, flood reports
and press releases. With an average response rate of 15 %, in total 3056 interviews
have been completed. For further details about the surveys and data processing, refer
to (Thieken et al., 2005; Kienzler et al., 2015; Thieken et al., 2017).

Building on the findings of previous work (Merz et al., 2013; Schröter et al., 2014),
for this study 23 variables have been preselected with a focus on building character-
istics, flood intensity at the building and socio-economic status as well as warning,
precaution and previous flood experience (Table 2.1). In addition, relative loss to the
building has been determined as the ratio of reported actual losses and the building
value (replacement cost) at the time of the flood event (Elmer et al., 2010). Hence, it
describes the degree of building damage on a scale from 0 (no damage) to 1 (total
damage). Building values are based on the standard actuarial valuation method of
the insurance industry in Germany (Dietz et al., 2014), which estimates replacement
costs using information about the floor space, basement area, number of storeys,
roof type, etc. that are available from CATI data. Relative loss to the building and
water depth (“wst”) at the building are the key variables from the CATI data set used
in this study. The variable rloss is used to learn predictive models and to evaluate
their performance. Consequently, the records in the CATI data set without values
for rloss are removed. This reduces the number of available records from 3056 to
2203. The variable wst is the most commonly used predictor in flood vulnerability
modelling (Gerl et al., 2016) because it is a highly relevant characteristic of flood
intensity, and it is usually available from hydrodynamic numerical simulations; wst
from CATI is a continuous variable with a length unit in centimetres. Negative values
represent a water level below the ground surface, which affects only the basement of
a building.

2.2.2 OpenStreetMap data

OSM is a free web-based map service built on the activity of registered users who
contribute to the database by adding, editing or deleting features based on their local
knowledge. The contributors use GPS devices and satellite, as well as aerial imagery,
to verify the accuracy of the map. OSM is an open-data project, and the cartographic
information can be downloaded, altered and redistributed under the Open Data
Commons Open Database Licence (ODbL) (OSM contributors, 2020). Among the
so-called volunteered geographic information (VGI) projects (Goodchild, 2007), OSM
is the most widely known. OSM data provide information about building locations,
footprint geometries, occupancy and other characteristics. The positional accuracy of
OSM data, as well as the completeness of the database in respect to the number of
mapped objects present in the real world, is nowadays considered satisfactory for
most developed countries and urban areas (Hecht et al., 2013; Barrington-Leigh &
Millard-Ball, 2017). On the contrary, information on object attributes such as road
names or building types is often scarce and inconsistent. The tag “building” is used
to identify the outline of a building object in OSM. The majority of buildings (82 %)
have no further description, and only 12 % are specified as primarily “residential” or
a single-family “house” (https://taginfo.openstreetmap.org/keys/building#values,
last access: 28 February 2020). Therefore, the filtering for residential buildings from
the OSM database uses the underlying “residential” land use information of OSM.

https://taginfo.openstreetmap.org/keys/building#values
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Table 2.1: Preselected variables from CATI surveys; C: continuous, O: ordinal, N: nominal
scaled variables

Variable Type and range

Warning, precaution and previous experience

1 wt Early warning lead time C: 0 to 336 h
2 wq Quality of warning O: 1 = knew exactly what to do to 6=had

no idea what to do
3 ws Indicator of flood warning source O: 0 = no warning to 4 = official warning

through authorities
4 wi Indicator of flood warning information O: 0 = no helpful information to 11 = many

helpful information
5 wte Lead time period not used for emergency C: 0 to 335 h
6 em Emergency measures indicator O: 1 = no measures undertaken to 17 =

many measures undertaken
7 epre Perception of efficiency of private precau-

tion
O: 1 = very efficient to 6 = not efficient at
all

8 pre Precautionary measures indicator O: 0 = no measures undertaken to 38 =
many, efficient measures undertaken

9 fe Flood experience indicator O: 0 = no experience to 9 = recent flood
experience

10 kh Knowledge of flood hazard N (yes / no)

Hydraulic characteristics of the inundation

11 wst Water depth C: 248 cm below ground to 670 cm above
ground

Building characteristics

12 bt Building type N (1 = multifamily house, 2 = semi-
detached house, 3=one-family house)

13 nfb Number of flats in building C: 1 to 45 flats
14 fsb Floor space of building C: 45 to 18000 m2

15 bq Building quality O: 1=very good to 6 = very bad
16 bv Building value C: 92244 to 3718677 €

Socio-economic status of the residents

17 age Age of the interviewed person C: 16 to 95 years
18 hs Household size, i.e., number of persons C: 1 to 20 people
19 chi Number of children (<14 years) in house-

hold
C: 0 to 6

20 eld Number of elderly persons (>65 years) in
household

C: 0 to 4

21 own Ownership structure N (1 = tenant; 2 = owner of flat; 3 = owner
of building)

22 inc Monthly net income in classes O: 11 = below 500 € to 16 = 3000 € and
more

23 socP Socio-economic status according to Plapp
(2003)

O: 3 = very low status to 13 = very high
status

Experienced damage

- rloss Relative loss of the residential building C: 0 = no damage to 1 = total damage
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By joining the land use information to the building polygons, those of residential
occupation can be identified and selected.

2.2.3 Data preparation

The OSM and CATI data sets have been conflated in order to link the empirically
observed variables rloss and wst with OSM data for individual residential buildings.
This operation uses the geolocation information of both data sources. The CATI data
are provided with address details including community, postal code, street name
and the house number ranges in blocks of five numbers. Geocoding algorithms
including open web API (application programming interface) services like Google
(https://developers.google.com/maps/documentation/geolocation/overview, last
access: 3 February 2021), Photon (https://photon.komoot.io/, last access: 3 February
2021) and Nominatim (https://nominatim.org/, last access: 3 February 2021) were
applied to obtain geocoordinates for the address information from the interview
data.

OSM is a spatial data set including georeferenced building outlines. The geolocated
interviews are spatially matched with OSM building polygons using an overlay
operation which merges interview points with OSM building polygons. In view of
limited address details regarding the building house number ranges and inherent
inaccuracies of geocoding databases and algorithms (Teske, 2014), a buffer radius
of 5 m has been used to correct for offsets between geocoding points and building
polygons. CATI records which still could not be matched with OSM geometries and
with obviously erroneous geolocations, e.g., position is far away from flood-affected
areas or urban settlements, have been removed from the data set. After these steps,
1649 records remain from the original set of CATI surveys. The spatial distribution of
these data points highly concentrates on the Elbe catchment (1234 records) including
Dresden (310 records) and on the Danube catchment (105 records) (Figure 2.1).

2.2.4 Numerical measures

Information about the building geometry is useful to support the estimation of flood
losses to residential buildings (Schröter et al., 2018). Building on this knowledge,
numerical spatial measures are calculated for OSM building footprints with the aim
to add potential explanatory variables to the estimation of relative loss to residential
buildings. For this purpose, image analysis algorithms typically used in landscape
ecology are adopted. These algorithms calculate numerical spatial measures like area,
perimeter, elongation, and complexity based on the analysis of geometries identified
in aerial or remote sensing images (Lang & Tiede, 2003; Jung, 2016; Rusnack, 2021).
The numerical spatial measures are calculated for each OSM building polygon and
are compiled in Table 2.2 along with the other CATI variables that are used to derive
flood vulnerability models. The meaning of these spatial measures, the equations,
and range of values and examples are listed in the Appendix A1 (Figure A.1).

2.3 Methods

We analyse the created data set with two main objectives. First, we strive to identify
those variables from Table 2.2 which are most useful for explaining relative loss
to residential buildings. Second, we aim to derive flood vulnerability models for
residential buildings and to test these models for spatial transfers across regions. The

https://developers.google.com/maps/documentation/geolocation/overview
https://photon.komoot.io/
https://nominatim.org/
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Figure 2.1: Regional subdivision of the data set for spatial split-sample testing (Dresden
municipality, the Elbe catchment and the Danube catchment).

Table 2.2: Variables of the amended OSM data set for each building object

Empirical variables from the CATI interviews Range

— Relative loss of the residential building (rloss) Relative loss 0 = no damage to
1 = total damage

— Water depth (wst) Water level in respect to ground
level

-248 cm to 670 cm

Numerical spatial measures calculated for OSM building geometries Range

1 Area (Area) Area of the building 0 m2 to ∞
2 Perimeter (Perimeter) Perimeter of the building 0 m to ∞
3 Degree of compactness (DegrComp) Compactness of the building

shape, relative vicinity of the
internal points, normalized to a
circle

0 to 1

4 Perimeter-area ratio (PARatio) Shape complexity, biased by build-
ing size

0 to ∞

5 Shape index (ShapeIndex) Shape complexity, adjusted to
building size normalized to a
square

1 to ∞

6 Fractal dimension index (FracDimInd) Shape complexity, adjusted to
building size scaled between

1 to 2

7 Radius of gyration (RadGyras) Building extent and compactness 0 m to ∞
8 Linear segment indicator (LinSegInd) Elongation of the polygon, normal-

ized to a square
1 to ∞

9 Ratio of bounding rectangle area (BoundRatio) Shape complexity, normalized to
the hypothetical simplest polygon

1 to ∞

workflow for data analysis including data pre-processing, model learning, model
selection and model transfer is illustrated in Figure 2.2. The data pre-processing steps



22 Chapter 2. Are OSM building data useful for flood vulnerability modelling?

with data preparation and numerical spatial measures have been described in the
previous section. For model learning and model transfer, we use the random forest
(RF) machine learning algorithm introduced by (Breiman, 2001).

RF is an extension of the classification and regression tree (CART) algorithm, (Breiman,
1998) which aims to identify a regression structure among the variables in the data set.
Regression trees recursively subdivide the space of predictor variables to approximate
a non-linear regression structure. This subdivision is driven by optimizing the
accuracy of local regression in these regions, which, by repeated partitioning, leads
to a tree structure. Predictions are made by following the division criteria along
the nodes and branches from the root node to the leaves, which finally contain the
predicted value for a given set of input variables. RFs make predictions based on
numerous decision trees, i.e., a forest, which is learned by randomly selecting the
variables considered for splitting the features space of the data. RFs incorporate
bootstrap aggregation (bagging) as a simple and powerful ensemble method to
reduce the variance of the CART algorithm. In comparison to single trees, RFs are
more suitable to identify complex patterns and structures in the data (Basu et al.,
2018). As an ensemble approach, RFs learn a regression tree for a number of bootstrap
replicas of the learning data. This results in a number of trees (ntree) forming a
forest of regression trees. To reduce correlation between trees, the RF algorithm
randomly selects a subset of variables (mtry) which are evaluated for dividing the
space of predictor variables. This efficiently reduces overfitting and makes RF less
sensitive to changes in the underlying data. Each bootstrap replica is created by
randomly sampling with replacement about two-thirds of observations from the
original data set. The remaining data are indicated as out of-bag (OOB) observations
and are used for evaluating the predictive accuracy of the tree, in terms of the OOB
error. For regression trees, the OOB error is the mean squared sum of residuals.
For loss estimation, the predictions of all trees are combined by aggregating the
individual predictions as the mean prediction from the forest. The predictions of the
individual trees, i.e., from the ensemble of models, provide an estimate of predictive
uncertainty.

For variable selection and predictive model learning, RFs provide a concept to quan-
tify the importance of candidate explanatory variables, which allow for selecting the
subset of most relevant variables. RFs are also an efficient algorithm to learn predic-
tive models from heterogeneous data sets with complex interactions and with differ-
ent scales like continuous or categorical information (Huang & Boutros, 2016).

RF predictive model performance is sensitive to specifications of the algorithm pa-
rameters mtry and ntree (Huang & Boutros, 2016). Therefore, the optimum values
for both parameters are identified as those which yield minimum OOB errors on
an independent data set. For parameter tuning, we pursue the variation approach
implemented by (Schröter et al., 2018) by selecting parameters from a broad and
comprehensive range of values ntree ∈ [100, 500, 1000, 2000, 3000, . . . 15000] and
mtry ∈ [p/6, p/3, 2p/3] with p as the number of candidate predictors, and derive
RF models for each combination. For each pair of chosen values, the algorithm is
repeated 100 times to account for inherent data variability. The optimum parameters
will minimize the prediction error on the OOB sample data. Using the optimum RF
parameter settings, we derive predictive models for rloss.
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Figure 2.2: Data pre-processing, model learning and model transfer workflow, with BMu
(upper benchmark model), BMl (lower benchmark model), BMrm (Benchmark
model with random match of interview locations with OSM building data), A
(Random Forest model using eight predictors), B (Random Forest model using
eight predictors), and model transfers d2E (learning with Dresden and predic-
tions for Elbe), d2D (learning with Dresden and predictions for Danube), E2D
(learning with Elbe and predictions for Danube), D2E (learning with Danube and
predictions for Elbe)

2.3.1 Variable selection

The first step in model learning is the selection of variables to be used as predictors
in the model. The analysis of the Spearman’s rank correlation between the variables
gives a first insight into the linear dependency structure of the data set. Furthermore,
RF supports the evaluation and ranking of potential predictors by quantification
of variable importance, which also accounts for variable interaction effects. The
importance of a selected variable is evaluated by calculating the changes of the
squared error of the predictions when the values of that variable are randomly
permuted in the OOB sample. The increase of the average error will be larger for
more important variables and smaller for less important variables. On this basis, it is
possible to decide which variables to include in a predictive model. The outcomes of
variable importance evaluations are sensitive to the RF algorithm parameters mtry
and ntree (Genuer et al., 2010). Therefore, to achieve stable results for these analyses,
we implement a robust approach which averages the outcomes of multiple runs with
variations in RF parameters (Schröter et al., 2018): ntree ∈ [500, 1000, 1500, 2000,
. . . 5000] whereby each tree is repeatedly built for mtry ∈ [p/6, p/3, 2p/3], with p
as number of candidate predictors, which correspond to the lower limit, the default
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value and the upper limit, suggested by (Breiman, 2001). Following this procedure,
the potential explanatory variables of our data set (Table 2.2) are evaluated and
ranked according to their relative importance to predict rloss.

2.3.2 Predictive model learning

Variable selection needs to be considered as an essential part of the model evaluation
process. Therefore, candidate RF models using different numbers of variables are
assessed in terms of predictive performance for independent data.

The OSM-based numerical spatial measures differentiate building form and shape
complexity. To gain further insights into the suitability of these variables for flood
vulnerability modelling, we incrementally add explanatory variables to the learning
data set. Based on the outcomes of variable importance ranking, the learning set is
expanded variable by variable, and models of increasing complexity are learned (cf.
Table 2.2). From the comparison of model predictive performance between these
candidate models, the best balance between model performance and number of input
variables is assessed. This is implemented by bootstrapping the splitting of the data
into sub-sets for learning (60 %) and testing (40 %) with 100 iterations.

Further, for an independent assessment of OSM-based vulnerability model perfor-
mance, we consider two benchmark models. We argue that the set of CATI variables
(Table 2.1) represents the most detailed data set available for flood loss estimation
of residential buildings (Merz et al., 2013; Schröter et al., 2014; Thieken et al., 2016).
Therefore, a RF model is learned using all 23 CATI predictors as an upper benchmark
(BMu). In contrast, a RF model using only wst as a predictor is learned as a lower
benchmark. The reasoning is that using extra variables in addition to wst will improve
the predictive performance of the models (Schröter et al., 2016; Schröter et al., 2018).
As described in subsection 2.2.3, the detail of geolocation information from CATI data
is limited to ranges of house numbers. Therefore, we face uncertainty in whether
CATI data and OSM building footprints have been matched correctly. To assess the
potential implications of this source of uncertainty, we derive a model (BMrm) which
is based on a data set with rloss and wst observations randomly assigned to OSM
building footprints. We keep the RF modelling approach for the benchmark models
consistent to ensure that any observed difference in model performance stems from
differences in the underlying input variables.

2.3.3 Predictive model evaluation

Model predictive performance is evaluated by comparing predicted (P) and observed
(O) rloss values from the validation sample using the following metrics. In these
metrics, RF predictions are evaluated for the median prediction (P50) derived from
the ensemble of individual tree predictions.

Mean Absolute Error (MAE) quantifies the precision of model predictions, with
smaller values indicating higher precision:

MAE =
1
n

n

∑
i=1
|P50i

− Oi| (2.1)
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Mean bias error (MBE) is a measure of accuracy, i.e., systematic deviation from the
observed value. Unbiased predictions yield a value of 0; underestimation results in
negative; and overestimation in positive values:

MBE =
1
n

n

∑
i=1

(P50i
− Oi) (2.2)

Mean Squared Error (MSE) combines the variance of the model predictions and their
bias. Again, smaller values indicate better model performance:

MSE =
1
n

n

∑
i=1

(P50i
− Oi)

2 (2.3)

The ensemble of model predictions from the RF models offers insight into prediction
uncertainty. This property is analysed by evaluating the 90 % quantile range, i.e., the
difference between the 5 % quantile and 95 % quantile in relation to the median, as a
measure of ensemble spread:

QR90 =
1
n

n

∑
i=1

(P95i
− P5i)/P50i (2.4)

with 95 % quantile, 5 % quantile and the 50 % quantile, i.e., the median of the
predictions. QR90 (Quantile Range) is a measure of sharpness, with smaller values
indicating a smaller prediction uncertainty.

Reliability of model predictions is quantified in terms of the hit rate (HR) (Gneiting &
Raftery, 2007):

HR =
1
n

n

∑
i=1

hi ; hi =

{
1, i f Oi ∈ [P95i , P5i ]
0, otherwise (2.5)

HR calculates the ratio of observations within the 95 % — 5 % quantile range of
model predictions. For a reliable prediction HR should correspond to the expected
nominal coverage of 0.9.

HR and QR90 are combined to the interval score (IS) which accounts for the trade-off
between HR values and QR90 ranges (Gneiting & Raftery, 2007):

IS = QR90 +
1
n

n

∑
i=1

2
β
(P05i −Oi) | {Oi < P05i}+

2
β
(Oi − P95i) | {Oi > P95i} (2.6)

2.3.4 Spatial-transfer evaluation

We investigate whether the consistent data basis of OSM-derived numerical spa-
tial measures supports the transfer of flood vulnerability models across regions by
splitting the available data set into subsets for different regions affected by major
floods. The CATI data are mainly located in the Elbe and Danube catchments in
Germany, which are the regions mostly affected by inundations and flood impacts.
This suggests a regional subdivision of the empirical data set according to these
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river basins for the investigation of spatial model transfer. In detail, we partition
the data set between the metropolitan area of Dresden (Saxony), the Elbe catchment
(Saxony, Saxony-Anhalt, and Thuringia) and the Danube catchment (Bavaria and
Baden-Württemberg); see Figure 2.1. This split is applied irrespective of the CATI
survey campaign year, and thus the regional subsets contain records from different
flood events. The idea is to investigate examples with a small set of learning data
for a small specific region (Dresden), a large learning data set from an extended
region (Elbe catchment) and a small set of learning data from an extended region
(Danube catchment). The details for the learning and transfer applications are listed
in Table 2.3. For these three regions, we learn RF models using the selected variables
and assess their predictive performance when transferred to the other regions. As
we use a completely independent data set for model transfer testing, no additional
bootstrap on top of RF internal bootstrapping is required.

Table 2.3: Computational experiments for transfer applications

Transfer experiment Implementation Learned on/applied to # buildings

d2E Learned from Dresden and applied to Elbe 310/1234
d2D Learned from Dresden and applied to Danube 310/105
E2D Learned from Elbe and applied to Danube 1234/105
D2E Learned from Danube and applied to Elbe 105/1234

2.4 Results and Discussion

Random forest OOB errors are sensitive to the choice of RF parameters mtry and
ntree. From the variation of RF parameters, we observe that OOB errors decrease
with smaller values for mtry and larger numbers of trees in a forest ntree; see Fig-
ure 2.3.

The coloured bands represent the 90 % quantile range of OOB values from the 100
bootstrap repetitions for each RF algorithm configuration and illustrate the inherent
variability of input variables in the learning data set. The colour code distinguishes
the number of variables used to determine splits at each node (mtry). For mtry =
2 the smallest OOB errors are achieved throughout the variations in the number of
trees (ntree). This value represents the lower bound of recommended values for
mtry in RF regression models (Breiman, 2001). For smaller values of mtry fewer
variables are considered for splitting the space of predictor variables, which reduces
the correlation between individual trees of the forest. Further, increasing values of
ntree asymptotically approximate smaller OOB values. It appears that for the given
data set, OOB values are virtually stable above ntree = 7000. As the computational
effort increases with larger forests, it has to be balanced with improvements regarding
predictive performance. Building on these results, we use RF parameters mtry = 2
and ntree = 7000, which are comparable to those used by (Schröter et al., 2018).

2.4.1 Variable selection and predictive model learning

The numerical spatial measures (Table 2.2, and Appendix A1) evaluate properties of
the building footprints including area, perimeter, and elongation of main building
axes. Accordingly, some of these variables are strongly correlated (Figure 2.4). The
Spearman’s rank correlation matrix of the variables confirms a high degree of correla-
tion in the data set, as for instance between Area, Perimeter and RadGyras. In contrast,
the spatial measures are only slightly correlated with wst and rloss. The presence
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Figure 2.3: Out-of-Bag error for variations of mtry and ntree RF parameters. Colour bands
represent the variation range of OOB errors obtained from 100 bootstrap repeti-
tions

of multicollinearity may influence the analysis of variable importance (Gregorutti
et al., 2017). The robust importance analysis uses different RF parameter settings and
reports an average importance rank, which alleviates this problem.

Figure 2.4: Spearman’s correlation of model variables (significance level 1 %), non-significant
correlations are crossed out.

The variable wst ranks first in the importance analysis (results not shown) which
confirms common knowledge in flood loss modelling (Smith, 1994; Gerl et al., 2016).
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In comparison to wst, the numerical spatial measures of OSM building footprints
have clearly smaller importance values, with relatively small differences between
them. In terms of building characteristics, both spatial measures which express the
size and extension of the building (e.g., Area and Perimeter) and spatial measures
which describe building compactness and shape complexity (e.g., PARatio, RadGyras,
LinSegInd, and BoundRatio) seem to add information to better estimate relative
building loss. The following order of importance was determined for the variables:
wst, PARatio, RadGyras, Area, LinSegInd, BoundRatio, Perimeter, DegrComp, FracDi-
mInd, ShapeIndex. Predictive performance tests for models with two to ten variables
(Figure 2.5, Table 2.4) build on this order of importance.

However, the outcome of the variable importance analysis does not suggest a clear
selection of features to be included in a predictive flood vulnerability model. The
model predictive-performance-based assessment of variables uses an increasing
number of variables following their ranking order of variable importance in the RF
modelling. The predictive performance is quantified in terms of MAE, MBE and MSE
(Equation 2.1, 2.2 and 2.3) for 100 bootstrap repetitions. While the MAE is decreasing
when additional variables are used with an overall minimum for a model using six
variables, including more than six variables tends to increase MAE again (Figure 2.5).
However, regarding MBE these changes go in an opposite direction. We observe the
smallest MBE when only two variables are included. MBE then grows continuously
for using up to seven variables and then slightly reduces when more variables are
used. The increase in precision expressed by the smaller MAE is accompanied by a
reduction in accuracy reflected by an increasing MBE. This yields an almost-balanced
performance in terms of MSE for all models tested.

Figure 2.5: Predictive performance of models using an increasing number of variables in
order of their importance. Smaller MAE and MSE values and MBE values close to
0 indicate better performance; cf. Equation 2.1, 2.2 and 2.3.

Looking into the sharpness of model predictions, the quantile range (QR90) is getting
larger with an increasing number of model variables, which reflects larger uncer-
tainty (Table 2.4). In terms of model reliability (HR), an increasing number of model
variables achieves better performance statistics, up to using eight variables. The com-
bination of both, QR and HR, in the interval score (IS) shows a similar pattern.
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Table 2.4: Model performance metrics for models using an increasing number of variables
including arranged in order: wst, PARatio, RadGyras, Area, LinSegInd, BoundRatio,
Perimeter, DegrComp, FracDimInd, ShapeIndex. Best performance values and selected
models in bold.

Model MAE MBE MSE QR HR IS

2 variables 0.0878 -0.0234 0.0230 0.2765 0.5864 7.9402
3 variables 0.0853 -0.0293 0.0226 0.2992 0.6301 7.1154
4 variables 0.0843 -0.0316 0.0224 0.3070 0.6433 6.8440
5 variables 0.0840 -0.0348 0.0227 0.3182 0.6533 6.7166
6 variables 0.0826 -0.0364 0.0222 0.3270 0.6622 6.5728
7 variables 0.0830 -0.0373 0.0225 0.3302 0.6614 6.5715
8 variables 0.0839 -0.0337 0.0224 0.3314 0.6640 6.3757
9 variables 0.0841 -0.0349 0.0226 0.3346 0.6639 6.3766

10 variables 0.0844 -0.0357 0.0228 0.3365 0.6631 6.4000

On the basis of these assessments, two model alternatives are selected for further
analysis: model A using eight variables, as it provides the most reliable model
predictions, and model B using six variables, which provide the highest precision
and balance between accuracy and precision. In detail, Model B uses the variables
wst, PARatio, RadGyras, Area, LinSegInd, and BoundRatio. Model A, in addition, uses
Perimeter and DegrComp as predictors.

2.4.2 Model predictive performance: model benchmarking

The OSM models A and B are benchmarked with a model that uses all information
available from the CATI surveys as an upper benchmark (BMu) and a model that uses
only water depth as predictor as a lower benchmark (BMl). The performance statistics
achieved by models A and B for the complete data set (all events and regions) are
slightly inferior to BMu but clearly better than the outcomes of BMl (Figure 2.6). Both
models A and B give very similar performance statistics with slightly higher precision
(smaller MAE) but larger bias (MBE) for model B. In contrast, model A provides
more reliable predictions indicated by larger HR and smaller IS (Table 2.5). The
randomized benchmark model (BMrm) achieves a better performance than BMl but
is inferior to the models A and B (Figure 2.6, Table 2.5). Hence, we are confident that
the remaining uncertainty associated with the mapping of geolocations to building
geometries does not affect the outcomes of our analyses. Overall, we note that
including numerical spatial measures based on OSM building footprints add useful
information to predict loss to residential buildings. The numerical spatial measures
included in the models are all directly calculated using building footprints. Therefore,
a larger number of variables used for loss estimation does not imply increased efforts
to collect data. From this perspective, the cost of using model A or B is equal. The RF
algorithm strives to reduce overfitting when large numbers of predictors are included,
and thus the parsimonious modelling principle can be relaxed. A possible negative
effect of overfitting when using more predictors should manifest in spatial-transfer
applications.

2.4.3 Spatial-transfer testing

The predictive performance of RF models is tested in regional-transfer applications.
For this purpose, the RF models A and B as well as the benchmark models BMu and
BMl, as specified in the previous section, are learned using regional subsets of the
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Figure 2.6: Performance metrics of OSM based models and benchmark models

Table 2.5: Model precision, accuracy, and reliability performance metrics for OSM based and
benchmark models

Model MAE MBE MSE QR HR IS

BMu (Upper benchmark, all 23 predictors from CATI inter-
views)

0.075 -0.034 0.018 0.336 0.733 3.573

A (7 numerical spatial measures derived from OSM plus
water depth)

0.083 -0.032 0.019 0.322 0.699 6.022

B (5 most important numerical spatial measures plus water
depth)

0.081 -0.035 0.019 0.319 0.698 6.238

BMrm (random match of CATI geolocation with OSM
building polygons)

0.087 -0.034 0.021 0.319 0.688 6.535

BMl (Lower benchmark, only water depth as predictor) 0.100 -0.019 0.026 0.177 0.490 10.107

data and applied to predict flood losses in a different region; see subsection 2.3.4
and Table 2.3 for details about the regional subdivision of data and spatial-transfer
experiments. Learning models with a regional subset of data and applying the models
to other regions results in a drop of predictive performance in comparison to the
case when the entire data set is used for model learning, except for the case of d2E
(Figure 2.7). In most of the learning or transfer cases, BMu scores best in terms of
precision and reliability, represented by the performance metrics MAE, MSE, HR
and IS. Using only wst as a predictor (BMl) produces less precise and less reliable
predictions, as indicated by larger MAE and MSE, as well as smaller HR and larger
IS. While the performance of models A and B is very similar, model A, using eight
predictors, more reliably predicts residential loss (larger HR and smaller IS), and
model B, using six predictors, provides more accurate (MBE closer to 0) and more
precise predictions (smaller MAE and MSE). Hence, overfitting does not seem to be
an issue when more input variables are used. In contrast to the model benchmark
comparison (subsection 2.3.4) BMu and BMl do not entirely frame the RF model
performance values. Instead, models A and B in some cases achieve better and in
other cases worse performance statistics.

Generally speaking, the predictive performance differs more strongly between the
regional-transfer settings than between the models (Figure 2.7). This is more pro-
nounced for precision and accuracy metrics (MAE, MBE and MSE) than for sharpness
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and reliability indicators (QR, HR and IS). Learning from the Dresden subset and
transferring the model to the Elbe region (d2E) works best, as is shown by the smallest
MAE and MSE as well as an MBE closest to 0. Learning the models with the Danube
subset and transferring them to the Elbe region (D2E) yields comparably small MAE
and MSE values, but this is also the only case with a tendency to overestimate rloss
resulting in a positive MBE. The models are struggling most to predict loss when
they are learned with the Dresden subset and transferred to the Danube region (d2D),
showing the lowest precision and accuracy. In turn, extending the learning subset to
the Elbe region improves the transfer to the Danube (E2D). Concerning predictive
uncertainty and reliability, learning with the Danube subset yields large QRs, which
however only partly cover the observed loss values reflected in comparably low
HR and high IS (D2E). Learning from Dresden or Elbe and transferring to Elbe or
Danube (d2E, d2D and E2D) produces sharper predictions, but still the models differ
in reliability, i.e., covering the observed values within their predictive uncertainty
ranges (HR). In this respect, the upper benchmark model (BMu) performs best. The
differences between models A and B are small, and both are better than the lower
benchmark model (BMl) and almost similar to BMu for the transfer cases between
the regions Elbe and Danube (E2D and D2E).

Figure 2.7: Model performance metrics in regional transfer. Models A and B based on spatial
numerical measures calculated for OSM building footprints, benchmark models
BMl and BMu based on CATI survey data. Transfer experiments d2E, d2D, E2D,
and D2E as described in Table 2.3. ’all’ refers to using all records from all regions,
cf. Table 2.5.

With 105 records, the Danube data set is the smallest subsample. It has a smaller
variability and range of values for most numerical spatial measures in comparison to
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the Dresden and Elbe regional sets (Figure 2.8).

The geometric properties of the flood-affected residential buildings in the Danube
region seem to differ from the affected residential buildings in the Elbe region. In the
Danube subset, the area and perimeter of buildings tends to be smaller than in the Elbe
region. Also, the values for spatial measures representing building shape complexity,
for instance RadGyras, DegrComp and BoundRatio, indicate more compact building
footprints in the Danube region than in the Elbe region. These differences can be
attributed to different socio-economic characteristics as well as building practices in
former East and West Germany and regional differences in building types (Thieken
et al., 2007). With only 310 records, the Dresden sub-sample covers comparable ranges
of observed variables as the Elbe sub-set (1234 records). Both sub-sets show largely
similar relations between individual variables and rloss. Still, the Danube sub-set
includes relatively many records with high rloss values, which are distributed along
the whole spectrum of above ground-level water depths (Figure 2.8). In comparison,
the Dresden subset consists of very few cases with high relative loss, which is partly
related to differing inundation processes. In the Elbe and Danube catchments, large
areas have been flooded as a consequence of dyke failures. Hence, the relationship
of model variables to high rloss values cannot be learned from this sub-set, and thus
is not represented well by the model. Therefore, this difference in the learning data
may explain the positive bias introduced by learning the model in the Danube and
transferring it to the Elbe and, vice versa, the pronounced negative bias introduced
by learning the model in Dresden and transferring it to the Danube region. Viewed
from a model performance perspective, the transfer applications show that a good
agreement between learning and transfer data sets (e.g., d2E) produces more precise
and reliable predictions than the transfer to regions with pronounced differences
(e.g., d2D and D2E). Still, from the Danube region with limited ranges of variable
values, it is possible to obtain relatively precise and accurate predictions of relative
building loss. This suggests that a broad variability of observed rloss values in the
learning data set is an important control for the predictive capability of the model
in other regions. In contrast, small samples with limited variability and only few
records with high rloss values struggle with predicting rloss in other regions. This
confirms insights that a model based on more heterogeneous data performs better
when transferred in space (Wagenaar et al., 2018).

Our findings also reveal that using numerical spatial measures derived from OSM
building geometries does not resolve all problems of model transfer. As not many
variables of building characteristics are available from OSM data, the spatial measures
calculated from building footprints serve as proxy variables for these unavailable
details. These proxies achieve comparable predictive performance as specific prop-
erty level data sets, as for instance collected via computer-aided telephone interview
surveys represented by the BMu model. This model uses a broad range of variables
to characterize vulnerability of residential buildings, including details of building
characteristics; socio-economic status of the household; and flood warning, precau-
tion and previous flood experience (cf. Table 2.1). Still, this more comprehensive
information does not result in a clearly better model predictive performance in trans-
fer applications. Additional improvements can be expected from including local
expert knowledge about inundation duration, flood experience and return period
of the event into the modelling process (Sairam et al., 2019b). Flood-event-related
variables including flood type appear to be important information for estimating the
degree of building loss because they describe differences in the damaging processes
(Vogel et al., 2018). Other data sources have been used to enrich empirical datasets
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Figure 2.8: Scatter plots of numerical spatial measures and relative loss in regional sub-
samples (Danube, Dresden, Elbe)

for learning flood loss models. This includes for instance information about building
age and floor area for living from cadastral data (Wagenaar et al., 2017), number of
storeys, building type, building structure, finishing level and conservation status
from census data (Amadio et al., 2019). However, using these data did not result in
a clear improvement in spatial model transfer. Using variables derived from OSM
data increases the flexibility of the models to be applied in other regions because
the accessibility and availability of OSM data reduces the effort of data collection,
simplifies the preparation of input variables and ensures consistency of input data.
The latter point is an important advantage because achieving consistency of input
data has been stressed to cause large efforts in model transfers (Jongman et al., 2012a;
Molinari et al., 2020). The suggested RF models are based on an ensemble approach
and thus provide a view to the predictive uncertainty of the model outputs. We have
shown this to be a valuable detail in assessing the reliability of model predictions
in spatial transfers. In cases where model performance cannot be tested with local
empirical evidence, using model ensembles has been shown to provide more skilful
loss estimates (Figueiredo et al., 2018).

2.5 Conclusions

The transfer of flood vulnerability models to regions other than those for which they
have been developed for often comes with reduced predictive performance. In this
study we investigated the suitability of numerical spatial measures calculated for
residential building footprints, which are accessible from OpenStreetMap, to predict
flood damage. Further, we tested potential benefits from using this widely available
and consistent input data source for the transfer of vulnerability models across
regions. We develop a new data set based on OpenStreetMap data, which comprises
variables representing building footprint dimensions and shape complexity, and we
devise novel flood vulnerability models for residential buildings.
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The geometric characteristics of building footprints serve as proxy variables for build-
ing resistance to flood impacts and prove useful for flood loss estimation. These
model input variables are easily extracted by an automated process applicable to
every type of building polygon. Hence, the models can be applied to areas where
information about the footprint geometry of residential buildings is available. Also,
other data sources, e.g., cadastral data or data derived from remote sensing, can be
used besides the OpenStreetMap data source. While the variables derived from build-
ing footprints ensure consistency and support transferability of models, the models
remain context specific and should only be transferred to regions with comparable
building geometric features as the learning data set.

The vulnerability models have been validated using empirical data of relative loss
to residential buildings. Further, a benchmark comparison of the models has been
conducted in spatial-transfer applications. The models give comparable performance
to alternative multi-variable models, which use comprehensive and detailed infor-
mation about preparedness, socio-economic status and other aspects of building
vulnerability. In comparison to a model which uses only water depth as a predictor,
they reduce model prediction errors (MAE by 20 % and MSE by 25 %) and increase
the reliability of model predictions by a factor of 1.4.

OpenStreetMap is a highly popular and evolving data source with constantly in-
creasing completeness and up-to-date data. In the future, the attributes of residential
buildings are expected to provide additional details which are of interest for the
characterization of building resistance to flooding. This includes for instance infor-
mation about the building type, roof type, number of floors and building material
and opens up further possibilities to refine the variables used for vulnerability mod-
elling. These data could be further amended with other open-data sources, including
socio-economic statistical data. In view of a large variability of flood loss on the
individual-building level, vulnerability modelling for individual buildings remains
challenging and is subject to large uncertainty. Advances in the understanding of
damage processes and the improvement of flood vulnerability modelling hence
require an improved and extended monitoring of flood losses.
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Chapter 3

A Consistent Approach for
Probabilistic Residential Flood Loss
Modelling in Europe

Abstract
In view of globally increasing flood losses, a significantly improved and more effi-
cient flood risk management and adaptation policy are needed. One prerequisite
is reliable risk assessments on the continental scale. Flood loss modelling and risk
assessments for Europe are until now based on regional approaches using deter-
ministic depth-damage functions. Uncertainties associated with the risk estimation
are hardly known. To reduce these shortcomings, we present a novel, consistent
approach for probabilistic flood loss modelling for Europe, based on the upscaling
of the Bayesian Network Flood Loss Estimation MOdel for the private sector, BN-
FLEMOps. The model is applied on the meso-scale in the whole of Europe and can
be adapted to regional situations. BN-FLEMOps is validated in three case studies
in Italy, Austria, and Germany. The officially reported loss figures of the past flood
events are within the 95 % quantile range of the probabilistic loss estimation, for all
three case studies. In the Italian, Austrian, and German case studies, the median
loss estimate shows an overestimation by 28 % (2.1 million €) and 305 % (5.8 million
€) and an underestimation by 43 % (104 million €), respectively. In two of the three
case studies, the performance of the model improved, when updated with empirical
damage data from the area of interest. This approach represents a step forward in
European wide flood risk modelling, since it delivers consistent flood loss estimates
and inherently provides uncertainty information. Further validation and tests with
respect to adapting the model to different European regions are recommended.
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3.1 Introduction

Floods are a global hazard with high socio-economic impacts. In Europe, floods
caused about 1,000 fatalities and 52 billion € overall losses between 1998 and 2009
(European Environment Agency, 2010). The flood in central Europe in 2002 caused
the largest economic losses, with over 20 billion € (European Environment Agency,
2010). Continuous effort is necessary to further reduce flood risks. The basis of
efficient flood risk management is a reliable risk assessment on various spatial scales
(Merz et al., 2010a; de Moel et al., 2015). Continental flood risk analyses are important
for the (re)insurance industry to assess accumulation risk and manage their risk
portfolios, the financial sector to rate creditworthiness for investments (Kron, 2005),
and for multinational companies to identify possible risks in their supply chains.
Furthermore, European wide flood risk assessments are essential for governments
to support climate change adaptation policies (van Renssen, 2013) and to manage
the European Union solidarity fund (Hochrainer et al., 2010). The European Flood
Directive (European Union, 2007) requests the European Union member states to
provide risk management plans for areas with potentially significant flood risk.
Decisions between alternative risk management options should be taken based on
of flood risk analyses which are integrated with decision-support frameworks like
cost-benefit analysis, multicriteria analysis, or robust decision-making (Kunreuther
et al., 2013). Risk analyses combine flood hazard modelling with loss modelling and
provide quantitative estimates of expected flood losses in monetary terms.Current
flood loss assessments at European scale have shortcomings because they are based
on heterogeneous, deterministic depth-damage functions for the individual countries
(Jongman et al., 2014; Alfieri et al., 2015a; Alfieri et al., 2016b; Dottori et al., 2017).
Deterministic, depth-damage functions, which use only the water depth to estimate
loss, are not able to adequately describe complex damage processes (Meyer et al.,
2013; Gerl et al., 2016), so that associated uncertainties might be high but are unknown
due to a lack of validation and missing uncertainty quantification. Differences in
vulnerability between countries, for example, due to differences in building stock,
are considered via different depth-damage functions, which leads to an inconsistent,
fragmented loss assessment approach.

Depth-damage functions estimate the loss from the type or use of the element at risk
(e.g., residential building) and the inundation depth (Smith, 1994; Wind et al., 1999).
They are associated with high uncertainties, since flood damage processes depend on
many more factors besides water depth (Merz et al., 2004; Merz et al., 2013). Several
studies identified additional loss determining variables like duration of inundation,
sediment concentration, contamination of floodwater, flood experience, availability,
and content of flood warning, precautionary measures, and the quality of external
response in a flood situation (e.g., Smith, 1994; Penning-Rowsell and Green, 2000;
Thieken et al., 2005; Kreibich and Thieken, 2009; Elmer et al., 2010; Hudson et al., 2014;
Vogel et al., 2018). Particularly, resistance factors, such as the level of precautionary
measures, are rarely taken into account by current loss models but are considered a
precondition for the evaluation and development of effective risk mitigation strategies
(Kreibich et al., 2015). Some multi-variable models have been developed, for example
for Japan by Zhai et al. (2005), for the UK by Penning-Rowsell et al. (2005), and
for Germany (Elmer et al., 2010; Kreibich et al., 2010). Studies have shown that
the application of multi-variable models that take several loss influencing factors
into account are better able to describe complex damage processes and improve
the reliability of flood loss modelling (Apel et al., 2009; Merz et al., 2013; Dottori



3.1. Introduction 37

et al., 2016). Loss modelling is subject to considerable uncertainty (de Moel & Aerts,
2011), which results from various sources, including the incomplete knowledge and
representation as well as the stochastic nature of the damage processes. It is, therefore,
crucial to quantify uncertainties in flood loss estimates and hereby support reliable
risk assessment as well as informed and robust decision-making (Pappenberger &
Beven, 2006; de Brito & Evers, 2016).

Recent studies developed ensemble approaches to provide uncertainty information
for flood loss modelling (Hasanzadeh Nafari et al., 2016a; Wagenaar et al., 2017;
Figueiredo et al., 2018). Merz et al. (2013), Kreibich et al. (2017b) and Schröter et al.
(2018) demonstrated that tree-based model ensembles, such as Bagging Decision
Trees or Random Forests, are suitable for flood loss modelling on the microscale (e.g.,
individual buildings) and the meso-scale (e.g., land use units), as they are able to cap-
ture non-linear and non-monotonous dependencies between predictor and response
variables, and they take interactions between the predictors into account. Bayesian
networks were used to develop probabilistic, multi-variable flood loss models (Vogel
et al., 2013; Schröter et al., 2014; Wagenaar et al., 2018; Sairam et al., 2019a) for estimat-
ing flood loss of residential buildings on the microscale. Ensemble and probabilistic
approaches inherently provide quantitative information on uncertainty associated
with the variability of input data and model structure. Capturing and providing
quantifications of the uncertainty in flood loss estimations is crucial for reliable risk
assessment as well as informed and robust decision-making (Pappenberger & Beven,
2006). Two main distinct approaches exist to develop flood loss models (Merz et al.,
2010b): empirical approaches which use loss data from flood events (e.g., HOWAS21
the German flood damage database; Kreibich et al., 2017c) and synthetic approaches
which use loss estimates or functions collected by building experts (e.g., the Multi
Coloured Manual for the UK; Penning-Rowsell et al., 2005; Penning-Rowsell et al.,
2018). Loss models can be based on empirical loss data surveyed on the one hand
by science (e.g., Schröter et al., 2014; Sairam et al., 2019a) and on the other hand by
governmental agencies (e.g., Merz et al., 2004; Hasanzadeh Nafari et al., 2016b) and
insurance companies (e.g., Spekkers et al., 2015; Cortès et al., 2018) in the frameworks
of loss compensation.

Spatial scales are an important aspect of loss modelling (Apel et al., 2009; de Moel
et al., 2015). Microscale models calculate the loss for single objects, for example,
residential buildings, while meso-scale models estimate loss for aggregated land use
units. On continental scale, loss is usually modelled on the basis of land use units.
Commonly, a bottom-up approach is used for model development, which starts with
a detailed analysis and modelling of losses to individual buildings (microscale) and
develops an upscaling procedure for application based on land use units (Kreibich
et al., 2010; Kreibich et al., 2016). That is, the structure of the microscale model is
preserved, but for the input variables suitable proxy data, which are available area-
wide, have to be acquired. For multi-variable models, this is particularly challenging,
since the use of proxies for the diverse input variables may introduce additional
uncertainty (Kreibich et al., 2017b).

The lack of flood loss data and models in many regions requires the transfer of models
to contexts for which they had not been developed. This is often done with insufficient
justification and without reviewing the model suitability so that models usually show
decreased predictive capability under these new circumstances (Cammerer et al.,
2013; Schröter et al., 2014). This results in a patchwork of approaches with low
comparability and consistency, also in respect to model validation (Jongman et al.,
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2012b). Previous studies on continental and global flood loss estimation utilized
deterministic, country-specific, stage damage curves and a more heterogeneous
database (Huizinga, 2007; Alfieri et al., 2015a; Huizinga et al., 2017). We propose an
advanced approach for a consistent flood risk assessment on the continental scale and
to overcome the current challenges (uncertainty quantification, spatial transferability,
scale transfer), we suggest a probabilistic, multi-variable model based on coherent
data sources across Europe, which is adaptable to different regional situations, via
model updating with local empirical data.

The objective of this study is to develop a consistent approach for probabilistic flood
loss modelling for residential buildings in Europe, which is based on the upscaling
of the microscale multi-variable flood loss model Bayesian Network - Flood Loss
Estimation MOdel for the private sector (BN-FLEMOps) presented in Wagenaar et al.
(2018). That is, the structure of the microscale BN-FLEMOps model is preserved, and
European-wide proxy data are acquired and tested for the meso-scale application
of the model. The approach is applied in the whole of Europe and validated using
official loss figures of past flood events in three case study areas of varying spatial
scale in Germany, Italy, and Austria. As a second objective, the possibility of adapting
the loss model to different regions in Europe via updating the model with local
empirical data is tested in the three case studies. The paper is structured in two parts.
Section 3.2 contains the upscaling of the model BN-FLEMOps and the application
of the approach in the whole of Europe. Section 3.3 contains the validation and
adaptation test in the three case study areas. Both sections start with the descriptions
of methods and data, followed by the presentation and discussion of the results,
respectively.

3.2 Consistent Approach for Flood Loss modelling in Eu-
rope

We start this section with an introduction to the BN-FLEMOps which presents the
basis and starting point of the European loss modelling approach (subsection 3.2.1).
Next, the method and data for the upscaling of the model from microscale to meso-
scale and the calculation of residential building loss on the meso-scale in Europe is
explained (subsection 3.2.2). Section 3.2.3 contains the results and discussion of the
model upscaling and the application of the consistent approach for probabilistic flood
loss modelling for residential buildings in Europe.

3.2.1 The Microscale BN-FLEMOps

The BN-FLEMOps (see Figure 3.1) has been developed for flood loss estimation on
the level of individual residential buildings, that is, microscale applications, and
was first presented by Wagenaar et al. (2018). It estimates relative building loss of
residential buildings, that is, the relation between the absolute building loss and
the replacement value of the building. Building loss includes all costs (e.g., costs of
wages and material) that are associated with repairing the damage to the building
structure caused by flooding. In this study, this model is further developed to be
applicable on the meso-scale across Europe, preserving the structure of the Bayesian
network (Figure 3.1) and using consistent proxy data sets. A Bayesian network
is represented by a Directed Acyclic Graph (DAG) which consists of nodes and
arcs. The single variables in the network are represented by nodes, and the direct
dependencies between variables are represented by arcs between these nodes. The
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node at the tail of an arrow is called the parent node, and the node at the head of an
arrow is called the child node (Lauritzen, 1996; Fenton & Neil, 2013). As an example
from the structure of BN-FLEMOps (Figure 3.1): The variable inundation duration
(d) is the child node with the variable return period (rp) as the parent node. The
relation between these two variables reads as duration depends on return period.
Wagenaar et al. (2018) described the derivation of the Bayesian network structure
using a combined data and expert-driven approach. The resulting DAG with a given
direction of arcs does not necessarily present a causal relationship Vogel et al. (2018).
For the calculation of relative building loss (rbloss), it is irrelevant in which direction
the arcs are pointing.

Figure 3.1: Model structure with the variables of BN-FLEMOps (adapted from Wagenaar
et al. (2018)) rbloss = relative building loss; wd = water depth; rp = return period;
d = inundation duration; pre = precautionary measures; fe = flood experience; ba
= footprint area of the building; bt = building type). The highlighted node “rbloss”
indicates the target variable relative building loss. The dark grey nodes represent
the variables available for meso-scale applications in Europe; see subsection 3.2.2

Inference from the Bayesian network can be made in any direction and for any
variable included (Fenton & Neil, 2013). As the DAG represents the conditional
(in)dependency structure of the variables, this translates into a conditional probability
for duration given the return period, formalized as P(d|rp), where P denotes the
probability. Indirect dependencies between variables are shown by the sequence
of arcs between nodes. The DAG represents the joint probability of all variables in
the Bayesian network respecting these dependencies and independencies. The joint
probability for the variables of the BN-FLEMOps nodes is given according to the
DAG as Equation 3.1.

P(rbloss | bt, ba, f e, d, rp, wd, pre) = P( f e)× P(bt)× P(rp)× P(ba | bt)
×P(d | rp)× P(rbloss | rp, pre)× P(wd | rbloss)× P(pre | f e, b)

(3.1)

BN-FLEMOps uses discretized variables and the joint probability distributions are
represented as conditional probability tables or Node Probability Table (NPT). These
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tables contain the conditional probabilities for each parent node and their associated
child node(s). The underlying empirical microscale damage database contained
information of damaged residential buildings, which were collected in surveys via
computer-aided telephone interviews after the floods in 2002, 2005, 2006, 2010, 2011,
and 2013 in Germany. A total of 1522 data sets with complete observations of all model
variables were available. The conditional probability tables of the Bayesian network
were derived from these 1522 data sets using maximum likelihood estimation. The
variables were discretized on an equal frequency basis with water depth (wd) and
relative building loss (rbloss) in 10 classes, return period and inundation duration
in five classes and footprint area of the building in three classes (Table 3.1). The
number of classes was set based on expert judgement and data availability, aiming
at a compromise between a stable network, a detailed representation of variables
and their presumed importance. The other variables, that is, building type bt, flood
experience, and precautionary measures, are discrete by definition (Wagenaar et al.,
2018).

Table 3.1: Overview of the Variables of BN-FLEMOps

Variable Description Unite Discrete
classes

Variable
type

wd Water depth relative to ground level Meters 10 Continuous
d Inundation duration at the affected building Hours 5 Continuous
rp Return period — calculated for peak flood discharges in sub-

catchments with extreme value statistics on the basis of annual
maximum series of discharge for gauges in the flood-affected
areas (see Elmer et al., 2010)

Years 5 Continuous

fe Flood experience — number of floods experienced before the
respective damaging flood event

Score 6 Ordinal

bt Building type: 1 = single-family houses, 2 = (semi)detached
houses, 3 = multifamily houses

Index 3 Nominal

ba Footprint area of residential buildings Square
meter 3 Continuous

pre Precautionary measures — indicator (no, good, very good
precaution) considering the number and type of private pre-
cautionary measures undertaken

Score 3 Ordinal

rbloss Relative building loss of residential buildings — relation be-
tween the absolute building loss and the replacement value of
the building as at event year

Relative 10 Continuous

Figure 3.1 and Equation 3.1 for the joint probability show that the occurrence of
the variable of interest, relative building loss, is directly conditioned on the return
period, and precautionary measures and that water depth is conditioned on relative
building loss. The latter does not indicate a causal relationship since it is rather
the other way around, with higher water depth causing higher relative building
losses. However, since the directions are not of interest for the calculation of relative
building loss (Fenton & Neil, 2013), we kept the structure as reported in Wagenaar
et al. (2018) derived from the data-driven approach. The variables water depth,
return period, and precaution constitute the so-called Markov blanket of relative
building loss. This is of special interest because the availability of observations for the
variables within the Markov blanket of relative building loss makes it conditionally
independent of all other variables in the DAG (Pearl, 1988; Murphy, 2012; Fenton &
Neil, 2013). For example, computing the relative building loss for a given combination
of water depth, return period, inundation duration and precautionary measures, the
value of inundation duration is not of interest because having observations for the
variable return period, relative building loss is conditionally independent of duration.
Hence, if all variables of the Markov blanket of relative building loss are available,
other variables are no longer considered in the estimation of rbloss. On the other
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hand, if data are missing for a node of the Markov blanket, the model can still be
applied, but the uncertainty of the model results will increase. Information about
precautionary measures are missing for the meso-scale application of the model and
is treated as an extra unknown variable (together with relative building loss); thus,
the Bayesian network calculates a conditional probability for the missing variable
precaution according to the NPTs conditioned on flood experience (fe) and building
area (ba).

3.2.2 Method and Data for Model Upscaling and Application at the meso-
scale in Europe

3.2.2.1 Input Data Available for the European Domain

In its original application at the microscale, all variables used to estimate the flood loss
with BN-FLEMOps were derived from the empirical microscale damage database
(Wagenaar et al., 2018). For the meso-scale application in Europe, such detailed
information are not available. Instead, suitable proxy data sources have to be used
(Figure 3.2). The compilation and preparation of proxy data focuses on the Markov-
blanket variables of relative building loss and besides has to consider the availability
of data sources. Hence, only those variables marked in dark grey in Figure 3.1 (wd, rp,
fe and ba) are included in the meso-scale model. Accordingly, data sources are needed
to quantify the flood intensity and the resistance characteristics of the buildings.

Figure 3.2: Comparison between the variables and data source for the microscale and meso-
scale application of BN-FLEMOps.

Flood impact intensity is described by water depth, return period, and inundation
duration. These variables are commonly estimated by hydrodynamic models, which
are either used to calculate flood inundation scenarios for various return periods
or to model inundation areas of real flood events. For the application of our loss
modelling approach on the European domain, we used the inundation scenario for
a continent-wide flood with 100 years return period provided by the Joint Research
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Center (Alfieri et al., 2014). The Joint Research Center pan-European flood maps were
computed using a model chain that includes hydrological modelling, derivation of
flood hydrographs, and hydrodynamic modelling. The maps have a 100 m resolution
of water-depth and cover catchments with areas larger than 500 km2. Flood protection
infrastructure such as dikes, embankments or flood walls, etc. are not considered in
this hazard scenario.

The presence of precautionary measures is very heterogeneous within and across
regions, and to our knowledge, no database or register of these measures exists for
Europe. For this reason, the parent nodes flood experience and building area are used
to infer the state (or class) of precautionary measures within the Bayesian network
model.

The variables building area and flood experience describe the resistance characteristics
of the residential buildings. OpenStreetMap (OSM, 2018) was identified as a suitable
source to provide information on the building footprint area. OSM is a geographic
database with worldwide coverage. It relies on a community of contributors to
constantly add information and assure regular updates to enhance accuracy and
completeness. The OSM project provides freely available open data and is nowadays
considered a reliable source for most civil and common use cases (Barrington-Leigh
& Millard-Ball, 2017). To obtain the building footprint area of residential buildings,
the database was filtered to exclude objects with non-residential usage. In previous
studies (Thieken et al., 2005; Merz et al., 2013; Schröter et al., 2014), flood experience
is used as an indicator which is based on different factors such as the number of
experienced floods, the associated losses with the latest flood experienced and the
time period since the last flood event. These details are available from the empirical
microscale damage database and are not available on the same level of detail in
Europe. Thus, the proxy data for the variable flood experience had to be simplified for
the meso-scale application. Based on the assumption that the more floods individuals
have experienced during the last years, the greater is their flood experience, the
meso-scale variable for fe is represented by the number of floods that occurred during
the last 25 years in the particular region. To derive the number of floods people
were exposed to at their home location, we use the database of the Dartmouth Flood
Observatory (DFO) (Brakenridge, 2018). The DFO catalogue is an archive of historic
flood events starting in the year 1985. This archive comprises maps of flood-affected
areas with a set of additional characteristics like severity, start and end date, and
the cause for flooding. One drawback of this data source is that the spatial extent of
flood-affected areas is very coarse, as it often consists of an outline of the affected
area instead of a detailed flood footprint. Nevertheless, to our knowledge, this data
set is the only one that provides a comprehensive record of flood events in space
and time across Europe. With these European wide data sets for the variables water
depth, return period, building area and flood experience, relative building loss can
be estimated for residential buildings using the BN-FLEMOps model. To further
obtain absolute building losses, replacement cost values of residential buildings are
needed.

The monetary values of the exposed residential buildings are taken from a European
asset map developed for this study. This asset map was created by adapting the
approach by Huizinga et al. (2017) who found a relationship between construction
cost (material and labour cost) and Gross Domestic Product (GDP) per capita by
comparing national socio-economic parameters with construction cost surveys from
multinational construction companies. The replacement values of buildings for the
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European asset map are calculated using the relation of construction cost and GDP
per capita on the NUTS-3 level to account for regional differences. To develop the
European asset map for this study, we used the GDP per capita information for all
NUTS-3 regions available from Eurostat (2018) for the year 2013. The GDP per capita
values can be adjusted to different flood event years by the GDP per capita growth
rate of the respective region affected, such as a subbasin or municipality. The resulting
asset values for residential buildings reflect tangible monetary assets and are based
on the concept of reconstruction cost. The reconstruction costs of residential buildings
are translated to unit area values in (€/m2) for NUTS-3 regions by disaggregation on
the CORINE Land Cover (CLC) 2012 (European Environment Agency, 2016) classes:
continuous urban fabric (111) and discontinuous urban fabric (112) using asymmetric
mapping following Huizinga et al. (2017). The European asset map created by this
approach contains distinct unit area values (€/m2) for residential buildings in NUTS-3
regions and is available for all European countries covered by CLC data.

3.2.2.2 meso-scale Loss Calculation

Loss estimation includes three steps: (i) data preprocessing, (ii) computation of
relative loss estimates, and (iii) the conversion to monetary values. Data Preprocessing
and Spatial Intersection. Data preprocessing is a two-step procedure consisting of
the spatial intersection of data sets and joining features to resulting spatial units.
Figure 3.3 illustrates the individual steps in a flow chart of input data preparation.
First, the watershed subbasins holding the return period value (rp), the DFO data set
providing the value for flood experience (fe), the administrative boundaries (required
for the second step), the CLC classes holding the unit area values (assets) and the
polygonized water depth raster providing the water depth values (wd) are spatially
intersected, see second row of Figure 3.3. In the intersection process, the data sets are
handled as polygons to ensure that no spatial details are lost—that means that even
cells of the water depth raster might be subdivided by one or more other input data
sets (see Figure 3.3).

Figure 3.3: Flow chart of the input data preparation for the meso-scale loss calculation in
BN-FLEMOps. 1 = spatial intersections: Shows the stepwise process of the spatial
intersection of model input data. In subsequent processing steps, the data sets
are overlaid and intersected to combine their information in one data layer. The
response units are the areas created by the intersection and within these areas; all
variable values are constant. 2 = feature join: Displays the magnified response
units and the join of building area values based on administrative boundaries.
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The result of the intersection is a set of response units which are spatial polygons
holding single values for water depth, return period, flood experience as input
variables for the BN-FLEMOps model and in addition the unit area value of residential
buildings. The code of the administrative regions is not directly used as a model
input, but is required for joining features to the response unit within the second step
of the data preprocessing. Based on the OSM data set, a distribution of building
footprint area is available for each administrative region (NUTS-3). For each response
unit, we sample one value of building area from the distribution of the corresponding
NUTS-3 region. A response unit is exemplary, shown on the bottom right of Figure 3.3
as the dotted polygon area. In this example, the cells of the water mask (blue lines) are
only separated by the administrative boundary (black dashed line) and the asset map
(red line) and hold the same values for the other variables (rp, fe). As a result, each
response unit holds the values for the input variables of the BN-FLEMOps model to
estimate relative building loss per response unit.

Computation of Relative Loss Estimates. Applying BN-FLEMOps means inferring from
the Bayesian network following the joint probability distribution (Equation 3.1). The
joint probability distribution is depicted by the NPTs which were generated following
the dependency structure of the Bayesian network and the empirical loss data. The
conditional probability distribution of our target variable rbloss can therefore be
queried from the NPTs given the available input variables. The application of the
Bayesian network results in a probability distribution of relative building loss for
each response unit. Summary statistics are reported as model results. The book
“Bayesian networks—With examples in R” by Scutari and Denis (2014) provides a
comprehensive introduction to the application of discrete Bayesian networks.

Conversion to Monetary Values. The final processing step is the calculation of the
absolute monetary loss by multiplying the distribution of loss ratios with the unit
area value for each response unit and the surface area of the response unit. The
result is a distribution of absolute loss in euro per response unit. Absolute monetary
loss values for response units can be spatially aggregated, for instance within their
respective NUTS-3 regions or river basins.

3.2.3 Results and Discussion of Model Upscaling and Application at Euro-
pean Scale

3.2.3.1 Model Upscaling—Suitability Test of Proxy Variables

To assess the suitability of this proxy data source, we compare the distribution of
building footprint areas from OSM and the empirical microscale damage data (msdd)
in 25 German NUTS-3 regions where 30 or more observations are available to have a
reasonable number of data points for comparison. Buildings larger than 500 m2 were
excluded from the building data set, to avoid not correctly confined buildings (block
of houses not separated into the individual buildings) and wrongly assigned objects
(like large scale industry buildings). The threshold to exclude buildings lager than
500 m2 from the OSM data set was derived by comparison with the empirical msdd
database.

The median building footprint area in the empirical microscale damage database
aggregated for the 25 NUTS-3 regions is 154 m2 in comparison to 136 m2 in the OSM
geometries. This divergence of building areas between the empirical microscale
damage data and the proxy data from OSM is also present at a disaggregated NUTS-3
level. Figure 3.4 compares the distribution of building area values from both data
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sources in 25 NUTS-3 regions in Germany. The OSM data set often displays slightly
lower mean values and narrower interquartile ranges. The building area distribu-
tions of the empirical microscale damage data differ considerably more between the
individual NUTS-3 regions in comparison to the more homogeneous building area
distributions of the OSM data. Even though these differences between empirical
microscale damage data and meso-scale proxy data from OSM exist, OSM seems to
provide suitable information about the variable building area for the application of
BN-FLEMOps on the meso-scale. Besides, it is currently the best pan-European data
set available to describe building footprint area, and it is continuously improved by
mapping efforts of OSM contributors and the integration of existing data sets.

Figure 3.4: Comparison of box plots of building area distributions (y-axis) forming empirical
microscale damage data (msdd) and meso-scale proxy data derived from OSM
data (x-axis) in 25 NUTS-3 regions in Germany (panels). The number of empirical
data points in the respective NUTS-3 region is given in blue.

The distribution of the footprint area of residential buildings in the NUTS-3 region
in Europe is sampled to populate the building area variable in each response unit.
Higher median building areas in peripheral regions like the west coast of Norway
may partly be attributed to low mapping coverage. Prominent landmark buildings
are more likely to be mapped first and are therefore dominant in regions with low
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mapping completeness. This may result in a higher median building area compared
to other European regions. France and the Netherlands, on the contrary, have a very
complete building map since official data sets such as cadastral data provided by
Direction Générale des Impôts and data from AND (https://geojunxion.com) were
integrated into the OSM database (Mooney & Minghini, 2017; OSM contributors,
2018). This more consistent representation of individual buildings may have con-
tributed to the relatively low mean building areas in France and the Netherlands. The
building area variable in the meso-scale application of BN-FLEMOps is sampled from
the distribution of building footprint areas per NUTS-3 region, while the median
value is solely used to present the European data set on the map.

European wide proxy data of the variable flood experience for the meso-scale applica-
tion of BN-FLEMOps is derived from the DFO catalogue. To test the suitability of this
proxy data to capture the state of flood experience and its variation across regions,
we compare the number of floods experienced during the last 25 years as reported
in the empirical microscale damage data to the flood occurrences according to the
DFO catalogue per NUTS-3 region. Assuming a minimum threshold of 30 or more
empirical data points per NUTS-3 region, we compared the aggregated data in 37
NUTS-3 regions in Germany (Figure 3.5).

Figure 3.5: Histogram of the mean values of the number of floods that have occurred ac-
cording to the empirical microscale damage data (msdd), meso-scale proxy data
derived from dfo in 37 German NUTS-3 regions, and dfo data with bias correction
factor minus 1. The black lines indicate the overall mean of the data sets (dfo =
dashed; dfo-corrected = dotted; msdd = solid).

The threshold of 30 empirical data points is a compromise between the availability
of a sufficiently large number of observations in a NUTS-3 region, and a sufficiently
large number of NUTS-3 regions so that comparisons are meaningful. Most people
have reported that they had been affected once or twice by floods before the event
they were asked about in the telephone surveys (Figure 3.5). The DFO archive counts

https://geojunxion.com
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two to three floods in the same areas on average. The reason for this mismatch may
be the coarse spatial resolution of the DFO data, which contains a significantly larger
area than what was impacted by the flood. To avoid an overestimation of flood
experience in the meso-scale application of BN-FLEMOps this offset between both
data sets is corrected by introducing a bias correction factor of minus one which
improves the agreement of the histograms of both data sets (Figure 3.5). Figure 3.6
shows the spatial footprints of all large historic floods registered in the DFO catalogue
that occurred in Europe in the time span from 1985 to 2015. In the model, the number
of historic floods is counted for each response unit and is used on the meso-scale to
describe flood experience in the model.

Figure 3.6: European map of historic flood events from the DFO catalogue for the period of
1985 to 2015. The red squares indicate the case study areas in Germany, Austria,
and Italy.

The European asset map (Figure 3.7) displays regional differences in unit area values
of residential buildings, giving the reconstruction costs. Metropolitan areas such
as London, Paris, Madrid, Rome, and Berlin are associated with higher unit values
than their surrounding areas. Scandinavian countries, Switzerland and the Benelux-
countries show overall high unit values of residential buildings, while eastern and
south-eastern European countries display lower unit area values of residential build-
ings. To use the asset map for the calculation of absolute losses on the meso-scale, the
building values need to be translated to the respective year of the analyses. This is
done via the relation between construction cost and GDP per capita, developed by
Huizinga et al. (2017) on construction cost data from 2010 and 2013. Uncertainties
associated with this translation of values might be higher for earlier or later years than
from 2010 to 2013, as then the GDP per capita might not have the same correlation
with the construction cost as was found for this time period. The spatial resolution
of the European asset map is determined by the accuracy and minimum mapping
distance of the CLC data set. Individual buildings in predominantly rural areas are
not always represented, and thus are not accounted for in the loss estimates.
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Figure 3.7: European asset map displaying the unit area values of residential buildings in
2013 in (€/m2) following reconstruction costs approach.

3.2.3.2 Flood Loss Assessment at European Scale

The results of the loss estimation for the 100-year European flood map are shown
in Figure 3.8 in terms of the median, the 20 % quantile (Q20) and the 80 % quantile
(Q80) loss based on the distribution of absolute monetary losses per NUTS-3 region
across Europe. For this flood scenario, the highest flood losses are expected in
the flood plains of major European rivers, such as the Rhine and Meuse, Danube,
Seine, Loire, and Po. Note that the flood scenario does not account for any flood
protection infrastructure in place. NUTS-3 regions in the Netherlands, France Austria,
Hungary, the Czech Republic, and Belgium would be most affected by a 100 years
flood scenario. Groot-Rijnmond (NL339) in the Netherlands would suffer the overall
highest losses with 2.6 billion € (Q20 = 1.1; Q80 = 7.7) loss to all residential buildings
in the region. Figure 3.8 depicts the accumulated flood loss for residential buildings
in NUTS-3 regions in Europe. Therefore, large NUTS regions such as in Sweden tend
to show high accumulated losses, whereas smaller regions in Germany have lower
accumulated losses. On a national level, Germany and France are estimated to have
the highest losses with 14.5 billion € (Q20 = 5.8; Q80 = 38.9) and 13.2 billion € (Q20
= 5.4; Q80 = 36.1) respectively. A data set of the flood loss distribution per NUTS-3
region in 10 % quantile steps and a detailed description is published in (Lüdtke et al.,
2019b). The total accumulated loss for residential buildings in Europe is estimated to
79.0 billion € (Q20 = 32.3; Q80 = 213.8) for the continent-wide 100 years flood hazard
map. A comparison with the aggregated direct flood losses estimated for 45 land
use classes in European countries by Alfieri et al. (2015a) showed that the losses
estimated by BN-FLEMOps were lower for most countries. This is a plausible result,
since BN-FLEMOps only considers residential buildings in the CORINE land use
classes for urban fabric.
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Figure 3.8: Maps of the cumulated flood loss of residential buildings for NUTS-3 regions in
million €. Gray NUTS-3 regions were not affected by the 100-year flood scenario
or were not calculated due to lack of input data. Map of 20 % quantile (left top),
map of 80 % quantile (left bottom), and map of 50 % quantile (right).

3.3 Model Validation and Adaptation Test in Three Case Study
Areas

Subsection 3.3.1 presents the three case studies including the available data with
respect to the inundation area, validation data and data for the adaptation test.
Subsection 3.3.2 describes the method for updating the loss model to adapt it to local
settings. The following sections present the results and discussion of the validation of
the general BN-FLEMOps model (subsection 3.3.3), and the result of the adaptation
test, that is, application of the loss model with two update steps in the three case
study areas (subsection 3.3.4).

3.3.1 Case Study Descriptions

The BN-FLEMOps model is validated on the meso-scale in three different case studies.
We use the European proxy data for building area and flood experience as inputs to
the model. Flood intensity information including water depth and return period are
available from local data sets. Loss estimates are compared with official loss figures
from past flood events.
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3.3.1.1 Case Study Caldogno, Italy

The Veneto Region (Italy) was affected by persistent rain between 31 October and
2 November 2010, particularly in pre-Alpine and foothill areas. In some locations,
accumulated rainfall exceeded 500 mm in 72 one of the most intense events of the
last 50 years (Regione del Veneto, 2011a). Various rivers overflowed, flooding an area
of around 140 km2 causing three fatalities, and 3,500 evacuees. Flood losses among
residential, commercial and public assets amounted to a total of 426 million €. In
Caldogno, a municipality in province of Vicenza, losses to those sectors reached 25.7
million € (Regione del Veneto, 2011b).

Official Loss Figure for Validation: Losses to residential buildings amounted to 7.55
million € in the city Caldogno, which is used for validation in this study. This
official loss figure is provided by the municipality of Caldogno and corresponds to
restoration costs that were collected and verified in the scope of the loss compensation
process after the event (Scorzini & Frank, 2017).

Flood Map: Water depth and flow velocity maps were estimated using a coupled
1-D/2-D model of the area between the municipalities of Caldogno and Vicenza.
These flood intensity metrics were originally computed on 5 m x 5 m spatial grid
(Scorzini & Frank, 2017; Figueiredo et al., 2018) and have here been resampled 10 m x
10 m.

Empirical Microscale Loss Data for Model Updating: For 295 damaged residential build-
ings, building characteristics at the microscale were obtained through surveys. These
characteristics include building type, structural type, number of floors, quality, and
year of construction. Building areas were derived from the region of Veneto’s cadas-
tral map, and building values were estimated from data provided by the Chamber of
Commerce of Vicenza (Figueiredo et al., 2018). Data about the inundation duration
and water depth at the building were taken from the flood map described above.
Thus, in this case study, the flood intensity information used for model updating is
the same as for the model application.

3.3.1.2 Case Study Lech, Austria

The municipalities in the mountain basin of Reutte (catchment size of 1,000 km) in
the Lech catchment (Austria) were affected by floods several times in the recent past,
with severe flooding in 1999 and 2005 (Cammerer et al., 2013). The flood in 2005
caused direct loss of about 410 million € (with 61 % of loss in the private sector) in the
entire federal state of Tyrol (Amt der Tiroler Landesregierung, 2006). In the case study
area, the flood in August 2005 had a peak discharge of 943 m3/s which corresponds
to an estimated return period of 330 years at the gauge Lechaschau. Particularly, the
municipalities of Pflach and Höfen were strongly affected, due to overtopping and
breaches of embankments. The flood type can be regarded as an interaction of static
and dynamic flooding in the case study area (Cammerer et al., 2013).

Official loss figure for validation: Estimation of structural loss to residential buildings in
the study area is 1.9 million €, as provided by Cammerer et al. (2013). This figure is
based on official data but is associated with uncertainty, because loss reports did not
differentiate well loss to building structure or contents. The study by Cammerer et al.
(2013) made assumption to separate the aggregated loss figures, but the true values
are not reported.
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Flood map: Maximum water depths of the flood event in August 2005 were simulated
with hydrodynamic 2-D model “Hydro_AS-2D”. Two dyke failures, which had
occurred in the community of Pflach, were considered in the hydraulic simulation.
While the simulation and validation were performed on a 1 m x 1 m grid, the used
water depths were aggregated on a cell size of 10 m (Cammerer et al., 2013).

Empirical microscale loss data for model updating: To update the Bayesian Network
model, local information of 22 households affected during the 2005 flood are available.
In the Austrian federal states of Tyrol and Vorarlberg, 218 interviews with private
households were carried out in the aftermath of the flood event in 2005 in order to
compare different risk transfer systems of three Alpine regions (Raschky & Schwindt,
2009). However, only 72 of all surveyed households were actually affected by the
flood in 2005, and only 22 households provided enough information to estimate
the relative loss. Additionally, the data contain information about the inundation
depth and duration, as well as the building area, building type, flood experience,
and precautionary measures. Thus, in this case study, the flood intensity information
used for model updating differs from the one used for model application.

3.3.1.3 Case Study Mulde, Germany

The Mulde catchment (7,400 km2) in Saxony (Germany) is prone to recurrent flood
hazards. During the last years it has been hit by severe floods in August 2002 and
June 2013 (Engel, 2004; Conradt et al., 2012; Schröter et al., 2015). The flood in August
2002 was triggered by extreme precipitation in the headwater areas of the catchment.
Record-breaking rainfall amounts of 312 mm were recorded within 24 hours at the
station Zinnwald-Georgenfeld of the German Weather Service in the Ore Mountains
(Ulbrich et al., 2003). As a result, extreme flash floods hit the upstream parts of the
Mulde and its tributaries. The flood wave caused numerous dike breaches in the
lower reach of the Mulde River, with 19 municipalities affected. The magnitude of the
flood peak discharge was in the order of a 500 year flood, estimated using methods
of extreme value statistics based on annual maximum series of mean daily discharge
records from the gauge Bad Dueben (Elmer et al., 2010).

Official loss figure for validation: Losses to residential buildings totalled 240.6 million €
(Saxon Relief Bank, 2005), for further details refer to (Kreibich et al., 2017b).

Flood map: For this event, an inundation depth map was derived from hydronumeric
simulations (Apel et al., 2009) and hydraulic calculations (Grabbert, 2006). This map
gives information on maximum inundation depths on a spatial grid with a pixel size
of 10 m x 10 m.

Empirical microscale loss data for model updating: Local information from 74 households
are available from the post-event computer-aided telephone interview survey for
updating the Bayesian Network model (Thieken et al., 2017). The interview data set
includes information about the building area, building type, flood experience, and
precautionary measures. Also, the data about the inundation duration, and water
depth at the building to characterize the flood intensity are available from the survey.
Thus, in this case study, the flood information used for model updating differs from
the one used for model application.
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Table 3.2: Overview of Case Study Characteristics and Available Variables for Model Updat-
ing in the Case Studies

Case study characteristics Caldogno Lech Mulde

Reported loss to residential buildings used for validation (M €) 7.5 1.9 240
Number of empirical microscale observations available for updating 295 22 74
Inundated area (km2) 3.3 3.4 116.5
Event year 2010 2005 2005

Availability of variables in microscale observations

Water depth X X X
Duration X X X
Return period X X X
Building type X X X
Building area X X X
Flood experience X X X
Precaution X X X
Relative loss X X X

Note. The symbols indicate whether data were available (X) or unavailable (X)

3.3.2 Updating Method Using Local Data

As described in subsection 3.2.1, the NPTs of the BN-FLEMOps model were trained
based on empirical loss data from Germany. Bayesian networks offer the possibility
to consistently update the NPTs with additional data, and Wagenaar et al. (2018)
showed that such updating improves the spatial transferability of loss models to the
microscale. This was explained by the fact, that the additional use of local data better
enables the model to cover some effects of implicit assumptions about variables not
included in the loss models, like flow velocity (Wagenaar et al., 2018). Thus, we test
if the meso-scale application of the BN-FLEMOps model in geographical regions
with potentially different socio-economic, building and flood event characteristics
can be improved via an updating of the NPTs with empirical data from the target
regions. To assess the value of local data on the model performance, we use two
update steps with 750 and 1,500 additional observations from the case study regions
and compare it to the application of the general BN-FLEMOps model. Given, that
the data used to develop the NPTs of BN-FLEMOps consists of 1,522 observations,
the update steps correspond to 50 % and 100 % of added data from the case study,
respectively. That means, at the update step of 100 %, the added data from the case
study has as much weight to describe the damage processes as the German data used
to derive the model.

Sampling with replacement is applied to generate the required number of 750 and
1,500 data points in case study regions since in none of the areas enough empirical
data is available (Table 3.1, second row). We follow the same approach as for the
computation of loss ratios described in subsection 3.2.2, that is, the entire update and
validation process is repeated 5,000 times.

In case the empirical data from the case study is not complete, the NPTs of the
missing variables can not be updated. In this case, the NPTs of these missing variables
reproduce the joint probability distribution of the original model. This means that
knowledge about the conditional probabilities between the loss influencing variables
is transferred from the meso-scale model to the case study areas.
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3.3.3 Result and Discussion of the Validation in the Three Case Study
Areas

The results of the loss estimation with BN-FLEMOps on the meso-scale for the three
case studies are shown in Figure 3.9 in comparison with the official loss figures. The
thick solid line of the empirical cumulative density functions shows the median of
the 5,000 repetitions of flood loss estimation. The red vertical solid lines indicate
the officially reported loss for each case study. The meso-scale application of BN-
FLEMOps yields results that are in the same order of magnitude as the reported loss
values for all three case studies. Official loss figures are within the 90 % quantile
range of the probabilistic loss estimation. The loss estimation is however associated
with large uncertainty manifest in the interquartile range in Table 3.2. For the Mulde
case study, the median loss estimate shows an underestimation of about 104 million
€ (43 %). For the Caldogno and Lech case studies, we see an overestimation by the
BN-FLEMOps model by 2.1 million € (28 %) and 5.8 million € (305 %), respectively.
We observe that the uncertainty of the upper tails of loss distributions is larger than
for the lower tails, which is shown by the variability between the loss estimation
repetitions above the 75 % quantile (Figure 3.9). This uncertainty is explained by
multimodal marginal distributions for combinations of observations that lead to
high loss ratios. Those multimodal marginal distributions are indicated by groups
of deviating empirical cumulative density distributions model replications in the
(Figure 3.9). In addition, the model shows a strong sensitivity to the contribution
of the highest loss class. This can be attributed to the discretization of the variable
relative building loss. The highest loss class covers a very large range, from 0.274 to 1.
We use the median as the representative value for every class to compute the absolute
damage (assuming a uniform distribution within each class). The representative value
for the highest loss class is 0.637 whereas the representative value for the second-
highest loss class is 0.226, which is a difference of more than 40 percent relative
building loss. This effect stems from the discretization of the continuous variables
and is a known issue and subject to ongoing research.

Using the median of the 5,000 repetitions of the loss estimations (thick solid line in
Figure 3.9), the interquartile range (0.25 to 0.75) of the simulation covers the official
loss figure for the Mulde and Caldogno cases, but not for the Lech case study where
the overestimation is too high (Table 3.3). The underestimation of BN-FLEMOps in the
Mulde case study may partly be attributed to uncertainties in the temporal transfer of
the asset values to the year 2002 as discussed in subsection 3.2.3. The BN-FLEMOps
shows the poorest performance in the Lech case study and the best performance in
the Caldogno case study. The meso-scale loss estimation approach developed for the
whole of Europe seems to be less suitable for data-scarce applications and low-impact
events like the Lech case study, where damage to only 22 objects was reported.

Table 3.3: Comparison of Average Loss Estimate From BN-FLEMOps and Official Loss Infor-
mation

Case studies Median loss estimate + (IQR) in million € Official loss in million €

Caldogno (Italy) 9.6 (3.8; 18.8) 7.5
Lech (Austria) 7.7 (3.6; 13.3) 1.9
Mulde (Germany) 136.0 (89.0; 248.2) 240.0

Note. IQG = InterQuartile Range.

The loss estimates with the meso-scale application of BN-FLEMOps for the Lech case
study are high also in comparison with the results achieved by Cammerer et al. (2013).
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Figure 3.9: Empirical cumulative density function (ecdf) of the absolute residential building
loss for the three case studies. The thick solid lines represent the median ecdf,
while the grey lines represent the 1,000 model replications and red lines represent
the official loss figure.

They tested several international flood loss models in a spatial transfer study, which
resulted in a broad range of loss estimates from 0.842 million € (based on model
MURL, 2000) to 9.094 million € (based on model Hydrotec, 2002) when applied to
the same inundation area as used in this study. However, Cammerer et al. (2013)
concluded, that models based on neighbouring regions with similar building and
flood event characteristics yield fundamentally better results than models based on
loss data from spatially different regions and dissimilar flood events. Given this
hypothesis, they identified the most suitable models, estimating loss between 1.836
million and 2.854 million €.

For the 2010 flood in the Caldogno case study, the meso-scale application of BN-
FLEMOps achieves equally good results as previous studies. Scorzini and Frank
(2017) show a comprehensive overview of different model applications and flood loss
estimates for the city of Caldogno ranging from 5.96 million € (model based on Debo,
1982) to 13.49 million € (model based on Dutta et al., 2003).

The Mulde flood event was studied by Kreibich et al. (2017b), who developed a meso-
scale model that was applied and validated in the different municipalities affected by
the flood event. Their aggregated loss for all municipalities sums up to 238.6 million
€ and is thus very close to the reported loss of 240 million €. However, also this
study reported a high uncertainty in loss estimation with values between 44 million
and 400 million € and used a different data source for asset values (Kreibich et al.,
2017b).
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3.3.4 Result and Discussion of Model Adaptation Test

Previous studies have shown that spatial transfer of flood loss models may entail
a decline in model predictive performance and an increase in model uncertainty
(e.g., Cammerer et al., 2013; Schröter et al., 2014). Wagenaar et al. (2018) report that
BN-FLEMOps can be applied in regions different from its origin while maintaining
a stable performance. To further test the spatial transferability of the BN-FLEMOps
and compare performance on the microscale and meso-scale, the model is adapted
to the different case studies via updating of the NPTs with empirical microscale loss
data from each case study. Figure 3.10 shows the median and the 90 % quantile range
for the application of the meso-scale BN-FLEMOps model (0 data points used for
NPT update) and the two update steps (750 and 1,500 data points used for NPT
update). The officially reported loss is depicted as a red line. In the Caldogno and
Mulde case studies, the loss estimates improve with updating, which is reflected by
slightly decreasing the 90 % quantile ranges and an approximation of the median
loss estimate to the official loss figure. In the Caldogno case study, the median of
the simulated loss is 8.7 million € for the second updating step (1500 data points
added), which reduced the overestimation from 28 % to 16 %. For the Mulde case
study, the median simulated loss increased with the first and second update step to
161.5 million and 199.7 million €, respectively. That reduced the underestimation
from the initial 43 % to 33 % for the first update step and to 19 % for the second one.
The results for the Lech case study do not improve with updating since the estimation
for the simulated loss is even increasing with updating and thus the overestimation
is increasing.

Figure 3.10: Comparison of reported loss and estimated loss for the application of BN-
FLEMOps with update.

We attribute the failure of the updating process mainly to the very limited number
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of empirical loss data available in the Lech case study. With only 22 loss data points
as the base population, the information content about local damage processes is
rather limited. Further tests are necessary to identify the boundary conditions for a
successful model. The performance of the BN-FLEMOps model in these case studies
is comparable to other models, except for the Lech. For the Caldogno case study,
the average of seven microscale models yields a 10 % overestimation of reported
loss (Scorzini & Frank, 2017). The application of six other meso-scale loss models
to the Mulde case study resulted in an average underestimation of 16 % (Kreibich
et al., 2017b). For the Lech case study, the site-specific meso-scale model FLEMOAT+
covers the observed loss within the 90 % confidence interval, which is also clearly
more narrow (1.872–2.343 million €; Cammerer et al., 2013) than for the BN-FLEMOps
model. These numbers illustrate that the BN-FLEMOps model provides comparable
outcomes. A closely related question concerns the effort of transferring the BN-
FLEMOps and other models to other contexts. While the site specific implementation
of flood loss models requires the acquisitions and compilation of various input data
sets, for the BN-FLEMOps model the building resistance-related meso-scale proxy
variables flood experience and building area have been consistently derived for the
whole of Europe and will be accessible via online data repositories. This will reduce
the effort to apply the BN-FLEMOps model throughout Europe.

3.4 Conclusion

The developed approach for a consistent flood loss modelling in Europe, which is
based on the probabilistic, multi-variable BN-FLEMOps is suitable for loss estima-
tion of residential building structures in the whole of Europe. This novel approach
advances flood loss modelling since it enables a consistent estimation of losses on a
continental scale, with the resulting probabilistic loss estimates inherently providing
uncertainty information. Such uncertainty information can significantly improve
the quality of decisions, for example, about different risk management strategies
based on cost-benefit analyses since the uncertainty information enables decision
makers to consider the whole range of possible outcomes. Depending on risk-averse
or risk-neutral attitudes of the decision makers, different alternatives might be pre-
ferred. Additionally, the credibility and trust in risk analyses can be preserved, since
the impression of certain estimates is avoided and uncertainties in the results are
communicated clearly.

BN-FLEMOps can be adapted to individual regions in Europe with an updating
approach using empirical data from the target region. This approach is validated in
three case studies of varying spatial scale in Germany, Italy, and Austria. In two of the
three case studies, the performance of the model improved further with this updating.
However, results indicate that the meso-scale approach may be less suitable for data-
scarce, low-impact events like in the Austrian Lech case study, where the damage
to only 22 objects amounts to a comparably small loss figure of 1.9 million €. Given
the shortage of detailed empirical flood loss data for model updating, further tests
with respect to adapting the model to different European regions are recommended
to better understand and characterize the circumstances under which the updating
approach improves model performance. Nevertheless, the proposed approach for
probabilistic flood loss modelling in Europe can provide estimates of flood loss that
reliably cover reported figures in the 90 % quantile range.
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Kapitel 4

Das probabilistische
Hochwasserschadensmodell für
Wohngebäude – BN-FLEMOps

Übersicht
Hochwasserrisikoanalysen und insbesondere die Schätzungen von Hochwasserschä-
den sind oft mit hohen Unsicherheiten verbunden. Diese Unsicherheiten können
mit deterministischen Modellen nicht oder nur eingeschränkt dargestellt werden. In
dieser Studie wird das probabilistische Hochwasserschadensmodell BN-FLEMOps
vorgestellt. Am Beispiel einer Schadensberechnung für das Hochwasser 2002 an
der Mulde wird BN-FLEMOps mit einem Modellensemble aus etablierten Hoch-
wasserschadensmodellen verglichen und die Vorteile probabilistischer Modelle für
die Entscheidungsfindung unter Unsicherheit diskutiert. Zudem wird die einfache
Anwendung des Modells durch seine Implementierung in die standardisierte Model-
lierungsplattform OASIS loss modelling framework (OASIS-lmf) beschrieben. Die
Validierung an der Mulde zeigt, dass die von BN-FLEMOps geschätzten mittleren
Schadenswerte in 12 von 19 Gemeinden näher am beobachteten Schaden liegen, als
die Mediane des Modellensembles. Darüber hinaus, deckt sich die Streuung der von
BN-FLEMOps generierten Wahrscheinlichkeitsdichtefunktion in der Mehrheit der
Gemeinden mit der Spannweite des Ensembles. BN-FLEMOps ist durch die probabi-
listische Methodik gut geeignet, Unsicherheiten in der Hochwasserschadensmodel-
lierung zuverlässig abzubilden, die beispielsweise auch in Kosten-Nutzen-Analysen
integriert werden können und Entscheidungsträgern somit eine umfassende Infor-
mationsgrundlage bieten.

Publiziert als:
Steinhausen, M., Lüdtke, S., Schröter, K., Figueiredo, R., & Kreibich, H. (2020): Das probabilistische Hoch-
wasserschadensmodell für Wohngebäude – BN-FLEMOps. Hydrologie und Wasserbewirtschaftung,
64(4), 188–199. https://doi.org/10.5675/HYWA_2020.4_2
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The probabilistic flood
damage model for residential
buildings – BN-FLEMOps

Abstract
Flood risk analyses and particularly estimates of flood loss are often associated with a high
degree of uncertainty. Deterministic models are unable to reflect and account for these un-
certainties, or they are only able to do this to a very limited extent. This study presents the
probabilistic flood loss estimation model for the private sector BN-FLEMOps remove. Taking
the 2002 flood at the Mulde river as an example, the BN-FLEMOps is compared with a
model ensemble of established flood loss models and the advantages of probabilistic models for
decision-making under uncertainty are discussed. Furthermore, the implementation of the
model in the OASIS Loss Modelling Framework (LMF) is described, which enables its easy
application. The validation at the Mulde river shows that the median loss estimates by the
BN-FLEMOps are closer to the observed loss in 12 out of 19 municipalities in comparison
with the ensemble median. The spread of the BN-FLEMOps generated probability density
function coincides with the range of the ensemble member estimates in most municipalities.
The BN-FLEMOps with its probabilistic approach is therefore well-suited to reliably quantify
uncertainties in flood loss modelling and to serve decision-makers as a comprehensive source
of information.

Published as:
Steinhausen, M., Lüdtke, S., Schröter, K., Figueiredo, R., & Kreibich, H. (2020): The probabilistic flood damage
model for residential buildings – BN-FLEMOps. Hydrologie und Wasserbewirtschaftung, 64(4), 188–199.
https://doi.org/10.5675/HYWA_2020.4_2
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4.1 Einleitung

Im Zeitraum von 1998 bis 2009 haben Hochwasserereignisse in Europa zu einem
Verlust von über 1.000 Menschenleben und ökonomischen Schäden von rund 52
Milliarden € geführt (European Environment Agency, 2010). Mit zunehmender Kli-
maveränderung und fortschreitendem globalen Wandel, durch einen Wachstum der
Vermögenswerte (Exposition) in überschwemmungsgefährdeten Gebieten, werden
ein Anstieg der hochwasserbedingten Todesfälle sowie höhere ökonomische Schäden
erwartet (Dottori et al., 2018). Um diesen Entwicklungen entgegenzuwirken, müssen
erhebliche Anstrengungen im Management zur Reduzierung des Hochwasserrisikos
unternommen werden. Die Grundlage eines effizienten Hochwasserrisikomanage-
ments sind verlässliche Risikoanalysen auf verschiedenen räumlichen Skalen unter
expliziter Betrachtung damit verbundener Unsicherheiten (Apel et al., 2004; Merz
et al., 2004; Merz et al., 2010b; de Moel et al., 2015). Für eine Risikoanalyse muss neben
einer Simulation der Gefährdung auch eine Abschätzung der zu erwartenden Schä-
den erfolgen. Schadensmodellierungen liefern quantitative Abschätzungen der zu
erwartenden Hochwasserschäden (LfULG, 2012), werden aber bislang bei der Erstel-
lung von Hochwasserrisikokarten und Hochwasserrisikomanagementplänen nicht
durchgängig eingesetzt, stattdessen werden die nachteiligen Folgen auf verschiedene
wirtschaftliche Tätigkeiten qualitativ erfasst und dargestellt (LAWA, 2018).

Die am weitesten verbreiteten Modelle zur Abschätzung des monetären Schadens
sind Wasserstands-Schadens-Funktionen, die den Hochwasserschaden auf Basis der
exponierten Objekte (z. B. Wohngebäude) und der Überflutungstiefe abschätzen
(Merz et al., 2010b; Meyer et al., 2013). Da die Hochwasserschadensschätzungen mit
relativ hohen Unsicherheiten behaftet sind (Merz et al., 2004; Merz et al., 2010b),
wurden multivariable Hochwasserschadensmodelle entwickelt, die zusätzlich zum
Wasserstand andere Größen bei der Schadensschätzung berücksichtigen. Solche kom-
plexeren Modelle können die Schadensprozesse bei Hochwasser besser abbilden
und Unsicherheiten in der Schätzungen reduzieren (Gerl et al., 2016). Verwendete
Modellierungsansätze sind beispielsweise regelbasierte Modelle (Penning-Rowsell
et al., 2005; Zhai et al., 2005; Elmer et al., 2010) oder auf Regressionsbäumen ba-
sierende Ansätze (Kreibich et al., 2017b; Sieg et al., 2017). Zur Entwicklung von
probabilistischen Schadensmodellen wurden Bayessche Netze verwendet (Schröter
et al., 2014; Wagenaar et al., 2018), welche den großen Vorteil haben, dass neben der
Schadensschätzung gleichzeitig auch eine Quantifizierung der Unsicherheiten erfolgt
und einem geschätzten Schadenswert eine Eintrittswahrscheinlichkeit zugeordnet
wird. Die zusätzliche Quantifizierung und Bereitstellung von Unsicherheitsinforma-
tionen in Bezug auf die Schadens- und Risikoabschätzung sind besonders wichtig.
Unsicherheitsabschätzungen verbessern die Risikoanalysen, unterstützen deren Plau-
sibilisierung und sind essenziell für eine fundierte und robuste Entscheidungsfindung
im Risikomanagement (Pappenberger & Beven, 2006; Merz et al., 2008; de Brito &
Evers, 2016). Im Vergleich zu konkreten quantitativen Unsicherheitsaussagen ist eine
einfache Schätzung des Schadens mit einem deterministischen Modell eine sehr ein-
geschränkte Information, die zu einer falschen Risikobewertung und somit falschen
Investitionsentscheidungen führen kann (Wagenaar et al., 2016). Die Anwendung
von mehreren Modellen in einem Ensemble kann Abhilfe schaffen (Figueiredo et al.,
2018), erfordert aber erheblichen zusätzlichen Aufwand für die Auswahl der für das
Untersuchungsgebiet und die Fragestellung geeigneter Modelle (Gerl et al., 2016)
in der Beschaffung von Daten sowie der Implementierung und Anwendung der
Modelle. Probabilistische Modelle hingegen liefern die Unsicherheitsinformation als
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Bestandteil der Modellergebnisse. Zu den Schadenswerten wird demnach auch eine
Eintrittswahrscheinlichkeit vom Modell ausgegeben.

Ein Nachteil der Mehrparametermodelle ist jedoch die aufwendigere Anwendung im
Vergleich zu den Wasserstands-Schadens Funktionen, da mehr Eingangsparameter
benötigt und komplexere Modellstrukturen verwendet werden. Dieser Umstand hat
bisher ihre Verbreitung in der wasserwirtschaftlichen Praxis erschwert. Die OASIS-
Initiative (https://oasislmf.org), ein OpenSource-Projekt der Versicherungswirtschaft
zur Risikomodellierung für Naturgefahren, stellt eine Modellierungsplattform be-
reit, mit der Daten und Modelle entsprechend einem vorgegebenen Standard verar-
beitet werden können. Der OASIS-Standard erlaubt eine flexible und transparente
Implementierung, gerade auch von probabilistischen Modellierungsansätzen. Die
Anwendung und Kombination unterschiedlicher Modelle wird dadurch deutlich
erleichtert. Zudem ermöglichten die Standardisierung und Verwendung freier Soft-
ware und freier Daten einen iterativen Informationsaustausch zwischen Wissenschaft
und Praxis. Dieser ist bei der Entwicklung neuer Ansätze und der Übertragung
wissenschaftlicher Erkenntnisse in die praktische Anwendung unabdingbar, auch
um die unterschiedlichen Erfahrungen, Bedürfnisse und Ideen zu verstehen und
gesellschaftlichen Nutzen zu generieren (Morss et al., 2005; Pappenberger & Beven,
2006).

Neben Forschung und kommerzieller Anwendung können großräumiger Hoch-
wasserschadensmodellierungen auch einen Beitrag zur Unterstützung politischer
Entscheidungsfindung liefern. Europaweite Hochwasserrisikoanalysen sind für die
Mitgliedstaaten der Europäischen Union (EU) wichtig, um beispielsweise die Ent-
wicklung ihrer Klimaanpassungsstrategien zu unterstützen (van Renssen, 2013), den
EU-Solidaritätsfonds zu verwalten (Hochrainer et al., 2010), und um Hochwasserrisi-
komanagementpläne zu erstellen, die durch die Hochwassermanagementrichtlinie
gefordert werden (European Union, 2007). Nationale bis regionale Risikoanalysen
werden für die Entscheidungsunterstützung im Risikomanagement und die Erstel-
lung von Risikokarten benötigt (Thieken et al., 2016). Die in Deutschland für das
Hochwasserrisikomanagement zuständigen Bundesländer haben Risikoanalysen
durchgeführt, um ihre Investitionen in den Hochwasserschutz zu priorisieren und
um Gefahren- und Risikokarten für die Raumplanung und die Risikokommunikation
zu erstellen. Es sind außerdem bundesländerübergreifende Analysen erforderlich,
zum einen für das Nationale Hochwasserschutzprogramm (LAWA, 2014), aber auch
zur Unterstützung übergreifender Kooperationen, z. B. von Ober- und Unterliegern,
im Hochwasserrisikomanagement und im Katastrophenschutz.

In diesem Beitrag wird das probabilistische Hochwasserschadensmodell BN-FLEMOps
vorgestellt und der Nutzen von Unsicherheitsinformationen für die Unterstützung bei
der Entscheidungsfindung in der Risikomanagementplanung diskutiert. Das Modell
wird beispielhaft an der Mulde angewendet und anhand offizieller Schadensdaten für
das Hochwasser im August 2002 validiert. Ein Vergleich mit anderen Schadensmo-
dellen dient der Plausibilisierung der Unsicherheiten in den Schadensschätzungen.
Weiterhin werden die Anwendungsmöglichkeiten des Modells und die Implementie-
rung im OASIS Loss Modelling Framework (OASIS-lmf) diskutiert.

https://oasislmf.org
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4.2 Methoden und Daten

4.2.1 BN-FLEMOps Entwicklung und Modellstruktur

Das Modell BN-FLEMOps (Bayesian Network Flood Loss Estimation MOdel for the
private sector) wurde für die Berechnung von Hochwasserschäden an privaten Wohn-
gebäuden auf der Mikroskala entwickelt (Wagenaar et al., 2018). Das probabilistische
Modell schätzt den relativen, an der Bausubstanz des Gebäudes durch Hochwasser
verursachten Schaden und quantifiziert die Unsicherheiten der Schadensschätzung.
Dieser relative Schadenswert zwischen 0 und 1 berechnet sich aus dem tatsächlichen
Hochwasserschaden in Euro im Verhältnis zu den Wiederaufbaukosten des Gebäudes.
In diesem Wert beinhaltet sind alle Kosten an Material und Lohn zur Reparatur des
durch das Hochwasser verursachten Schadens.

Bayessche Netze, wie auch in BN-FLEMOps angewendet, sind graphische Modelle,
die die gemeinsame Wahrscheinlichkeitsverteilung (P) von Variablen (Xi) unter Be-
rücksichtigung von bedingten Abhängigkeiten beschreiben und dem Aufbau eines
gerichteten azyklischen Graphen folgen. Die Variablen werden als Knoten dargestellt
und ihre Verbindungen über Kanten repräsentieren die bedingten Abhängigkeiten
zwischen den Variablen. Es wird zwischen „Eltern-Knoten“, von denen eine Kante
wegführt, und „Kinder-Knoten“, auf die eine Verbindung gerichtet ist, unterschie-
den. Die Richtung der Kanten darf jedoch bei einem aus Daten gelernten Netz nicht
zwangsläufig als kausaler Zusammenhang interpretiert werden (Vogel et al., 2018).
Für die Berechnung des Gebäudeschadens ist die Richtung der Kanten nicht entschei-
dend. In einem Bayesschen Netze kann Inferenz in beide Richtungen der Kanten
erfolgen (Fenton & Neil, 2013). Alle in das Netz eingehenden Daten werden als unsi-
cherheitsbehaftete Zufallsvariable betrachtet, deren probabilistische Abhängigkeit im
Bayesschen Netz abgebildet wird. Die gemeinsame Wahrscheinlichkeitsverteilung der
Variablen beinhaltet somit auch die in den Eingangsdaten enthaltenen Unsicherheiten.
An jedem Knoten des Netzes ist eine bedingte Wahrscheinlichkeitsfunktion durch
die Variablen der „Eltern-Knoten“ definiert und kann mit der folgenden Gleichung
berechnet werden (Fenton & Neil, 2013):

P(Xi, ..., Xn) =
n

∏
i=1

P(Xi | Eltern(Xi)) (4.1)

Die Netzstruktur des Modells BN-FLEMOps (Abbildung 4.1) basiert auf der sta-
tistischen Auswertung einer Hochwasserschadensdatenbank, in der Informationen
aus Umfragekampagnen zu Hochwasserereignissen aus den Jahren 2002, 2005, 2006,
2010, 2011 und 2013 enthalten sind. Eine detaillierte Übersicht und Analyse dieser
Daten und deren Einsatz bei der Entwicklung von Hochwasserschadensmodellen
bieten Merz et al. (2013) und Schröter et al. (2016). Aus dieser Datenbank wurden
1.522 vollständige Datensätze von Gebäudeschäden verwendet, um das Modell zu
trainieren. Die Auswahl der Variablen und ihre Verbindung im Netz wurden aus
den statistischen Zusammenhängen abgeleitet und mit Expertenwissen angepasst.
Die Netzstruktur wurde unter Verwendung von drei im R-packet "bnlearn"(Scutari,
2010) implementierten Lernalgorithmen, Fast Incremental Association (Fast-IAMB)
(Yaramakala & Margaritis, 2005), Interleaved Incremental Association (Inter-IAMB)
(Tsamardinos et al., 2013) und einem Bayesian Dirichlet equivalence (BDe) Hill-
Climbing-Optimierungsansatz (Heckerman et al., 1995) aufgebaut. Jeder der Algo-
rithmen wurde 500-mal angewendet, um insgesamt 1.500 Netze aus den empirischen
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Daten zu lernen. In diesen Wiederholungen beim Bau der Netzwerkstruktur kam
jeweils nur eine zufällig ausgewählte Teilmenge (950) der Interviewdaten zum Ein-
satz, um eine Überanpassung des Modells zu vermeiden. Die in 80 % aller Netze
vorkommenden Verbindungen aus Knoten und Kanten wurden, in Kombination mit
Überlegungen zur Datenverfügbarkeit und Forschungszielen, für die Entwicklung
der in Abbildung 4.1 gezeigten Struktur von BN-FLEMOps verwendet (Wagenaar
et al., 2018).

Abbildung 4.1: Modellstruktur des BN-FLEMOps mit Variablennamen (angepasst aus Wa-
genaar et al. (2018)). rbloss = relativer Gebäudeschaden, wd = Wasserstand,
rp = Hochwasserjährlichkeit, d = Dauer der Überflutung, pre = private Vor-
sorgemaßnahmen, fe = Hochwassererfahrung, ba = Gebäudegrundfläche, bt
= Gebäudetyp.
Model structure of the BN-FLEMOps with variable names (adapted from Wagenaar

et al. (2018)). rbloss = relative building loss, wd = water depth, rp = return period, d
= inundation duration, pre = precautionary measures, fe = flood experience, ba =
footprint area of the building, bt = building type.

Informationen zum Wasserstand (wd), der Hochwasserjährlichkeit (rp) und der
Überflutungsdauer (d) beschreiben im Modell die Intensität der Überflutung. Die
Widerstandsfähigkeit der exponierten Objekte gegenüber Hochwasser wird durch
die Variablen Gebäudetyp (bt), Gebäudefläche (ba), Hochwassererfahrung (fe) und
private Hochwasser-Vorsorgemaßnahmen (pre) beschrieben. Um den relativen Ge-
bäudeschaden (rbloss) zu schätzen, werden nur die direkt mit dem Knoten "rb-
loss"verbundenen Variablen benötigt. Das heißt, ist beispielsweise die Jährlichkeit
des Hochwasserereignisses bekannt, so spielt die Dauer der Überflutung keine Rolle
mehr für die Schadensschätzung. Sind jedoch die privaten Vorsorgemaßnahmen
unbekannt, erfolgt die Schadensschätzung über die im Netz hinter diesem Knoten
stehenden Variablen Gebäudefläche und Hochwassererfahrung. Dabei wird jede
mögliche Ausprägung der Variable (pre) im Netzwerk berücksichtigt. So ist eine
Schadensschätzung trotz unvollständiger Eingangsdaten möglich. Eine fehlende
Variableninformation kann jedoch zu einer höheren Unsicherheit in den Modeller-
gebnissen führen.

Die oben genannten Variablen gehen diskretisiert in das Modell BN-FLEMOps ein.
Der geschätzte relative Schaden sowie der Wasserstand besitzen beispielsweise 10,
die Hochwasserjährlichkeit 5 Klassen (Tabelle 4.1). Die Einteilung der Klassenbreiten
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erfolgte, basierend auf den 1.522 Eingangsdatensätzen, nach dem Prinzip gleichmä-
ßig gefüllter Klassen. Die Variablen mit der höchsten Auflösung und dem größten
Beitrag zur Erklärung des Schadens besitzen eine höhere Anzahl von Klassen, z.
B. Wasserstand. Eine detaillierte Beschreibung der Methodik zur Herleitung des
Bayesschen Netzes und aller Variablen ist in Wagenaar et al. (2018) publiziert. Durch
die Verwendung europaweit verfügbarer Proxydaten für die Variablen konnte BN-
FLEMOps von der Mikroskala (Objekt genau) auf die Mesoskala (flächenaggregiert)
übertragen werden (Unterabschnitt 4.2.2). Hierzu wurden die punktuell verfügbaren
Umfragedaten mit flächendeckenden Datensätzen statistisch verglichen und durch
diese ersetzt. Das so auf die Mesoskala übertragene Modell wurde anhand von drei
europäischen Fallstudien validiert (Lüdtke et al., 2019b).

4.2.2 Datengrundlage und -verarbeitung

Im Folgenden werden die für die Validierung an der Mulde verwendeten Daten-
sätze und die aus ihnen extrahierten Modellvariablen (Wasserstand, Jährlichkeit,
Hochwassererfahrung und Gebäudegrundfläche) beschrieben sowie die notwendi-
gen Verarbeitungsschritte zur Hochwasserschadenssberechnung mit dem Modell
BN-FLEMOps dargelegt. Tabelle 4.1 zeigt eine Übersicht der im Modell repräsentier-
ten Variablen. Diese Übersicht schließt auch die Variablen des Netzes ein, welche
nicht für die Anwendung an der Mulde verwendet wurden. Diese Variablen können
bei Anwendungen mit anderer Datenlage verwendet werden.

Tabelle 4.1: Übersicht der Modellvariablen von BN-FLEMOps.
Overview of the model variables of BN-FLEMOps.

Variable Abkürzung Einheit Klassen

Relativer Gebäudeschaden rbloss Relative (0 bis 1) 10
Wasserstand wd Meter 10
Hochwasserjährlichkeit rp Jahre 5
Dauer der Überflutung d Stunden 5
Private Vorsorgemaßnahmen pre Rang 3
Hochwassererfahrung fe Rang 6
Gebäudegrundfläche ba Quadratmeter 3
Gebäudetyp bt Index 3

Ereignishydraulik und -jährlichkeit
Die Überflutungsflächen und -tiefen für das Hochwasser im August 2002 an der Mul-
de (Abbildung 4.2) wurden durch eine hydrodynamische 1D/2D-Simulationsrechnungen
im Stadtgebiet von Eilenburg (Apel et al., 2009) in Kombination mit einer linearen
Interpolation von Wasserständen entlang der Freiberger und Vereinigten Mulde ermit-
telt (Grabbert, 2006). Das verwendete hydrodynamische Modell ist das LISFLOOD-
FP-Modell von Bates und De Roo (2000), für das als obere Randbedingung die Ab-
flussganglinie des nächsten oberstrom liegenden Pegels Golzern verwendet wurde.
Das hydrodynamische Modell wurde auf Grundlage eines digitalen Geländemodells
(25 m-Auflösung) (BKG, 2007) durch Anpassung der Oberflächenrauigkeit kalibriert.
Hierfür wurden außerdem eine auf Fernerkundungsdaten basierende Flutmaske
sowie 380 Hochwassermarken im Stadtgebiet von Eilenburg mit einbezogen. Die
lineare Interpolation der Wasserstände entlang der Mulde liefert eine gleichmäßig
abfallende Wasserspiegellage, die mit den Höheninformationen des digitalen Höhen-
modells verschnitten wurde. Alle Bereiche, die niedriger liegen als diese interpolierte
Hochwasserspiegellage, werden als überflutet angesehen. Die Überflutungstiefe re-
sultiert aus der Differenz zwischen Wasserspiegeloberfläche und Geländehöhe. Aus
dem Raster der Überflutungstiefen wird die Variable Wasserstand (wd) extrahiert.
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Die Hochwasserjährlichkeit (rp) wurde am Pegel Bad Dueben, nördlich von Laußig,
auf ca. 500 Jahre geschätzt (Elmer et al., 2010). Die Eingangsdaten für die Variablen
Wasserstand und Hochwasserjährlichkeit entsprechen den in Figueiredo et al. (2018)
verwendeten Daten. So wird eine höchst mögliche Vergleichbarkeit der Modelle des
Ensembles mit BN-FLEMOps erreicht.

Abbildung 4.2: Übersichtskarte des Untersuchungsgebietes an der Mulde mit Gemeinden
mit offiziellen Schadenswerten.
Overview map of the study area at the Mulde river with municipalities with official
reported loss figures.

Gebäudegrundflächen und Hochwassererfahrung
Die Modell-Variablen Gebäudegrundfläche (ba) und Hochwassererfahrung (fe) cha-
rakterisieren die Widerstandsfähigkeit des Wohngebäudes gegenüber Hochwasser.
Zur Übertragung des Modells BN-FLEMOps auf die Mesoskala wurden europaweit
verfügbare Datensätze für die Eingangsvariablen der Gebäudefläche und der Hoch-
wassererfahrung auf ihre Anwendbarkeit geprüft. Hierzu wurden die europaweiten
Datensätze mit den Umfragedaten der Hochwasserdatenbank statistisch verglichen.
In diesem Vergleich wurden die OpenStreetMap (OSM) (OSM contributors, 2018) und
der Hochwasserskataloge des Dartmouth Flood Observatory (DFO) (Brakenridge,
2018) als Datengrundlage auf der Mesoskala identifiziert.



4.2. Methoden und Daten 67

Die OSM bietet eine Geodatenbank mit Gebäudegeometrien, die als zuverlässi-
ge Quelle für zivile Anwendungen frei genutzt werden kann (Barrington-Leigh
& Millard-Ball, 2017). Um die Grundflächen der Wohngebäude zu berechnen, wurden
gezielt nur Gebäude mit Wohnnutzung aus dem Datensatz extrahiert. Hierzu wurden
die im Hintergrund liegenden Landnutzungsinformationen aus OSM verwendet, um
den Gebäuden eine Nutzungsform zuzuschreiben und so Wohngebäude von gewerb-
licher oder industrieller Nutzung zu unterscheiden. Die OSM-Daten zeigen im Mittel
eine gute Übereinstimmung mit den Gebäudeflächen aus den Umfragedaten. Da
OSM eine von Nutzern erstellte und kontrollierte Datenbank ist, kann es zu Ungenau-
igkeiten und Unvollständigkeiten in den Daten kommen. Hecht et al. (2013) stellen in
ihrer Untersuchung fest, dass OSM-Daten in Deutschland noch unvollständig sind,
aber in den nächsten Jahren durch von staatlichen Stellen und Nutzern hinzugefüg-
ten Daten an Vollständigkeit gewinnen werden. In einem statistischen Vergleich der
Gebäudegrundflächen zwischen den aus Umfragen nach Hochwasserereignissen
gewonnen und aus OSM extrahierten Daten, stellt Lüdtke et al. (2019b) fest, dass die
OSM-Geometrien, im Mittel über 25 NUTS-3-Regionen (Nomenclature des Unités
Territoriales Statistiques; Nomenklatur Territorialer Einheiten für Statistiken der EU),
18 m2 kleiner sind.

Frühere Studien haben bereits den Zusammenhang zwischen der Erfahrung der
Bevölkerung mit Hochwasser und der Höhe von Hochwasserschäden gezeigt und als
Variable zur Schätzung in Schadensmodellen verwendet (Thieken et al., 2005; Merz
et al., 2013; Schröter et al., 2014). Zur Beschreibung der Hochwassererfahrung auf der
Mesoskala wird die Anzahl Hochwasserereignisse der Region in den letzten 25 Jahren
verwendet. Diese Zahl wird auf der Datenbasis des DFO berechnet. Diese Datenbank
enthält Informationen über die räumliche Ausdehnung, die Hochwasserursache,
den Startzeitpunkt etc. von vergangenen Hochwasserereignissen seit dem Jahr 1985.
Die Geometrien der Hochwasserereignisse im DFO-Katalog neigen dazu, die Aus-
dehnung des Hochwassers undifferenziert und zu groß abzubilden (Brakenridge,
2018) und so die Anzahl der vergangenen Ereignisse in jedem Punkt zu überschätzen.
Dieser Bias in den DFO-Daten wurde korrigiert, indem die gezählten Ereignisse um 1
reduziert wurden. Durch diese Bias-Korrektur wurde eine gute Übereinstimmung mit
den Umfragedaten erziehlt. Für die Variablen Gebäudetyp und private Vorsorgemaß-
nahmen konnten keine geeigneten Datensätze gefunden werden. Die Funktionsweise
und Struktur des Bayesschen Netztes macht die Variable des Gebäudetyps (bt) für
den in dieser Studie verwendeten Datensatz überflüssig und erlaubt es, mit den
beiden „Eltern Knoten“ Hochwassererfahrung (fe) und Gebäudegrundfläche (ba) den
relativen Schaden zu schätzen. Das Fehlen der Informationen für die Variable priva-
te Vorsorgemaßnahmen (pre), führt zur Berücksichtigung aller Ausprägungen der
Variable bei der Schadensschätzung und vergrößert die Unsicherheit der Schätzung
(Unterabschnitt 4.2.1).

Gebäudewerte
Die Wohngebäudewerte pro Gemeinde, basierend auf den Wiederherstellungskos-
ten für das Jahr 2000, wurden mithilfe des Baupreisindex auf das Ereignisjahr 2002
hochgerechnet (Kleist et al., 2006), und auf das digitale Landschaftsmodell ATKIS
disaggregiert (Abbildung 4.2) (Wünsch et al., 2009). Offizielle Schadensdaten zum
Hochwasser im August 2002 auf Gemeindeebene wurden von der Sächsischen Auf-
baubank (Saxon Relief Bank, 2005) erfasst und zur Verfügung gestellt. Der gesamte
Hochwasserschaden an Wohngebäuden bezogen auf das Hochwasser im August
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2002 beträgt aufsummiert über alle Gemeinden im Einzugsgebiet der Mulde 240,6
Millionen € (Kreibich et al., 2017c).

Datenverschneidung und Schadensschätzung
Um die Eingangsdaten für das Modell BN-FLEMOps vorzubereiten, werden die
Datensätze in einem Geoinformationssystem räumlich miteinander verschnitten.
Durch die Verschneidung entstehen Teilflächen mit allen für das Modell notwen-
digen Variablen. Jede Teilfläche trägt Informationen zum Wasserstand (wd), der
Jählichkeit (rp), der Gebäudegrundfläche (ba) und der Hochwassererfahrung (fe), auf
deren Basis der relative Hochwasserschaden für jede dieser Teilflächen modelliert
wird. Eine durch die Verschneidung entstandene Teilfläche kann beispielsweise die
folgende Kombination von Eingangsdaten (wd = 120 cm, rp = 500 a, ba = 100 m2,
fe = 2), einem Gebäudewert von 625.000 € und einem Gemeindenamen bestehen.
BN-FLEMOps errechnet dann eine in 10 Klassen diskretisierte Schadensverteilung
mit entsprechende Eintrittwahrscheinlichkeit pro Schadensklasse. Es werden 10.000
Realisationen des Modells gerechnet und die Mediane der Klassen zur weiteren
Berechnung der absoluten Schäden verwendet. Die Gebäudewerte werden mit den
relativen Schadenswerten multipliziert, um den absoluten Schaden in Euro zu erhal-
ten. Anhand der ebenfalls enthaltenen Gemeindekennung erfolgt eine Aggregierung
der geschätzten Schäden auf Gemeindeebene. Weitere Details und eine Abbildung
zur Datenverschneidung können Lüdtke et al. (2019b) entnommen werden.

4.2.3 Schadensmodelle des Ensembles

Vergleichsschätzungen für die direkten Wohngebäudeschäden wurde mit einem En-
semble von Hochwasserschadensmodellen durchgeführt. Diese Studie greift dafür
auf Ergebnisse von Figueiredo et al. (2018) für das gleiche Untersuchungsgebiet und
Hochwasserereignis zurück. Als Vergleichsmodelle wurden zunächst alle Modelle
für direkte Schäden an Wohngebäuden aus dem Katalog von Gerl et al. (2016) ausge-
wählt und hinsichtlich ihrer Eignung für die Gegebenheiten im Muldegebiet geprüft
(Figueiredo et al., 2018). Insgesamt wurden zwanzig deterministische Hochwasser-
schadensmodelle ausgewählt und im Untersuchungsgebiet für das Hochwasser im
August 2002 angewendet.

Die Modelle sind in Tabelle 4.2 zusammen mit den Informationen zu wichtigen
Eigenschaften und Quellen, in denen die Modelle detailliert beschrieben sind, auf-
geführt. Dieses Ensemble von Modellen bildet eine Vielfalt weltweit verfügbarer
und geeigneter Modelle ab und liefert somit eine realistische Streuung möglicher
Schadensschätzungen. Die Mehrzahl der Modelle wurde in einem europäischen
Kontext entwickelt. Die Modelle IKSE und FLEMOps+r wurden auf der Basis von
Daten aus dem Elbeeinzugsgebiet entwickelt und stehen daher in enger räumlicher
Beziehung zum Untersuchungsgebiet der Mulde. Im Ensemble werden sowohl einfa-
che Wasserstands-Schadens-Funktionen mit nur einer Intensitätsvariablen, als auch
komplexere multivariable Modelle berücksichtigt. Die Mehrheit von fünfzehn Mo-
dellen generiert relative Schadenszahlen zwischen 0 und 1. Die übrigen 5 der 20
Modelle berechnen absolute Schadenswerte (ANUFlood, HOWAS, MCM, TyrOL,
Vojinovic).
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Tabelle 4.2: Übersicht der Charakteristika der Hochwasserschadensmodelle im Ensemble
und des probabilistischen Modells BN-FLEMOps (nach Figueiredo et al. (2018)).
Overview of the ensemble flood loss model characteristics and the probabilistic model

BN-FLEMOps (acc. to Figueiredo et al. (2018)).

Modellname Ereignis
variablen*

Expositions
variablen* Land Referenzen

BN-FLEMOps wd, rp, d pre, fe,
ba, bt Deutschland Wagenaar et al. (2018)

Lüdtke et al. (2019a)
ANUFlood wd fa Australien NR&M (2002)
Budiyono wd bt Indonesien Budiyono et al. (2015)
DSM wd bt Niederlande Klijn et al. (2007)
Dutta wd str Japan Dutta et al. (2003)
FLEMOps+r wd, con, rp bt, bq, pre Deutschland Elmer et al. (2010)
HAZUS-MH wd bt, nf, bas USA Scawthorn et al. (2006)
HOWAS wd bt, bas Deutschland Buck und Merkel (1999)
HWS-GIS wd – Deutschland Hydrotec (2002)

ICPR wd – Schweiz, Deutschland,
Frankreich, Niederlande ICPR (2001)

IKSE wd – Deutschland IKSE (2003)
Luino wd – Italien Luino et al. (2009)
MCM wd, id bt England, Wales Penning-Rowsell et al. (2005)
MERK wd nf, bas Deutschland Rees et al. (2003)
Pistrika & Jonkman wd, fv – USA Pistrika und Jonkman (2010)
Riha & Marcikova wd, id bt, oth Tschechische Republik Riha und Marcikova (2009)
Toth wd bt, str, nf Ungarn Tóth et al. (2008)
TYROL wd – Österreich Huttenlau et al. (2010)
Vanneuville wd bt Belgien Vanneuville et al. (2006)
Vojinovic wd fa Sint Maarten Vojinovic et al. (2008)
Yazdi & Neyshabouri wd – Iran Yazdi und Neyshabouri (2012)

* wd = Wasserstand, rp = Hochwasserjährlichkeit, d = Dauer der Überflutung, pre = private Vorsorgemaßnahmen, fe
= Hochwassererfahrung, ba = Gebäudegrundfläche, bt = Gebäudetyp, con = Kontamination, bg = Gebäudequalität,
nf = Stockwekanzahl, bas = Keller, str = Gebäudestruktur, fa = Geschossfläche, fv = Fließgeschwindigkeit, id = Dauer
der Überflutung
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4.3 Ergebnisse und Diskussion

4.3.1 Schadensschätzung und Modellvergleich

Die Ergebnisse der Schadensschätzung mit dem probabilistischen Modell BN-FLEMOps
im Vergleich zu den Modellen des Ensembles und den offiziellen Schadensanga-
ben pro Gemeinde (Saxon Relief Bank, 2005) sind in Abbildung 4.3 dargestellt. Die
Spannweite des Modellensembles wird in einem Box-Plot den Ergebnissen von BN-
FLEMOps, in einem sogenannten Violin-Plot gegenübergestellt. Der Violin-Plot bildet
die auf Gemeindeebene aggregierten Schadensschätzungen aller Teilflächen in einer
an der y-Achse gespiegelten Dichteverteilung ab. Die waagerechten Linien zeigen
die Mediane der Schadensverteilungen im Box-Plot und Violin-Plot an. Die individu-
ellen Ergebnisse der Ensemble-Modelle sind als blaue Punkte im Box-Plot dargestellt.
Der offizielle in den Gemeinden erfasste Schaden (Saxon Relief Bank, 2005) ist als
Referenzpunkt rot eingetragen.

Abbildung 4.3: Ergebnisse der probabilistischen Schadensschätzung mit BN-FLEMOps im
Vergleich zu den Schadensmodellen im Ensemble und den offiziellen Scha-
densangaben vom Hochwasser 2002 (Saxon Relief Bank, 2005) in 19 Gemein-
den an der Mulde.
Results of the probabilistic flood loss estimation with BN-FLEMOps in comparison
with ensemble models and official loss figures (Saxon Relief Bank, 2005) in 19 mu-
nicipalities along the Mulde river.

In 12 der 19 Gemeinden liegt der Median der Schadensverteilung von BN-FLEMOps
im Vergleich zum Median des Ensembles näher am offiziell beobachteten Schaden.
In nahezu allen Gemeinden zeigt sich, dass die Verteilung des mit BN-FLEMOps
geschätzten Schadens den beobachteten Schadenswert sowie die gesamte Spann-
weite der Ensemble-Modelle abdeckt. Stark unterschätzt wird der Schaden durch
BN-FLEMOps sowie das Modellensemble nur in der Gemeinde Grimma. Diese Un-
terschätzung des Schadens liegt mit hoher Wahrscheinlichkeit begründet in den zu
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niedrig simulierten Wasserständen und vergleichsweise niedrig geschätzten Gebäu-
dewerten in der Gemeinde Grimma. Die verwendete Hochwassertiefenkarte, welche
teilweise auf linearer Interpolation und einem gering aufgelösten Geländemodell
basiert, führt hier zur Unterschätzung der Hochwasserschäden. Apel et al. (2009)
zeigt, dass komplexere Verfahren zur Wasserstandsmodellierung die Ergebnisse von
Schadensmodellen verbessern können. Der Autor stellt jedoch auch fest, dass der Ein-
fluss unterschiedlicher Hazardmodelle auf die Schätzung des Hochwasserschadens
deutlich unter der Variabilität verschiedener Schadensmodelle liegt.

Im Vergleich aller Modelle liegt die Performance von BN-FLEMOps, gemessen an-
hand der Indikatoren „Wurzel der mittleren quadratische Abweichung“ (rmse =
10,25) und der „mittleren typischen Abweichung“ (mbe = -2,93) über alle Gemeinden,
an 5. Stelle von 21 Modellen (Tabelle 4.3). Die mittlere typische Abweichung über alle
Gemeinden beträgt weniger als 3 Millionen € (-23,26 %). Das Modell BN-FLEMOps
tendiert demnach zu einer leichten Unterschätzung des Hochwasserschadens. Diese
rührt maßgeblich aus der Unterschätzung der vergleichsweise hohen Schäden in
den Gemeinden Grimma und Döbeln. Die in OSM leicht unterrepräsentierte Ge-
bäudegrundfläche hat ebenfalls einen Einfluss auf die negative mittlere typische
Abweichung der Modellergebnisse.

Tabelle 4.3: Performance-Indikatoren für alle Modelle des Ensembles und BN-FLEMOps,
geordnet nach der „Wurzel der mittleren quadratische Abweichung“ (rmse),
alle Werte in Millionen Euro. Für BN-FLEMOps sind die 25 %, 50 % und 75 %
Quantile abgebildet.
Performance indicators for the ensemble models and BN-FLEMOps, in ascending order
by the root mean square error (rmse). All values are in million Euro. The 25 %, 50 %
and 75 % quantiles are presented for BN-FLEMOps.

Modell rmse mbe Gesamtschaden

Luino 8,14 -1,23 217,21
IKSE 9,16 -2,43 194,35
Dutta 9,18 1,87 276,12
DSM 9,47 1,36 266,39
FLEMOps+r 10,92 -3,85 167,42
HAZUS-MH 10,96 4,00 316,55
Riha & Marcikova 11,45 2,99 297,31
Vanneuville 13,61 -5,30 49,93
Toth 13,91 -6,05 125,63
MCM 14,41 -4,27 131,54
HWS-GIS 15,80 -7,24 103,08
ICPR 15,89 -7,20 103,75
MERK 16,50 -7,66 95,12
Pistrika & Jonkman 16,88 8,24 397,05
Yazdi & Neyshabouri 17,17 7,40 381,14
Budiyono 18,26 8,19 396,19
Vojinovic 19,10 -8,67 49,93
HOWAS 20,98 -9,86 50,50
TYROL 21,16 -9,98 54,12
ANUFlood 21,56 -10,27 35,53

Q75 = 246,62
BN-FLEMOps 10,25 -2,93 Q50 = 184,84

Q25 = 137,82

Im Vergleich der Modelle des Ensembles schneiden solche Modelle (Luino, IKSE,
DSM), welche für eine dem Untersuchungsgebiet ähnliche Geografie und Ökono-
mie entwickelt wurden, besonders gut ab. Die Performance der Modelle lässt keine
besonderen Muster bezüglich der Komplexität und Variablenauswahl erkennen. So-
wohl einfache Wasserstands-Schadens-Funktionen (Luino, IKSE) als auch komplexere
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Multi-variable Modelle (FLEMOps+r, HAZUS-MH) liefern akkurate Schadensschät-
zungen.

Das Beispiel der Gemeinde Leisnig zeigt eine präzise Schadensschätzung mit geringer
Unsicherheit. Der Median der Verteilung liegt hier dicht am beobachteten Schaden
und die Streuung der Verteilung ist gering. Die Ergebnisse von BN-FLEMOps können
in dieser Gemeinde mit hoher Sicherheit als zuverlässig angesehen werden. Für die
Gemeinde Machern besitzt die Verteilung eine deutlich größere Streuung, die Fläche
innerhalb des Violin-Plots ist zwischen 2 – 8 Millionen € Schaden aufgespannt. Dies
resultiert in einer Überschätzung des Schadens im Vergleich zum Ensemble, sowie
der Beobachtung und offenbart eine hohe Unsicherheit der Schätzung.

Der von der SAB erfasste Gesamtschaden der 19 Gemeinden an der Mulde liegt bei
240,58 Millionen €. BN-FLEMOps schätzt diesen Wert im Median auf 184,84 Millionen
€, während der Ensemblemedian 149,48 Millionen € beträgt. Das probabilistische
Modell zeigt demnach im Mittel ein genaueres Ergebnis als das Ensemble und bildet
den beobachteten Schadenswert innerhalb des 50 %-Quantils der Schadensschätzung
ab.

4.3.2 Probabilistische Modelle in der Entscheidungsfindung

In der klassischen Entscheidungstheorie steht primär die Optimierung des „Nutzens“
unter Berücksichtigung divergierender Interessen und limitierender Faktoren im
Vordergrund. Im Bereich des Hochwasserrisikomanagements müssen die „Nutzen“
verschiedener Maßnahmen für unterschiedlichste Akteure vereint und der Nutzen im-
mer im Verhältnis zu den Kosten einer Maßnahme analysiert werden. Probabilistische
Schadensmodelle können im Gegensatz zu deterministischen Modellen zusätzlich die
Eintrittswahrscheinlichkeiten des geschätzten Schadens abbilden. Dies kann im Risi-
komanagement bei der Entscheidungsfindung unter Unsicherheit zur Optimierung
von Kosten-Nutzen-Funktion verwendet werden (Polasky et al., 2011). Ist beispiels-
weise eine Entscheidung zwischen zwei alternativen Hochwasserschutzmaßnahmen
zu treffen, könnte ein risikoaverser Entscheidungsträger die Maßnahme mit der ge-
ringeren Unsicherheit bevorzugen, da er eine ineffiziente Lösung mit (negativem)
Nutzen-Kosten-Verhältnis unter null vermeiden will, selbst wenn die alternative Maß-
nahme im Mittel ein besseres Nutzen-Kosten-Verhältnis aufweist, aber mit größerer
Unsicherheit behaftet ist. Demgegenüber würde ein risikofreudiger Entscheidungsträ-
ger die Alternative mit dem höheren mittleren Nutzen-Kosten-Verhältnis bevorzugen,
obwohl die Wahrscheinlichkeit eines negativen (mehr Kosten als Nutzen) Nutzen-
Kosten-Verhältnisses deutlich vorhanden ist (Merz et al., 2008).

Bei risikobehafteten Entscheidungen können beispielsweise anhand des Erwartungs-
wert-Varianz-Prinzips (µ-σ-Regel) (Markowitz, 1952) Alternativen abgewogen wer-
den. Eine Entscheidung basiert hierbei nicht mehr nur auf einem Mittelwert, sondern
auch auf der Varianz der Wahrscheinlichkeitsverteilung aus den Modellergebnissen.
Unsicherheiten können auf diesem Weg im Entscheidungsprozess berücksichtigt
werden. Risikoaverse oder risikofreudige Akteure können ihrer Entscheidungen so
besser fundieren und begründen (Knoke & Wurm, 2006). In einer Literaturstudie
zur Entscheidungsfindung im Hochwasserrisikomanagement, in der über hundert
aktuelle Forschungsarbeiten berücksichtigt wurden, identifizieren de Brito und Evers
(2016) die Berücksichtigung von Unsicherheiten als die Herausforderung mit dem
größten Forschungsdefizit. Die Autorinnen erkennen Bayessche-Netzwerk-Methoden
als die Ansätze mit dem größten Potenzial, die Unsicherheiten in multifaktoriellen
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Entscheidungsanalysen besser zu berücksichtigen. Der hohe Informationsgehalt
probabilistischer Modelle ermöglicht die Überprüfung verschiedener Entscheidungs-
alternativen auf der Grundlage einer einzelnen Modellanwendung. Die beispielhafte
Hochwasserschadensberechnung mit BN-FLEMOps an der Mulde zeigt, dass ein
ganzes Modellensemble durch ein probabilistisches Modell ersetzt werden konnte.
Unsicherheitsinformationen in den Ergebnissen probabilistischer Modelle ermögli-
chen Prozesse der Entscheidungsfindung entlang wahrscheinlicher, optimistischer
oder pessimistischer Szenarien (Polasky et al., 2011).

4.3.3 Anwendbarkeit

Das Modell BN-FLEMOps kann auf unterschiedlichen räumlichen Skalen angewen-
det werden. Auf der Mikroskala können Schäden für individuelle Gebäude geschätzt
werden (Wagenaar et al., 2018). Hierzu werden objektspezifische Daten zum Antrei-
ben des Modells benötigt. Auf der Mesoskala erfolgt die Schätzung von Hochwas-
serschäden für Landnutzungsflächen mit Wohnbebauung. Eine solche Anwendung,
wie sie in dieser Studie gezeigt wird, beruht auf flächendeckenden und räumlich
aggregierten Datensätzen. Details zur Übertragung von BN-FLEMOps, welches auf
der Basis von mikroskaligen Daten entwickelt wurde, auf die Mesoskala können
Lüdtke et al. (2019a) entnommen werden.

BN-FLEMOps eignet sich aufgrund der verwendeten Variablen und der Bayesschen-
Netzwerk-Methodik zur Anwendung in verschiedenen Untersuchungsgebieten. Das
Modell wurde bereits erfolgreich in Untersuchungsgebieten in den Niederlanden,
Deutschland, Österreich und Italien zur Nachberechnung historischer Ereignisse
verwendet (Wagenaar et al., 2018; Lüdtke et al., 2019a). Zudem zeigt eine Risiko-
analyse unter Verwendung von konsistenten, europaweiten Datensätzen in Lüdtke
et al. (2019b) die kontinentale Anwendbarkeit des Modells für Europa. Ebenso ist
eine deutschlandweite Anwendung mit detaillierterer Datengrundlage möglich. Hier-
zu können die bebaute Fläche, Gebäudetypen und -werte auf ATKIS-Datenbasis
verwendet werden (Thieken et al., 2006a). Eine detaillierte Repräsentation der expo-
nierten Werte erhöht die Präzision und Zuverlässigkeit von Schadensmodellierungen
(Wünsch et al., 2009).

Hattermann et al. (2018) beschreibt die Einbindung von BN-FLEMOps mit Hochwas-
ser-Zukunftsprojektionen in eine Modellkette zur Analyse von Auswirkungen von
Klimaveränderungen auf Hochwasserschäden an der Donau. In einer solchen Kette
von Modellen kann das Schadensmodell die Auswirkungen von Veränderungen in
der Vulnerabilität auf den Hochwasserschaden abbilden (Metin et al., 2018). Das
Modell BN-FLEMOps eignet sich insbesondere zur Untersuchung privater Vorsor-
gemaßnahmen zur Reduktion von Hochwasserschäden (Sairam et al., 2019a). So
können Strategien zur Klimaanpassung entwickelt werden, die über rein techni-
sche Maßnahmen hinausgehen. Im Kontext schneller Hochwasserereignisanalysen
können mit BN-FLEMOps aufgrund der räumlich-zeitlichen Übertragbarkeit und
Flexibilität bei den benötigten Eingangsdaten auch schnelle Schadensschätzungen
analog zu dem in Dottori et al. (2017) diskutierten Ansatz vorgenommen werden. Die
Anwendung von BN-FLEMOps und Kombination mit anderen Modellen wird, wie
im folgenden Abschnitt erläutert, durch die Implementierung im OASIS-LMF-Format
erleichtert.
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4.3.4 Implementierung im OASIS-LMF

Die Anwendung von fortschrittlichen Simulationsmodellen in der Praxis scheitert
häufig an erhöhten Kosten, verursacht durch einen größeren Aufwand und zu-
sätzlichen Datenbedarf. Weiterhin können die in der Wissenschaft entwickelten
Algorithmen zumeist nur mit erheblichem zusätzlichen Aufwand in bestehende
Arbeitsabläufe und Berechnungsverfahren integriert werden. Das vorgestellte proba-
bilistische Hochwasserschadensmodell BN-FLEMOps sowie die Datensätze für die
Eingangsparameter Hochwassererfahrung, Gebäudefläche sowie Wohngebäudewerte
stehen der wasserwirtschaftlichen Praxis und der Versicherungswirtschaft entspre-
chend dem OASIS-LMF-Standard (https://oasislmf.org) über den OASIS-HUB (https:
//oasishub.co/dataset/european-exposure-data-for-bn-flemo-models-gfz) zur Ver-
fügung. Der OASIS-HUB macht Modelle, Software, Daten, Werkzeuge und Dienst-
leistungen rund um Naturgefahren zugänglich. Das OASIS-LMF ist eine Open-
Source-Plattform zur Entwicklung und Anwendung von Naturkatastrophen (NatKat)-
Modellen, die durch eine Initiative der Versicherungswirtschaft entwickelt wurde.
Ziele dieser Initiative waren die Schaffung und Bereitstellung transparenter und
bewährter Modellierungsansätze mit einem modularen Aufbau. Dieses Angebot wird
von der Versicherungsbranche bereits gut angenommen und mehrere Verbundpro-
jekte arbeiten derzeit daran, das Angebot auch bei Behörden bekannter zu machen.
Der OASIS-HUB ermöglicht die Kombination von Gefährdungs- und Schadensmo-
dellen im Sinne eines Plug-and-Play-Konzepts, das auf Grundlage eines festgelegten
Standards für die verschiedenen Komponenten von NatKat-Modellen funktioniert.
Dieser Standard ermöglicht Modellläufe mit dem Kernel der Open-Source-Plattform
OASIS-LMF, der die für die Risikobewertungen benötigten Ergebnisse z. B. Schadens-
erwartungswerte inklusive deren Unsicherheiten erzeugt.

4.4 Zusammenfassung

In diesem Artikel wird das probabilistische, multivariable Hochwasserschadensmo-
dell BN-FLEMOps vorgestellt. Die beispielhafte Anwendung von BN-FLEMOps für
das Augusthochwasser 2002 an der Mulde zeigt, dass das Modell den Gesamtschaden
des Ereignisses im Mittel etwas unterschätzt. Der beobachtete Schaden wird jedoch
innerhalb des 50 %-Quantils der Schadensschätzung abgebildet. Im Vergleich zu
einem Ensemble aus international publizierten Modellen schätzt BN-FLEMOps den
Hochwasserschaden an Wohngebäuden im Mittel genauer. Zudem kann die gesamte
Spannweite des Ensembles und damit die Unsicherheit der Schadensmodellierung
zuverlässig mit dem probabilistischen Modell dargestellt werden. Zu den geschätzten
Schadenswerten wird eine Eintrittswahrscheinlichkeit vom Modell ausgegeben. Dies
ermöglicht es, Entscheidungsträgern komplexere Methodiken der Entscheidungstheo-
rie anzuwenden und so besser begründete Entscheidungen zu treffen. Das Modell
kann durch die verwendete Methodik der Bayesschen Netze und europaweit ver-
fügbarer Datensätze räumlich und zeitlich transferiert werden. Damit ist sowohl die
Anwendung auf der Mikro- und Mesoskala möglich als auch die Verwendung für
die Nachberechnung historischer Hochwasser und die Schadensprognose unter der
Annahme von Klimaveränderungen. Mit der Implementierung von BN-FLEMOps
im Standardformat des OASIS-LMF kann das Modell von Anwendern mit geringem
Aufwand genutzt und im Plug-and-Play-Verfahren mit anderen Modellen kombiniert
werden. Das Open-Source-Prinzip ermöglicht zudem jedem Nutzer das Überprüfen
der statistischen Zusammenhänge des Modells und das transparente Nachvollziehen
der Schadensschätzung.

https://oasislmf.org
https://oasishub.co/dataset/european-exposure-data-for-bn-flemo-models-gfz
https://oasishub.co/dataset/european-exposure-data-for-bn-flemo-models-gfz
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Summary
This article introduces the probabilistic multi-variable flood loss model BN-FLEMOps. The
application of BN-FLEMOps for the flood of August 2002 at the Mulde river shows that the
model slightly underestimates the total loss of the event on average. However, the observed loss
is covered within the 50 % quantile. Compared to an ensemble of internationally published
models, the BN-FLEMOps estimates the flood loss for residential buildings on average more
accurately. In addition, the entire variance of the ensemble and thus the uncertainty of loss
modelling can be reliably represented with the probabilistic model. The model also provides
the probability of occurrence in its output. This allows decision makers to use more complex
methodologies from the field of decision theory to make more substantiated decisions. The
model can be spatially and temporally transferred due to the Bayesian networks methodology
and available pan-European data sets. Thus, application is possible both on the micro- and
mesoscale as well as the use for the recalculation of historical
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Chapter 5

Drivers of future fluvial flood risk
change for residential buildings in
Europe

Abstract
Flooding is the most costly natural hazard in Europe. Climatic and socio-economic
change are expected to further increase the amount of loss in the future. To counteract
this development, policymaking, and adaptation planning need reliable large-scale
risk assessments and an improved understanding of potential risk drivers. In this
study, recent datasets for hazard and flood protection standards are combined with
high-resolution exposure projections and attributes of vulnerability derived from
open data sources. The independent and combined influence of exposure change
and climate scenarios rcp45 and rcp85 on fluvial flood risk are evaluated for three
future periods centred around 2025, 2055 and 2085. Scenarios with improved and
neglected private precaution are examined for their influence on flood risk using a
probabilistic, multi-variable flood loss model — BN-FLEMOps — to estimate fluvial
flood losses for residential buildings in Europe. The results on NUTS-3 level reveal
that urban centres and their surrounding regions are the hotspots of flood risk in
Europe. Flood risk is projected to increase in the British Isles and Central Europe
throughout the 21st century, while risk in many regions of Scandinavia and the
Mediterranean will stagnate or decline. Under the combined effects of exposure
change and climate scenarios rcp45, rcp85, fluvial flood risk in Europe is estimated to
increase seven-fold and ten-fold respectively until the end of the century. Our results
confirm the dominance of socio-economic change over climate change on increasing
risk. Improved private precautionary measures would reduce flood risk in Europe on
an average by 15 %. The quantification of future flood risk in Europe by integrating
climate, socio-economic and private precaution scenarios provides an overview of risk
drivers, trends, and hotspots. This large-scale comprehensive assessment at a regional
level resolution is valuable for multiscale risk-based adaptation planning.

Submitted as:
Steinhausen, M., Paprotny, D., Dottori, F., Nivedita, S., Mentaschi, L., Alfieri, L., Lüdtke, S., Kreibich, H.,
& Schröter, K.: Drivers of future fluvial flood risk change for residential buildings in Europe Global
Environmental Change. (In review).
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5.1 Introduction

Floods affect more people globally than any other natural hazard (CRED, 2020).
In recent decades, economic flood impacts sharply increased globally as well as in
Europe (Formetta & Feyen, 2019). For the future, flood losses and people affected by
river floods in Europe are expected to considerably increase because of the combined
effects of climate and socio-economic change (Rojas et al., 2013; Dottori et al., 2018).
Thus, improved flood risk management and climate adaptation strategies are needed
to reduce the adverse effects of floods and counteract the trend of increasing flood risk
(European Union, 2007; European Commission, 2021). An important basis is detailed
knowledge about the dynamics and drivers of flood risk. Flood risk is influenced by
different drivers that can be organized into the components hazard, exposure, and
vulnerability (IPCC, 2012).

Changes in flood risk are essential information for risk pooling (Prettenthaler et al.,
2017) as facilitated through the European Union Solidarity Fund, (Hochrainer et al.,
2010; Hochrainer-Stigler et al., 2017) as well as for the management of (re-)insurance
portfolios (Kron, 2005). Flood risk associated with residential areas has a particular
importance; the residential sector accounts for a large share of overall direct losses in
Europe (Rojas et al., 2013), and impacts directly translate to the population.

Global warming will intensify the hydrological cycle and increase the magnitude
and frequency of intense precipitation. Shifts in political-economic and socio-cultural
systems foster human encroachment into floodplains and increase the damage po-
tential, and consequently greater wealth tends to drive up economic costs of natural
hazards (Mitchell, 2003). The increase in flood losses during recent decades can be
largely explained by increasing exposure, both in Europe (Barredo, 2009; Barredo
et al., 2012; Stevens et al., 2016; Paprotny et al., 2018b) and beyond (Pielke & Downton,
2000; Tanoue et al., 2016; McAneney et al., 2019). Besides changing climate, exposure
growth remains a strong driver of losses, as shown by Rojas et al. (2013) and Alfieri
et al. (2015a).

Vulnerability of a residential building to flooding is influenced by the building char-
acteristics and the level of adaptation (Few, 2003). Besides flood prevention via
structural protection, many countries have adopted the concept of managing residual
flood risk via building-level private precautionary measures (Kreibich et al., 2015;
Bubeck et al., 2018). The implementation of measures is influenced by flood expe-
rience (Parker et al., 2007; Bubeck et al., 2013; Atreya et al., 2017), socio-economic
and building characteristics (Bubeck et al., 2012; Cumiskey et al., 2018). The role of
several private precautionary measures has been analysed for countries in Europe
and was found to provide resistance against flood loss thereby, reducing vulnerability
of residential buildings (Hudson et al., 2014; Poussin et al., 2015). Vulnerability is
often quantified using flood loss estimation models (Gerl et al., 2016).

In the past decade, increasing geospatial data availability and computing resources
fostered a sharp increase in modelling frameworks for flood risk assessment at
continental and global scales (Jongman et al., 2012b; Merz et al., 2014a; Ward et al.,
2020). These often enable a modular structure and flexible use in the implementation
of what-if scenarios based on appropriate combinations of hazard, exposure, and
vulnerability. Typical applications include the reconstruction of past impacts and
projections under future climate scenarios (Alfieri et al., 2015b; Alfieri et al., 2016a).
Recent applications coupled continental scale flood simulations with detailed impact
models for specific sectors, including railway networks (Bubeck et al., 2019), road
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networks (van Ginkel et al., 2021), commercial assets (Paprotny et al., 2020a) and
ports (Izaguirre et al., 2021), showing the benefits of advanced modelling approaches
to refine large-scale impact estimates. However, approaches to estimate flood losses
for the residential sector at the European scale have seen to date only simplified
depth-damage applications.

Flood loss assessments at European scale have a number of shortcomings. Commonly,
rather simple deterministic depth-damage functions are used for flood loss assess-
ments (Jongman et al., 2014; Alfieri et al., 2015b; Alfieri et al., 2016b; Dottori et al.,
2017). These models, which use only the water depth to estimate loss, are unable to
adequately describe complex damage processes (Meyer et al., 2013; Schröter et al.,
2014), so that associated uncertainties might be high but are unknown because of
a lack of validation and missing uncertainty quantification. Particularly, resistance
factors, such as the presence of precautionary measures, are rarely taken into account
by current loss models, but are a precondition for the evaluation and development of
effective risk mitigation strategies (Kreibich et al., 2015).

Formetta and Feyen (2019) identify the need for spatially explicit exposure and vul-
nerability information to better understand the impacts of natural hazards. This study
contributes spatially detailed quantifications of different flood risk drivers on the
European domain. The probabilistic, multi-variable flood loss model BN-FLEMOps
(Wagenaar et al., 2018) makes it possible to quantify the effect of private precaution.
In combination with novel input data for exposure, vulnerability, and recent data for
hazard and flood protection, this enables the quantification of uncertainties for all
components of flood risk. With these innovations, we aim to address the following
questions:

• How does flood risk for residential buildings develop in Europe under condi-
tions of changing climate, exposure, and vulnerability?

• What are the unique contributions of flood risk drivers to the changes?

• How do scenarios of adapted private precaution influence flood risk?

• Where are regional hot spots of flood risk and flood risk change in Europe?

Our assessment of flood risk is focused on direct tangible loss to residential buildings
caused by river floods. A period between 1981–2010 centred around the year 1995
serves as “baseline” for the analysis of future flood risk. The drivers of flood risk are
evaluated in independent and combined scenarios. Results for the historic baseline
are compared against reported losses at country level.



80 Chapter 5. Drivers of flood risk change for residential buildings in Europe

5.2 Data and Methods

5.2.1 Hazard

Data and modelling framework developed for the European research project PESETA
VI (Dottori et al., 2020) was used for this study. The occurrence and intensity of
flood processes under present and future climate conditions were simulated using
the hydrological model LISFLOOD, as described in (Mentaschi et al., 2020). Then
a dataset of flood hazard maps based on hydrodynamic modelling to reproduce
inundation extent and water depth (Dottori et al., 2021a) was created. Moreover, a
spatial dataset of flood protection standards to assess the frequency and magnitude of
floods causing impacts was applied (Dottori et al., 2021b). The next sections describe
in more detail all the hazard components.

5.2.1.1 River flow projections

Projections of river streamflow derived with the hydrological model LISFLOOD
(Knijff et al., 2010; Bubeck et al., 2013) implemented for the European continent with a
resolution of 5 km, over the time horizon 1981–2100 were utilized. LISFLOOD is a dis-
tributed, physically-based rainfall-run-off model combined with a routing module for
river channels that allows to reproduce all the relevant catchment processes. The sim-
ulations are based on the latest calibrated version of LISFLOOD (Dottori et al., 2021a)
released as open-source software and available at https://ec-jrc.github.io/lisflood/.
The forcing data of the streamflow projections (temperature, precipitation, radiative
forcing, wind, and vapour pressure) were provided by 11 EURO-CORDEX projections
under scenarios rcp85 and rcp45 (Jacob et al., 2014; Casanueva et al., 2016). The simu-
lations were carried out using present-day estimations of population, anthropogenic
land use and water demand provided by the Land Use-based Integrated Sustain-
ability Assessment of the Joint Research Center (JRC LUISA) territorial modelling
platform (Silva et al., 2013). The extremes of river discharge were studied using the
non-stationary approach for Extreme Value Analysis (EVA) proposed by Mentaschi
et al. (2016). For more details, the reader is referred to Mentaschi et al. (2020).

5.2.1.2 Inundation modelling

Flood extent and flood depths used in this work are taken from the dataset of hazard
maps for river flooding developed by Dottori et al. (2021a). The extent of the dataset
spans across geographical Europe (with the exclusion of the Volga river basin), and
includes all the rivers entering the Mediterranean Sea and the Black Sea with upstream
basin area above 500 km2. The maps represent inundation depth at 100 m resolution
along each section of the river network for six different flood return periods (10,
20, 50, 100, 200 and 500 years). The hydrological input is based on a long-term
hydrological simulation for the period 1990–2016, run using the same version of the
LISFLOOD model used for streamflow projections. This simulation provides the
hydrological input for the flood simulations performed with the hydrodynamic model
LISFLOOD-FP (Bates et al., 2010). Future flood hazard is then assessed, considering
changes in flood frequency of the synthetic flood events with associated flood extent
magnitude.

https://ec-jrc.github.io/lisflood/
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5.2.1.3 Structural flood defences

The novel dataset of flood protections described by Dottori et al. (2021b) was utilized
here. In the dataset, the level of protection at any river location is defined by the
return period (in years) of the maximum design flood that does not produce overflow.
Flood protection data were derived at the administrative level and for this study
have been downscaled to a 100 m grid to match the other gridded datasets. The
dataset is built combining different sources of information on protection levels from
technical reports and scientific publications, using modelled and observed flood
losses to select the most plausible protection levels for all countries in geographical
Europe (excluding Russia, Belarus, Ukraine, and countries in the Caucasus). Where
design protection levels were unavailable, the level of flood defence was determined
through an inverse modelling approach for each country, identifying the protection
values that provide the closest match between modelled and reported losses. To this
end, the database considered two datasets of protection standards (Jongman et al.,
2014; Scussolini et al., 2016) and a range of uniform protection values at country
scale. Future levels of flood protection are adjusted to changes in flood frequency.
Specifically, streamflow projections are used to calculate the change in frequency
of present-day design flood events under future climate conditions. For instance, a
1-in-100-year flood protection under present conditions may reduce to 1-in-50-year
under future conditions because of the increased frequency of the flood event with
the same magnitude.

5.2.2 Exposure

The baseline exposure for the year 1995 was obtained from HANZE database (Pa-
protny et al., 2018a). The exposure layer has a resolution of 100 m and indicates
the value of the gross stock of residential buildings in Euro (€) in 2015 prices and
exchange rates. It was generated by disaggregating the national stock of dwellings to
regions (NUTS-3 level) according to regional gross domestic product (GDP) and then
further disaggregating the estimated regional stock proportionally to the population
per grid cell. The gridded population in 1995 was computed using a land-use change
model. This model redistributes the estimated gridded population in the baseline
map for 2011 through modelling land-use transitions (especially between urban and
agricultural or natural land). Detailed information on the underlying methodology is
provided by Paprotny et al. (2018a). Here, we recalculated the original map for 1995
from that study by including only residential buildings instead of all types of fixed
assets and adjusted it for inflation (of GDP) and change in exchange rates up to year
2015.

Exposure in 2025, 2055, 2085 was calculated by adjusting the 1995 map according to
the following formula:

Ec,t = Ec,1995 ×
Pr,t

Pr,1995
× Gr,t

Gr,1995
× Wc,t

Wc,1995
(5.1)

where:
Ec,t is the exposure in grid cell and year

Pr,t is the population in NUTS-3 region in which grid cell is located, and year

Gr,t is the regional GDP in NUTS-3 region in which grid cell is located, and year
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Wn,t is the ratio of the value of residential buildings to GDP (“wealth-to-income“
ratio) in country in which grid cell is located, and year.

Estimates of future exposure require computing three components: population, GDP
and the wealth-to-income ratio. Each was obtained separately with different methods,
which are explained below. However, because of the resolution of available demo-
graphic and economic data, the analysis operates on regional level and therefore
neglects sub-regional population and land-use change after 1995 (see subsection B.1.1).
Because of changes in NUTS regional classification over the years, growth for years
1995–2010 was taken directly from the HANZE database by intersecting the NUTS-3
(version 2013) polygon layer with the gridded residential exposure layers generated
for 1995 and 2010. Afterwards, we use our own compilation of historical data: re-
gional population (2010–2015), regional GDP per capita (from 2010 to the most recent
year available) and national-level wealth-to-income ratio (2010–2018).

In the period up to 2085, the following projections were used:

• population from EUROPOP2019 projections for NUTS-3 regions by Eurostat
(2021a), supplemented by projections prepared by statistical agencies of each
constituent country of the UK; uncertainty ranges were added based on proba-
bilistic national population projections by the United Nations (2019b).

• GDP computed through a Markov Chain-Monte Carlo probabilistic simulation
of future regional economic growth based on empirically-observed “Beta“ con-
vergence (Barro & Sala-i-Martin, 1992; Monfort, 2008) within European NUTS-3
regions during 2000–2018.

• wealth-to-income ratio through extrapolation (with uncertainty bounds) of
the 1950–2018 pan-European upward trend of this component (Paprotny et al.,
2018b; Paprotny & Schröter, 2020).

Detailed information on the derivation of the projections is provided in the ap-
pendix.

In the process described above, an uncertainty distribution of population, GDP per
capita and wealth-to-income ratio in 2025, 2055, 2085 for each NUTS-3 region was de-
rived. Those distributions were combined into one, assuming independence of each
component through sampling each distribution 10,000 times. Thus, a combined expo-
sure uncertainty distribution for each region and time-step was achieved. We selected
two scenarios: the first and third quartiles of the distribution, which can be translated
as low and high exposure growth scenarios by historical standards. The projected
growth in residential exposure since 1995 is presented in the appendix.

5.2.3 Vulnerability

In this section, we describe the drivers influencing flood vulnerability of residential
buildings in relation to the predictors and model structure of the Bayesian Network —
Flood Loss Estimation MOdel for the private sector (BN-FLEMOps; Wagenaar et al.,
2018). BN-FLEMOps captures the interaction between flood hazard, and vulnerability
for individual residential buildings. The model estimates relative flood loss (rloss)
as the relation between the absolute building loss and the replacement costs of the
building. All costs (e.g., material, wages) that are associated with repair of damage
and reconstruction of the building are included in the loss calculation to estimate
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the direct tangible damage to the building structure. This does not include movable
household contents in the buildings.

Figure 5.1: Directed acyclic graph structure of BN-FLEMOps with the variables: rbloss =
relative building loss; wd = water depth; rp = return period; d = inundation
duration; pre = precautionary measures; fe = flood experience; ba = footprint area
of the building; bt = building type (adapted from Wagenaar et al., 2018)

The Bayesian network approach represents the statistical dependency of multiple
input variables in a directed acyclic graph Figure 5.1. Variables describing the hazard
characteristics are water depth (wd), inundation duration (d) and return period (rp).
Vulnerability is represented by private precautionary measures (pre) in terms of dif-
ferent levels of precaution, previous flood experience of the population (fe), building
footprint area (ba) and building type (bt) (see Table B.1 in the appendix).

BN-FLEMOps was developed with empirical microscale damage data collected via
surveys with over 5000 flood affected households after large flood events in Germany
between 2002 and 2013. The structure of the model network was learned from a set
of 1522 complete survey records in combination with expert knowledge. For further
details on model development and the empirical data basis, we refer to Wagenaar
et al. (2018).

BN-FLEMOps can be transferred to the meso-scale and applied to areas where no
empirical microscale information is available (Lüdtke et al., 2019a). The meso-scale
application of BN-FLEMOps relies on Europe-wide consistent proxy data for model
input. A description of all model input data and other relevant datasets for this study,
such as asset data and structural flood protection, is given in subsection 5.2.1 – 5.2.3.
The proxy data approach has been validated against reported loss figures in three
case studies in Germany, Austria, and Italy, showing high predictive performance
for larger events with adequate empirical data. In a comparison with results from a
model ensemble, BN-FLEMOps achieves equal or better performance, estimating the
loss from the 2002 flood in the Mulde basin. As a probabilistic approach, the model
inherently provides uncertainty information for the flood loss estimates (Steinhausen
et al., 2020). Further, it captures the loss-reducing effect of private precaution (Sairam
et al., 2019a). Detailed and consistent information on levels of precaution (pre) does
not exist on the continental scale. Therefore, we infer levels of private precaution
for Europe from the loss model using evidence of flood experience (fe) and building
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area (ba), i.e., two variables in the model which are connected with precaution (pre).
Individuals and communities learn from past flood experiences. The memory of
past flood impacts motivates households to update and improve private precaution
(Bubeck et al., 2012). Flood experience (fe) is indicated by the number of floods
in each NUTS-3 region in the 25 years preceding the baseline (1971–1995) from
the HANZE database (Paprotny et al., 2018a). The uptake and effectiveness of
private precaution is also influenced by the characteristics of the residential building.
Building footprint area (ba) is the size of the building exposed to floods. It provides
an indication about building types. For example, detached single family homes have
footprint areas that on average are smaller than those of apartments. Building area
sizes for residential buildings are calculated from OSM building geometries within
residential land use (Lüdtke et al., 2019a). For the baseline scenario, the level of
private precaution is derived based on flood experience of the regions in 1995 and
building characteristics obtained from OpenStreetMap (OSM contributors, 2020). The
level of private precaution reflects the number of measures implemented to reduce
negative flood impacts. These measures may include dry and wet proofing, adapted
use and flood barriers.

5.2.4 Risk

Flood risk for a given area is expressed in monetary terms as accumulated direct
tangible loss in Euro per time period and event probability, as well as Expected
Annual Damage (EAD) in Euro. EAD is calculated over all return periods (10–500)
with the inclusion of residual risk for areas protected against 500 year flood events or
higher. EAD is a measure for risk that is widely used in large-scale modelling studies,
e.g., (Alfieri et al., 2015b; Dottori et al., 2021b; van Ginkel et al., 2021).

EAD is calculated as the probability weighted sum of damage for flood scenarios
with different return periods.

EAD =
n

∑
i=1

(∆Pi × ΣDi) + Rres (5.2)

Where:
The damage Di is calculated as: ∑ Di = Di + Di+1 per exceedance probability interval
(inverse return period RPi ): ∆P = 1

RPi
− 1

RPi+1
Note that based on the level of flood

protection, EAD is calculated excluding the damages caused by floods with return
periods below the protection standard. For protected scenarios, where the flood
protection level FP is greater than the maximum return period considered in this
study (rp 500), the residual risk is added as: Rres =

Dmax
FP

For the estimation of residual risk, the damage caused by flood events with a return
period greater than 500 years is assumed not to increase beyond the damage of the
500-year event. Residual risk in this context is defined as the risk remaining despite
structural flood protection, for example because of dike over-topping. Flood risk
is estimated for the 27 member states of the European Union with the addition of
the UK, Iceland, Norway, and Switzerland. Malta is excluded from the analysis as it
doesn’t include any major rivers.
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5.2.5 Scenarios

Scenarios for a historic baseline period and for three future periods are created for
Europe. These scenarios represent a range of possible future developments to explore
the influence of climate and exposure changes on flood losses, as well as effects
of private precaution on risk reduction. We use the median EAD to present our
findings, and refer to the appendix for further uncertainty quantification in terms of
the interquartile range (IQR). To compare the different levels of uncertainty in the
flood risk drivers and in the flood loss model itself, we present a separate analysis of
each component and discuss sources of uncertainty. An overview of all scenarios is
depicted in Figure 5.2.

5.2.5.1 Baseline scenarios

The baseline period is centred around the year 1995 and serves as reference for the
comparison to the future scenarios. Hazard characteristics for the baseline were
derived from the Europe-wide flood hazard maps (subsubsection 5.2.1.2) that include
the inundation areas and depth for flood events of six return periods (10, 20, 50,
100, 200 and 500 years). For each of these hazard maps the return period is uniform
throughout the entire domain with different water depth depending on local topog-
raphy and river discharge. The hazard maps for the baseline represent the hydrology
of a 30-year period from 1981 to 2010. Hazard scenarios with homogeneous return
period flood discharges as they are used in this study are unrealistic. When assuming
full dependence, i.e., simultaneous occurrence of the same return period flood at
every location/spatial unit, the total loss integrated over the entire domain is strongly
overestimated (Lamb et al., 2010; Metin et al., 2020; Nguyen et al., 2020). Considering
or disregarding spatial dependence does not influence the EAD, but biases the risk
curve (Metin et al., 2020). Vulnerability is characterized by the level of precaution
derived from flood experience of the population (HANZE), counting the number of
floods in each NUTS-3 region in the 25 years prior to the baseline and the building
footprint area derived from a 2020 Version of OSM (OSM contributors, 2020). Expo-
sure values for residential buildings in the baseline period are based on the building
stock data and population density for the year 1995. Flood protection information is
derived from the gridded PESETA VI layer by calculating the statistical mode of flood
protection levels for each NUTS-3 region. In regions where the flood protection level
is equal or higher than the return period of the flood events found in the hazard maps,
no loss is considered to occur. For comparison, a baseline without flood protection
and a baseline with flood protection are generated.

5.2.5.2 Future scenarios

The future periods considered in this study each cover 30 years and are centred
around 2025, 2055 and 2085, thus represent the beginning, middle and end of the
21st century. To evaluate future flood risk under scenarios of climate change, the
median, first, and third quartile of the return period shifts are derived as described in
subsubsection 5.3.2.1. EAD calculations are based on these “shifted” return periods
and in accordance with the statistical mode of the “shifted” flood protection levels
per NUTS-3 region. Change in exposure values (median, first, and third quartile)
based on economic development and population growth are used to scale the baseline
loss estimations for the independent analysis of the impact of exposure changes on
risk. To examine the combined effects of climate and exposure change, results of the



86 Chapter 5. Drivers of flood risk change for residential buildings in Europe

climate scenarios rcp45 and rcp85 are scaled by the changes in exposure for the three
future period.

5.2.5.3 Risk reduction scenarios

To explore the effects of structural flood protection and private precaution on risk
reduction, multiple scenarios for the baseline and the future are created. For the
baseline period, a scenario with current levels of private precaution, but without
structural flood protection is compared to the baseline with current levels of flood
protection and private precaution. Two further scenarios with flood protection, but
improved precaution and neglected precaution, are created. In the scenario with
improved precaution, the level of private precaution is increased by one for all areas
where precaution is not at the maximum level. On the contrary, precaution levels
are reduced by one in areas where they are greater than zero to simulate precaution
neglect in Europe. For future climate and exposure conditions, all three scenarios
of private precaution (baseline levels, improvement, and neglect) are calculated to
examine the possible effects for risk reduction. The levels of private precaution in the
three scenarios are kept constant throughout all future time periods.

Figure 5.2: Overview of the scenarios for flood risk estimation. The protected and unprotected
scenarios assume baseline levels of private precaution. Precaution scenarios utilize
flood protection standards. Future scenarios for 2025, 2055 and 2085 are based
on the protected baseline. The comparison of risk reduction by protection and
private precaution uses all baseline scenarios. The influence of precaution on
flood risk is assessed for the combined future scenario.
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5.3 Results

The distribution of flood risk in Europe for the baseline (1995) is described first.
Subsequently, the independent and combined effects of climate and exposure change
on future flood risk are reported. Finally, scenarios for flood risk reduction are
evaluated.

5.3.1 Baseline flood risk

For the baseline period the EAD estimations with structural flood defences show
Germany (314 million €), France (203 million €), Italy (97 million €) and Spain (52 mil-
lion €) as the European countries with the highest flood risk for residential buildings
(Figure 5.3). The United Kingdom (UK) is estimated to have similarly high losses as
the alpine countries of Austria and Switzerland. However, the uncertainty around
EAD estimates for the UK is much greater than for other countries with similar EAD.
This becomes apparent when comparing the IQR of the UK EAD estimates (13.7–65.5
million €) with that of Austria (15.0–58.1 million €). Scandinavian countries Norway,
Sweden, and Finland fall into the middle range of flood risk in Europe with EADs
of 4.6, 9.0 and 12.3 million € respectively. The Netherlands because of extremely
high flood protection standards of up to 10,000 years exhibit relative low losses of
6.5 million € per year. Low annual losses under 1 million € are estimated for Estonia,
Denmark, Bulgaria, Iceland, and Cyprus.

Figure 5.3: Expected Annual Damage per country for the baseline scenario. Note the change
of scale along the y-axis of the right panel for better readability.
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At regional (NUTS-3) level, the highest losses in Europe are metropolitan areas
situated along major rivers (Figure 5.4). These areas combine the hazard of fluvial
flooding with a high concentration of exposed assets vulnerable to damage. Hamburg
at the mouth of Elbe River, Paris at the confluence of Seine and Marne, Florence,
Zaragoza, London (combining multiple NUTS-3 regions), Geneva, Ghent, and Linz
are the regions with the overall highest losses in the baseline period.

Figure 5.4: Expected Annual Damage per NUTS-3 region for the baseline scenario. Grey
NUTS-3 regions have no risk estimation (no hazard and/or no exposure). Grey
countries were not included in the analysis. EAD values are not normalized
to region area size. Map projection EPSG3035. Shape files are provided in the
appendix.

Besides these regions of the highest risk, areas of high flood risk (EAD over 2.5
million €) are found in Germany in the city of Dresden in the Elbe catchment as well
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as Cologne and Frankfurt located along the Rhine, and Main River respectively. The
Po valley in northern Italy with the city of Padua, Pisa by the Arno River in Tuscany,
and the capital region of Rome by the Tiber River. High-risk regions in France are in
the Rhone catchment in the region of Lyon, Grenoble, and Avignon as well as Genève
(Switzerland). The Danube and its tributary Inn generate the highest losses in Austria
in the cities of Linz and Innsbruck. Also, the region of Warsaw on the Vistula River
falls into the high-risk category in Poland.

Regions of low risk (EAD below 40,000 €) are predominantly remote and rural without
major river systems and or areas with high flood protection levels. Most low-risk
regions are located in eastern and Southern Europe. All but one NUTS-3 region of
Bulgaria has an EAD below 40,000 €. Likewise, low losses are expected in central
and eastern Poland, as well as in the region surrounding lake Balaton in Hungary
and northern Croatia. In the Mediterranean, low-risk areas are in southern Italy
and the islands of Sicily and Cyprus. Correspondingly, most regions in Portugal are
estimated to have low losses in the baseline period. Regions in the east and south of
England, Wales, and the north of Scotland show particularly low flood risk. The same
can be seen for most regions in the northern part of the Netherlands. High levels of
flood protection in northern Scotland (200 years) and in the north of The Netherlands
(1250–10,000 years) combined with moderate exposure explain the low risk in these
regions.

5.3.2 Drivers of future fluvial flood risk

The two most important drivers, climate, and exposure change are explored separately
to understand the different degree and spatial patterns in which they contribute to
future flood risk in Europe.

5.3.2.1 Climate change

Little overall differentiation of climate driven risk change in Europe is visible between
rcp45 and rcp85, the beginning of the century (2025). Both scenarios entail a median
risk increase of around 70 % compared to the baseline, with IQR from 25 % to 150 %
EAD increase (Figure 5.6). In the middle and end of the century, the two climate
scenarios become more distinct as the loss more than doubles from 2025 to 2055
under rcp85. Also, the uncertainty, indicated by the IQR around rcp85 estimates,
substantially increases and is skewed towards higher change rates compared to the
more optimistic rcp45 scenario. For the end of the century (2085) an increase in risk
driven by climate change is estimated at 196 % under rcp85 with an IQR from 70 % to
448 %. The large uncertainty around these estimates reflects the variability within the
11 different EURO-CORDEX projections that drives the hydrological and hydraulic
simulations.

Most regions in Europe show a consistent trend of either decreasing or increasing
flood risk under the two scenarios of climate change. Regions with decreasing flood
risk are located primarily in Scandinavia in northern Norway and parts of Sweden
and Finland, Iceland, as well as in north-eastern Poland (Figure 5.5). Furthermore,
under rcp45, parts of the Baltic States are projected to have decreasing flood risk. In
the end of the century, risk is estimated to decrease in the central regions of Romania
under rcp45 and rcp85. Decreasing risk throughout all three future periods and under
both rcps is also expected in many regions of Portugal and Spain, with other parts
of the Iberian Peninsula showing small increase in expected risk. Especially under
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Figure 5.5: Relative change in EAD per NUTS-3 region from the baseline to climate projections
in three future periods and for two rcp scenarios. Blue colours indicate lower risk
and red colours higher risk compared to the baseline. Map projection EPSG3035.

rcp85, decreasing risk is estimated for southern Spain and Portugal at the end of the
century. Sicily and southern Greece are regions in the Mediterranean with decreasing
risk.

Overall increasing risk is expected in almost all regions in the UK and Central Europe
from France to Hungary and from Denmark to northern Italy with the exception
for the western part of Austria which shows a decrease in flood risk. The highest
increase in risk in Northern Europe are projected for the British Isles, Denmark and
southern Sweden. In Southern Europe, the Po valley in Italy and the regions along
the Sava River in Croatia show very high rates of risk increase. The projected regional
patterns of climate driven flood risk change align well with and are a continuation
of the observed trends in river flood discharges for Europe in the period 1960-2010
(Blöschl et al., 2019).

Under the less extreme rcp45, flood risk in Europe would only increase by 125 % at the
end of the century, instead of almost 200 % under rcp85. A future with lower global
emissions reduces flood risk and also entails lower uncertainties around climate
predictions, making the estimations of future flood risk more reliable. Additionally,
uncertainties around the median estimates are significantly lower under rcp45 in
comparison, especially with the very high uncertainty for rcp85 at the end of the
century. Climate adaptation plans to reduce flood risk can be based on more certain
estimations under rcp45.
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5.3.2.2 Exposure change

At the beginning of the century, flood risk is expected to double, solely based on the
increase in value of exposed buildings (Figure5). The rate of increasing risk because
of exposure change, follows a linear trend and is estimated to reach nearly 200 % in
the middle of the century with an IQR from 150 % to 244 %. In the end of the century,
this exposure driven increase will reach nearly 300 %.

Figure 5.6: EAD in Europe for the baseline and scenarios of future flood risk change. The
first panel displays the EAD for all of Europe in the baseline period. In the second
panel, scenarios of private precaution show possible changes in risk attributed to
vulnerability. The third panel shows the effects of climate change under two rcp
scenarios with baseline precaution in three future time periods. Baseline exposure
values are used for the first three panels. The fourth panel uses baseline climate
and precaution, but includes changes in the exposure component. Uncertainty for
each risk component separately is displayed by the IQR around the bar plot of the
median estimate.

Regional differences in flood risk change attributed to the increase in building values
are smaller in comparison with climate driven changes. Most European regions
experience a steady increase in risk from 1995. Exceptions to the continuous risk
increase are the County of Sisak-Moslavina in eastern central Croatia, a few regions
in the south and east of Poland and in north-eastern Lithuania and Estonia. Note that
the building value decrease in these areas does not exceed 10 % and only persist in
beginning of the century projections. Low increase over all future periods is projected
for northern Spain, Portugal, central France, rural regions of Poland and northern
Lithuania.

South-Eastern Europe is expected to experience the highest increase in risk. For some
regions in Bulgaria and Romania, more than 10-fold increase in flood risk is predicted
until the end of the century (Figure 5.7). Furthermore, the British Isles and south-
ern Sweden are regions with substantial increases in exposure driven risk. Strong
increases in risk are expected in particular in and around urban centres. Examples for
this spatial pattern can be found all over Europe in the regions surrounding Warsaw,
Poznań, and Wrocław (Poland); the regions surrounding Prague (Czech Republic),
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Budapest (Hungary), Bucharest (Romania), Sofia (Bulgaria) as well as Stockholm and
Malmö (Sweden).

Figure 5.7: Relative change in EAD per NUTS-3 region from the baseline to exposure pro-
jections in three future periods. Blue colour indicates lower risk and red colour
higher risk compared to the baseline. Map projection EPSG3035.

5.3.2.3 Combined effects

After attributing the role of flood risk drivers, the combination of climate and exposure
change is simulated to create more realistic future scenarios of flood risk in Europe.
The effects of climate and exposure change on EAD, per country, are presented in
Figure 5.8. Figure 5.9 shows the relative changes in EAD compared to the baseline,
per NUTS-3 region.

As presented in subsubsection 5.3.2.1 the effects of climate change on flood risk in
Europe are spatially heterogeneous. While most countries and regions must expect
increases in risk, some regions, especially in northern and Southern Europe, will
see stable or slightly decreasing risk in the future. Changes in exposed building
values will lead to increasing risk in all European regions in the middle and end of
the century, with the largest changes occurring in Eastern Europe and the British
Isles. In combination, these drivers can counteract or build up their respective effects.
Nevertheless, compared to the baseline, all European countries are expected to face
increased flood risk for residential buildings. For the baseline period, an EAD of 885
million € for residential buildings in Europe was estimated. Under future climate
conditions and exposure, the loss is projected to increase to 2.0–2.1 billion € in 2025
and 4.3–5.5 billion € in 2055 under rcp45 and rcp85, respectively. By the end of the 21st

century the EAD will increase seven-fold to 6.8 billion € under rcp45 or 10-fold to 9.3
billion € under rcp85. These results assume current levels of private precaution.

Under rcp45, Spain sees a steady increase in flood risk throughout the century because
the risk increase based on socio-economic development surpasses the slight decrease
driven by climate change. Only under rcp85 will Spain’s flood risk stagnate because
of the stronger effects of climate change at the end of the century. Under rcp45,
Finland will see a decrease in risk from 2055 to the end of the century, as opposed
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Figure 5.8: Combined effects of climate and exposure change on EAD per country. Note the
change of scale along the y-axis of the right panels for better readability.

to an increase under rcp85. The socio-economic development in Scandinavia and
the Baltic States surpasses the risk reducing effects of climate change, leading to an
overall increase in flood risk (Figure 5.9).

The highest relative EAD changes are observed in the United Kingdom, Ireland,
The Netherlands, Sweden, Slovenia, and Bulgaria at the end of the century under
rcp85. In contrast, the lowest relative changes in risk are observed in the Baltic States,
Portugal, Spain, and Greece. Portugal, the country with the lowest relative changes
in EAD, is expected to experience a 71 % (rcp45) to 85 % (rcp85) increase in risk at the
beginning of the century, 193 % (rcp85) to 219 % (rcp45) by the middle of the century
and 129 % (rcp85) to 164 % (rcp45) in the end of the century. Under rcp85, the risk
increase at the end of the century is most pronounced. Countries such as Finland and
Greece where risk would stagnate from middle to end of the century under rcp45,
show higher EAD under rcp85 at the end of the century.

5.3.3 Risk reduction

The exceedance probability curves in Figure 5.10 show the total loss for uniform
return period flood events in Europe. A comparison of baseline flood risk (green
graph) and a scenario that removes all structural flood protection in Europe while
retaining the current level of private precaution (black graph) reveals the effect of
risk reduction for flood events of the considered return periods. Examining a Europe-
wide 100-year flood as an example, losses with the current level of structural flood
protection and private precaution sum up to 21 billion €. Without flood protection,
the losses could be as high as 137 billion €. The risk reduction that structural flood
protections offer in Europe is especially substantial for events under the 100-year
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Figure 5.9: Relative change in EAD per NUTS-3 region from the baseline to climate projec-
tions, combined with exposure projections in three future periods and for two rcp
scenarios. Blue colours indicate lower risk and red colours higher risk compared
to the baseline. Map projection EPSG3035.

return period. For a flood event with a return period of 200 years, the losses for
residential buildings in Europe are drastically higher and amounts to 126 billion
€. Flood protection reduces the losses for 200 and 500 year events only by 31 and
26 billion €, respectively. Risk reduction by structural flood protection for 500 year
events is a result of the high protection levels in the Netherlands (rp 1250–10,000),
London (rp 1000) and Budapest (rp 1000). “Existing“ flood protection levels reduce
the total EAD in Europe by 4.7 billion € for the baseline period.

A scenario with improved private precaution levels and current flood protection
standards (blue graph) results in a reduction in losses for high return period events
(200 and 500 years) of 17 % (-21 billion €) and 12 % (-17 billion €). These results
suggest that improvements in private precautionary measures would significantly
reduce the residual flood risk left by missing or insufficient structural flood protection.
In a pessimistic scenario in which private precaution is neglected in Europe, the losses
for a 500-year event is of the same magnitude as in the scenario without structural
flood protection. The scenario with improved precaution for the same return period,
however, reveals the potential of private precautionary measures to reduce residual
flood risk also for extreme events. Improved precautionary measures can reduce EAD
in Europe by 15 % (137 million €) in the baseline period. Under future climate and
exposure conditions the highest risk reduction through improved private precaution
can be achieved in Luxembourg, Norway, Slovenia, Greece, UK, and Latvia with over
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Figure 5.10: Exceedance probability curve of flood losses for Europe. The green curve shows
the baseline as defined in subsubsection 5.2.5.1. The black curve shows losses
for a baseline without flood protection. A baseline scenario with increased and
decreased private precaution is displayed in blue and orange, respectively.

20 % lower EAD. Lithuania, Iceland, and Portugal show the lowest potential for risk
reduction with EAD decreases below 10 % (Figure B.2 and Figure B.3).

Neglecting private precaution would cause increased risk in Iceland by 24 % and
in France by up to 23 % depending on the future period and climate scenarios. The
uncertainty range around the effects of private precaution on EAD can be consider-
able, especially for countries with low EAD. Bulgaria, for instance, may see adverse
developments in risk because of precaution neglect between 6 % to 21 % depending
on climate scenario and future period.

5.4 Discussion

5.4.1 Comparisons with previous studies

Comparing our results to Rojas et al. (2013) reveal similarities in spatial patterns
of climate related flood risk change. Strong increases are projected for the UK and
Ireland and northern Italy, while decrease or stagnation are expected in regions of
Portugal, Spain, and Greece. Our results do not show a decrease in risk in North-
Eastern Germany and Poland, as presented in Rojas et al. (2013). Our projections
more closely agree with the spatial patterns of change reported in Dottori et al.
(2021b) where decreases in flood risk are shown in parts of Sweden and Finland
as well as in Portugal, Spain, and Greece. Meanwhile, Central Europe, including
Germany and Poland, are expected to have greater flood risk at the end of the century.
Germany, Italy, and France are identified as the three European countries with the
highest EAD. Alfieri et al. (2015b) supports these findings, but reports significantly
higher risks in Italy compared to Germany. This deviation is most likely because of
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lower flood protection levels in the Po River catchment in northern Italy, assumed
by Jongman et al. (2014). We identify further agreement in the strong risk increase
and high uncertainty around results for the end of the 21st century under rcp85. All
comparisons drawn to these previous studies are qualitative in their nature since
simpler depth-damage functions for flood loss estimation were used but assets from
all sectors (e.g., residential, commercial, industrial etc.) were included without
differentiation in the loss figures.

Willner et al. (2018) identify the need to increase flood protection levels in Europe
especially in southern Sweden, northern Germany, Poland and in France along the
Rhone, Loire, and Seine to mitigate increasing flood risk in the middle of the 21st

century. Our findings agree with most of the European regions identified to be under
increasing risk in the future. We show that improvements in private precaution can
reduce residual risk by 15 % in Europe and provide an additional mitigation strategy
next to flood protection level increases. These findings agree with Dottori et al. (2021b)
how found that flood proofing of buildings may cause an average damage reduction
in Europe by 12 %. The recommendations given by Alfieri et al. (2016a) to combine
dykes, local retention, and relocation in a strategy for risk reduction in Europe retain
valid and should be extended by the improvement of private precautionary measures.
The development of new buildings in flood prone areas has to be avoided to not
increase exposure unnecessarily. Growing uncertainties in the middle and end of the
century in flood risk projections call for iterative approaches for risk reducing strate-
gies to avoid under or over adaptation. Private precaution is locally implemented at
the object level, and can thus be used as a more targeted flood risk reduction strategy
in places where large-scale measures may not be cost-effective.

5.4.2 Comparison with reported losses

Flood losses estimated by the model for the baseline historical period can be com-
pared with reported losses in the same years. A multi-source compilation of historical
flood loss data was extracted from HANZE database (Paprotny et al., 2018a). Sev-
eral adjustments had to be made to the reported losses to be comparable with this
study. Only river floods were selected, as defined in the HANZE database, without
compound or flash floods. Losses were normalized to 1995 exposure levels using the
HANZE gridded exposure estimates for different time periods, and adjusted to 2015
prices and exchange rates. Further, economic losses for flood events that were missing
this information, but had other quantitative impact data, were gap-filled based on the
dependency of relative economic loss to relative fatalities/people affected, exposure
at the time of the event and estimated footprint of the event (same methodology as the
gap-filling in Paprotny et al. (2018a)). Finally, the economic losses were converted to
residential building loss using the relative share of housing in the total stock of fixed
assets in a given country and year of event (also drawn from the HANZE database).
The final estimate of residential flood losses in our study area based on reported
data is 1443 million € annually for 1981–2010. This value is well within the 50 %
confidence interval of our modelled protected losses, which is 454–1933 million €,
and considerably lower than the unprotected loss estimates, which is expected given
that flood protection prevents a large share of flood losses in practice. On a country
level, a high correlation is achieved (R2 = 0.81) (see Table B.2 in the appendix), with a
very accurate prediction for Germany, predictions within the 50 % confidence interval
for France, Hungary, or the Netherlands, but also underestimation of losses for Italy,
Poland, Spain, and the UK, suggesting that the flood protection estimates for those
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countries might be too high (see Figure B.1 in the supplement). Nonetheless, there
are variations in completeness of reported data, as well as uncertainty in gap-filling,
normalizing and converting loss data to housing losses only. Additionally, the defi-
nition of river floods in HANZE database does not fully match the criterion of 500+
km2 catchment size used in LISFLOOD. The modelled flood losses in the baseline
scenario are clearly in the correct order of magnitude, giving greater confidence in
the absolute values of losses in the projections.

5.4.3 Uncertainties

The results derived from the analysis of the future scenarios should not be understood
as deterministic predictions of future flood risk, but rather as attempts to study the
effects of independent and combined drivers on the possible changes of flood risk.
All efforts of modelling possible future conditions in the Earth system are naturally
uncertain. A systematic distinction can be made between epistemic uncertainty
(because of lack of knowledge) and aleatory uncertainty (because of randomness).
These uncertainties are part of all datasets and the imperfect relations of model
variables, thus exercising an efficacious influence on flood risk estimates presented in
this study.

Our projections of exposure growth neglect the effect of land use change. This
is caused by the lack of any useful projections of this factor for Europe. Recent
gridded population projections by Jones and O’Neill (2016) indicate a very strong
urbanization, contrary to processes of sub- or even de-urbanization taking place in
Europe, (Salvati et al., 2018; Shaw et al., 2020) and is caused by the global setting
of that study as intense urbanization is featured throughout the developing world
(J. Liu et al., 2007; Güneralp et al., 2017). When aggregated to NUTS-3 level, the
datasets fail to reproduce regional demographic growth patterns projected until 2050
by Eurostat for almost all countries in the study area. Another set of projections
by Murakami and Yamagata (2019) also strongly misrepresents regional population
growth in Europe. Further, land-use changes are multi-layered, very complex and to
a large extent policy-driven, making any projections deeply uncertain (Antrop, 2004;
J. Liu et al., 2007; Lambin & Meyfroidt, 2010; Bryan et al., 2016). Finally, Paprotny et al.
(2018b) show that the share of population, GDP, and wealth within the 100-year flood
zone in Europe has varied little over the past 150 years. We therefore concentrated
on projecting demographic- and economic-driven increase in the value of residential
assets and did not consider land-use change.

The spread between the CORDEX models is a major source of uncertainty for our
projections of flood impact. It has several causes, e.g., the limited resolution, the lack
of understanding and parametric representation of some processes, dissimilarities
among the models, use of different metrics and criteria to calibrate different models,
lack of consensus on the assessment of the quality of future projections, internal
variability and others. As climate projections are interdependent and forced by
hypothetical emission scenarios, the spread among the models does not represent an
estimation of the statistical uncertainty, but rather a range of opportunity, and should
not stop future decisions (Knutti et al., 2013). The relative uncertainty Ur (IQR/rlchng)
tends to increase with the year, and with the scenario’s emissions. The uncertainty is
also not homogeneous in space, with higher values of Ur generally found in Eastern
and Southern Europe (Figure B.4 in appendix).
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In the present work, we did not explicitly consider the uncertainty associated to
flood protection data. In Europe, information on actual protection standards can be
found only for a few countries and urban areas (Scussolini et al., 2016; Dottori et al.,
2017). Recent studies tried different approaches to estimate protection standards
in areas with no reported information, using modelled flood risk (Jongman et al.,
2014), empirical functions related to gross domestic product (Scussolini et al., 2016),
and recorded loss data (Dottori et al., 2021b). In several countries in Europe, these
datasets propose substantially different protection levels, meaning that the overall
uncertainty is considerable and difficult to quantify (Dottori et al., 2021b).

BN-FLEMOps is a fully probabilistic model trained based on a combination of expert
knowledge and micro-level empirical data from multiple events in Germany. The
model accounts for uncertainties in flood loss predictions based on 1) the ability of the
model to capture damage processes given the model structure and predictors and 2)
availability of relevant empirical data concerning the predictors for model application.
The model accounts for these two sources of uncertainties — represented by the NPTs
and provide an aggregated uncertainty range for the loss predictions.

5.5 Conclusions

Our study is the first high-resolution assessment of future flood risk in Europe, con-
sidering changes in all three components of risk: hazard, exposure and vulnerability.
It reveals regional patterns of future flood risk change for residential buildings in
Europe under scenarios of climate change and exposure development. Changes in
the value of exposed buildings will increase flood risk all over Europe throughout the
21st century with higher rates of increase in Southern and Eastern Europe. Climate
driven risk changes are more heterogeneously distributed in Europe. Climate change
will contribute to increasing risk in the UK and Central Europe, while stagnating or
decreasing risk is projected for parts of Scandinavia and the Mediterranean. Results
show that in particular, urban centres and their surrounding regions along major
European rivers will experience the highest rates of risk increase in the future.

In all future periods exposure has a greater influence on risk change than climate
driven hazard. Climatic changes alone will increase risk in 2085 by 116 % (rcp45)
and 181 % (rcp85), while exposure increases the risk by 275 % by 2085. The combina-
tion of Exposure and climate change amplifies the increase of flood risk in Europe:
under rcp45 and rcp85 scenarios, risk is estimated to increase by 670 % and 950 %
respectively by the end of the century. Projections under the rcp85 scenario are more
uncertain, with a tendency towards higher losses within the interquartile range. Even
though rcp85 should be regarded as a rather extreme scenario (see Hausfather and
Peters, 2020), these results reveal the threat of insufficient climate mitigation. In
comparison, the expected annual damage under rcp45 at the end of the century is 500
million € lower and less uncertain. Striving towards the less extreme climate scenario,
rcp45 facilitates more reliable planning of adaptation to reduce future flood risk in
Europe.

Existing flood protection levels reduce the expected annual damage for residential
buildings in Europe by 4.7 billion € in the baseline period. Besides structural flood
protection, private precautionary measures can reduce the risk by 15 % (137 million €)
based on expected annual damage estimates for Europe under a scenario of improved
private precaution. For regions where flood protection standards are low or where
climate driven changes in flood hazard will increase the need for protection, private
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precaution can significantly reduce risk by up to 20 % of the expected annual damage.
Improvements in private precaution should be part of adaptation strategies alongside
other risk reduction measures such as increased dyke heights, higher local retention
and relocation of buildings and dykes.

Acknowledgements:

Dominik Paprotny was supported by the German Research Foundation through
project Decomposition of flood losses by environmental and economic drivers, project
no. 44917597. Nivedita Sairam is supported by the German Federal Ministry of
Education and Research (BMBF) project DECIDER, project no. 01LZ1703A-H.





101

Chapter 6

Discussion, conclusions, and
outlook

6.1 Summary of key findings

This thesis advances flood risk modelling for residential buildings in Europe and
thereby improve our understanding of flood risk under current and future climatic
and socio-economic conditions. Probabilistic, multi-variable models represent dam-
age processes in detail and offer transparent uncertainty information. To fulfil the
data requirements for these approaches, I identified and integrated new data sources
into flood loss modelling. This enables the transfer of the microscale model to the
meso-scale, where it is validated against reported flood loss in case studies and per-
formance tested. Based on the identified vulnerability data and the most recent data
sets for hazard and exposure, future flood risk change is modelled for residential
buildings in Europe. The key findings from Chapters 2 – 5 are presented in bullet
points below, and the research questions guiding this thesis are addressed in detail in
the subsequent paragraphs:

Key findings

• Geometric characteristics of building footprints are useful proxy vari-
ables to represent building resistance to damage in flood loss models.

• The integration of open data sources such as OSM, DFO, and HANZE
improves the applicability and transferability of multi-variable models
in Europe.

• The newly developed probabilistic, multi-variable flood loss model
BN-FLEMOps accurately estimates loss on the micro- and meso-scale
and provides useful uncertainty information for decision-making.

• Fluvial flood risk for residential buildings in Europe will increase up to
10-fold until the end of the 21st century. Climate and exposure change
contribute to the risk increase in a ratio of two to three.

• Urban regions along major European rivers will suffer the highest risk
increase.

• Improving the level of private precaution could reduce flood risk in
Europe by 15 % on average.
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1. Which new data sources can advance multi-variable approaches for flood
loss modelling?

In Chapter 2 the question “Are OpenStreetMap building data useful for flood vul-
nerability modelling?” is addressed. To tackle this question, Random Forest models
based on water depth and several of numerical spatial measures derived from Open-
StreetMap (OSM) building footprint geometries were built. In comparison with a
simple stage-damage curve, these OSM-based models have significantly higher pre-
diction precision and deliver more reliable loss estimates. Compared with a detailed
multi-variable model based on empirical damage data, the OSM models show similar
prediction accuracy and reliability, with slightly lower precision. Building area is
identified as one of the best predictors of flood loss at the microscale (object level)
that can be derived from the OSM data. On the meso-scale (regional level), OSM
derived building area is a good representation of building area information collected
via surveys. Besides OSM, other data sources that provide building footprints can
also serve as data basis for this approach.

The number of floods in recent history in Europe can be derived from DFO and
HANZE flood event databases to serve as proxy data for flood experience of the
local population. These new data sets can be integrated into BN-FLEMOps as pre-
dictors for regions where detailed local survey data is not available. In cases where
detailed local data is available, it can be used to update the model and improve its
performance.

These findings improve the performance of multi-variable loss models for the mi-
croscale without the need for household surveys, which are often resource intense.
Furthermore, these new and open data sources improve transferability of existing
multi-variable models from the micro- to the meso-scale.

2. What is required to improve the transferability of loss models with
included uncertainty quantification?

Chapter 2 shows that models based on spatial measures derived from OSM building
geometries are well suited for the transfer across regions were footprint data is
available. These loss models require water depth information and building footprint
geometries. In transfer applications at the microscale, OSM based models outperform
conventional stage-damage models and often perform as well as multi-variable
models with micro-level predictors. The building data should be complete and precise
to ensure model accuracy. In regions where building characteristics are significantly
different from the training area, the performance, especially the reliability, of OSM-
based models are lower than models using detailed survey data.

To train these detailed multi-variable models, extensive empirical data sets are
required. For model transfers, heterogeneous data from multiple events in different
regions are best suited. BN-FLEMOps is a Bayesian Network model that meets these
requirements and can be updated with local data to deliver more accurate and reliable
loss estimates. The transfer of BN-FLEMOps from the microscale to the meso-scale is
accomplished by the integration of widely available, consistent data sets from OSM,
DFO and HANZE. These open datasets, together with the implementation of BN-
FLEMOps in the open source, OASIS-lmf provide better accessibility to complex multi-
variable loss models. The Bayesian Network approach for loss modelling enables
applications with incomplete input data, and thus increases the transferability to
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more data scarce regions. Incomplete input data is transparently reflected through
higher uncertainties in the probabilistic predictions.

3. How does a probabilistic, multi-variable model, built on novel data,
perform in comparison with traditional approaches?

The probabilistic multi-variable model BN-FLEMOps provides, compared to an
ensemble of flood loss models, a higher average prediction performance. Compared
to the individual members of the ensemble, BN-FLEMOps results in the fifth most
accurate and least biased estimation. While the median of the model prediction
slightly underestimates the overall loss, the interquartile range of predictions covers
the reported loss.

Probabilistic predictions for each municipality show that BN-FLEMOps adequately
covers the model ensemble variance in its probabilistic results. This means that the
probabilistic multi-variable model provide detailed information about estimation
uncertainties without the need to implement and run an entire model ensemble.
This uncertainty information is valuable for decision-making and supports flood risk
management.

4. How will flood risk for residential buildings in Europe change through-
out the 21st century?

In the historic baseline period, Germany, France, and Italy are the three European
countries with the overall highest fluvial flood risk. Climate change effects are
estimated to double (116 %) flood risk under rcp45 and almost triple (181 %) the
risk under rcp85 until the end of the 21st century. The later periods of the century
2055 and 2085 show a growing difference between the climate scenarios. Under rcp85,
the risk increase overall will be stronger, while uncertainties in the estimates become
larger (see Figure B.5). Climate change will lead to increasing flood risk in most of
Central Europe and the British Isles. Parts of Scandinavia and the Mediterranean
are estimated to experience stagnating or even declining flood risk.

The influence of changing exposure will almost quadruple (275 %) the flood risk
until 2085. South-Eastern Europe and parts of the British Isles as well as southern
Sweden are projected to have stronger increases in risk, driven by exposure change,
than the rest of Europe. The combined effect of climate and exposure change is
estimated to increase the flood risk by 670 % under rcp45 and 950 % under rcp85
until the end of the century. Overall, a divide between higher risk increase in urban
regions and lower increase in rural regions can be seen in the estimates.

Current structural flood protection standards are especially high in the Netherlands,
London, and Budapest and reduce the EAD in Europe by 4.7 billion €. In order
to reduce the impacts of changing climate and increasing exposure, vulnerability
reduction via adaptation measures is crucial. In this respect, the flood loss model
BN-FLEMOps is the first to directly include private precautionary measures as a
predictor of flood loss in Europe. It is estimated that, on average, the implementation
of improved private precaution is capable of reducing flood risk by 15 %.
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6.2 Discussion

In this chapter, several aspects of the research performed in this thesis are discussed,
along with opportunities for future exploration. The discussion follows the structure
of the thesis as presented in Figure 1.4, by addressing the subject of new data sources
for flood loss models, the issue of uncertainty in flood risk and the implications of
flood risk change in Europe. The discussion includes all components of flood risk,
but focuses on the vulnerability component of flood loss estimation.

6.2.1 New data sources and model transfer

Flood loss models built only using water depth and numerical spatial measures
(OSM-based) as described in Chapter 2 greatly reduce the effort of data collection
and processing. The comparison shows that OSM based models can achieve similar
predictive performance as multi-variable models which are based on detailed object
level data collected in post flood surveys. OSM is an openly available data source
and offers great potential for automation of data extraction and calculation of spatial
measures to build, tests and transfer loss models.

However, OSM does not provide all relevant data to comprehensively represent
flood damage processes – for example, information about building characteristics
are limited in OSM. Building material, number of storeys, or building age are useful
to explain building vulnerability (Thieken et al., 2005), but are rarely available from
OSM. The OSM database can be extended with additional features such as building
height and floor space based on population density (Paprotny & Schröter, 2020), and
building age (Schorlemmer et al., 2020). With the addition of new features, OSM could
support the implementation of more detailed loss models beyond the ones developed
in this thesis. Algorithmic correction of building locations (Vargas-Muñoz et al.,
2019), prediction of land use (Srivastava et al., 2018) and automated error detection
(Basiri et al., 2016) show promising results that will further improve the quality of
OSM data. In continuation, OSM based flood loss models should be developed and
tested for more regions in Europe and globally to examine their potential outside
the geographical context of the tested case study Central Europe (Germany). In this
respect, the degree to which building data quality influence loss model performance
should be determined in future studies.

OSM is not the only available data source for high resolution building information.
Microsoft published building footprint data under the Open Data Commons Open
Database Licence (ODbL) for the USA, Canada, Tanzania, and Uganda. The datasets
were generated using a classification algorithm from Bing Maps to classify to de-
lineate building footprints in satellite and aerial imagery (Microsoft, 2021a, 2021b,
2021c). Open Building footprints for the African continent were extracted from high
resolution satellite data by Google Research (Sirko et al., 2021). Other approaches for
building footprint classification with remote sensing data show prospects in urban
and data-scarce regions (Schuegraf & Bittner, 2019; Li et al., 2020), where they could
provide important information such as the distance of buildings to channels (Malgwi
et al., 2021). These data sources and approaches also offer the potential to build flood
loss models for regions where OSM data is less reliable or unavailable. Moreover,
datasets created by corporate contributors via automated classification have in several
cases already been integrated into OSM as Anderson et al. (2019) reports.

Similar loss models for other asset categories could be build, analogous to the concepts
set out in Chapter 2 and 3. Paprotny et al. (2020a) for example, can provide up-to-date
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exposure values for commercial assets. Schoppa et al. (2020) provides several viable
multi-variable models that can be transferred and applied on the European scale for
flood loss estimation for the commercial sector. Koks et al. (2019) and van Ginkel
et al. (2021) demonstrate the usefulness of OSM data for modelling flood risk to road
and rail infrastructure. In addition to these advancements, the potential of extracting
relevant vulnerability information from building geometry has not yet been fully
explored and offers opportunity for future research.

The thesis demonstrates how empirical flood loss models can be transferred between
scales and geographical regions, and it is confirmed that multi-variable models
built on heterogeneous data are well suited for model transfer applications, as was
previously suggested by Wagenaar et al. (2018). Wagenaar et al. (2018) report that the
German empirical damage data set is very diverse and covers many possible damage
cases, and BN-FLEMOps is therefore more suited than other models to be transferred
in space and time. Nevertheless, the comparison with reported losses in Figure B.1
indicates that losses in Germany are especially well represented, while deviations
for other countries are larger. There are good reasons to assume that expanding
the empirical database for the training of BN-FLEMOps with flood damage data
from multiple European countries would improve estimation accuracy and reduce
uncertainties. A Europe-wide effort to collect flood damage data in a standardized
form, similar to the National Flood Insurance Program of FEMA (2021) in the USA,
would benefit national and continental flood risk assessments. Larger consistent
damage databases would also open up opportunities for the development of loss
models based on more data intense machine learning methodologies such as artificial
neural networks (Opella & Hernandez, 2019; Chen et al., 2020; Tabbussum & Dar,
2020; Lazin et al., 2021).

The use of open data and software makes the approaches presented in this thesis
more accessible and reproducible. Many components of the risk modelling approach
used for the Europe-wide study in Chapter 5 such as the climate data (WCRP, 2021),
the hydrological model (JRC, 2021) and the vulnerability data sources (Paprotny
et al., 2018a; OSM contributors, 2020) are openly accessible. Combining the different
components of the risk modelling chain is often time and resource expensive. The
implementation of BN-FLEMOps in the open-source loss model framework OASIS
makes the model more accessible to users and more compatible with other com-
ponents in the risk modelling chain (Hattermann et al., 2018; Schröter et al., 2021).
OASIS-lmf is an open platform for loss modelling with many developers and users
from the research and (re-)insurance sector. In research and practice, many flood
risk model components are still closed source or use proprietary software. Well
documented and openly accessible data and software contribute to the advancement
of flood risk modelling.

The experience of households with floods is a relevant predictor for flood loss Vogel
et al. (2018) and Mohor et al. (2021). However, vulnerability information such as
the flood experience and precautionary measures installed to protect a building can
usually only be quantified through on-site assessment or remote surveys (Kreibich
et al., 2005; Poussin et al., 2015). Through the integration of historic flood event
counts from DFO and HANZE database, it was possible to represent these less
tangible vulnerability information in the Europe-wide application of BN-FLEMOps.
Nonetheless, flood experience and private precaution are defined in broad classes
in BN-FLEMOps (see Figure 3.1) and therefore only general conclusions about their
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influence on risk reduction can be drawn in this thesis. Furthermore, data in large-
scale event database suffer from poor spatial resolution. The DFO catalogue only
roughly traces the outlines of flood events, which can lead to an overestimation of
flood experience, as discussed in Chapter 3. HANZE data with its flood counts on
NUTS-3 level offers higher resolution for most flood events and in addition dates
back until the beginning of the 20th century. HANZE data was therefore chosen for
the European-wide flood risk assessment in Chapter 5. Future risk assessments on all
scales may explore the effects of individual measures, flood awareness or warning
lead time in more detail.

6.2.2 Uncertainty in flood loss estimation

All components of risk; hazard, exposure, and vulnerability are associated with
uncertainties. When uncertainty information is reported transparently, it supports
risk-based decision-making (Aven, 2004) and helps to prevent biases in adaptation
decisions (Oakley et al., 2020). Vulnerability modelling and the assumptions involved
introduce the largest uncertainty to risk estimation (Winter et al., 2018). Combined
uncertainties from vulnerability models and exposure data can account for variations
up to a factor of four in loss estimates at the meso-scale (de Moel & Aerts, 2011). Sev-
eral sources of uncertainty are discussed in this section, with a focus on vulnerability
and the risk assessment for residential buildings in Europe.

Vulnerability

One of the sources of uncertainty in vulnerability models arise from the model
structure and parametrization. In the BN-FLEMOps model, the discretization of
damage classes influences the level of uncertainty. The model distinguishes between
ten classes of relative damage with very granular separation in lower classes, but the
highest class covers a large range from 0.226 to 0.637. This is because the empirical
database does not include enough cases of severely damaged or completely destroyed
buildings to provide evidence for a finer resolution with respect to high damage
classes. Thus, the uncertainty is higher for larger damages. Chapter 3 demonstrates
that model updating with detailed local data can improve the prediction performance
and reduce uncertainties in loss estimates. But the example for the River Lech shows
that when local data is of insufficient quantity (sample size) or quality (reliability),
updating may not successfully improve the predictions. In this respect, it is important
to acknowledge that detailed empirical damage data is still rare and will often not
suffice for training, validation and updating of models. More efforts to collect post
event damage data in a standardized form is called for in subsection 6.2.1. Data
collection for small local events can add to the empirical data basis for model training
and validation, as was demonstrated by Rözer et al. (2016), Laudan et al. (2017), and
Molinari et al. (2017).

The probabilistic results presented in Chapter 4 capture the ensemble variance and
demonstrate the usefulness of uncertainty representation with only one model. De-
spite the high accuracy of the modelling of the reported loss overall, some municipal-
ities were not well represented. The same regions that were also not well modelled
by the ensemble are only marginally better captured by BN-FLEMOps. On average,
BN-FLEMOps is more accurate, but still makes similar “errors” as the ensemble. The
fact that this miss match of flood reported and modelled loss exists with the ensemble
and BN-FLEMOps suggests that there is a systematic error in the models or that
the reported losses are incorrect. In loss comparisons, it has to be considered that
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also the reported loss data may be incomplete and contain uncertainties (Molinari
et al., 2020). The probabilistic graph-based approach of BN-FLEMOps makes these
modelling challenges transparent and quantifies the uncertainties for more informed
decision-making.

Exposure

According to, Koivumäki et al. (2010) uncertainties in exposure modelling for build-
ings are often disregarded in risk analysis, while the hazard and vulnerability com-
ponent receive greater attention. Significant uncertainties are associated with the
asset value of exposed elements that can influence the variation of loss estimates by a
factor of tow (de Moel & Aerts, 2011). To quantity uncertainties in exposure projec-
tions for the Europe-wide risk assessment, the Inter Quartile Range IQR is reported.
Figure 5.6 reveals that the relative variation around exposure projections is smaller
than compared to the hazard (climate) and vulnerability components. This suggests
that exposure projections are more reliable or that not all uncertainties are adequately
represented. Exposure projections in Chapter 5 for example could not include land
use change projections, because of the unreliability of current data sets for Europe.
Furthermore, they do not consider possible impacts of climate change on the socio-
economic development and the influence on exposure values in Europe. Climate
change is projected to impact many economic sectors in Europe (Harrison et al., 2015;
Holtermann & Rische, 2020). Changes in these sectors may influence reconstruction
costs of buildings. Policy initiatives like the “European Green Deal” that will allocate
substantial public investment into retrofitting of the European building stock (Wolf
et al., 2021) could influence asset values. These coupled effects should be analysed in
future studies to further improve exposure models for flood loss estimation and to
better inform climate adaptation strategies.

Hazard

Uncertainties in the flood hazard data can originate from the resolution, parametriza-
tion, and structure of the hydrological and hydrodynamic models and their underly-
ing data used to predict flood water depth (Feyen et al., 2007; de Moel, 2012; Z. Liu &
Merwade, 2018).

In the Europe-wide application, for example, smaller catchments (<500 km2) are
excluded from the hazard modelling because they are not accounted for in the hydro-
logical and hydraulic simulations. Furthermore, the resolution of the hydrological
model is 5 x 5 km (Dottori et al., 2021a). Therefore, flood events of small extent
and the contributions from small catchments are not included in the European-wide
risk assessment. This contributes to the overall uncertainty of risk estimates, but
the exact contribution is difficult to quantify. Alfieri et al. (2018) identifies the lack
of high-resolution Digital Elevation Models (DEM) for Europe as one of the main
contributors to hazard uncertainty. The current best DEM for Europe has a resolution
of 25 by 25 meters and many small, but hydrodynamically relevant features can not
be represented, resulting in inaccuracies in flood extent and depth estimations. In a
comparison of large-scale hazard models in the USA, Devitt et al. (2021) found that
models exhibit regional differences in performance and especially high variation in
mountainous areas. The authors concluded that model ensembles should be used
to better represent these uncertainties. An ensemble setup of LISFLOD-FP shows
that model averaging is also a viable approach to represent uncertainties in hydraulic
simulations for flood extent and water depth (Z. Liu & Merwade, 2018). The hazard
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data for the European flood risk assessment uses an ensemble approach, and an
analysis of its performance and the involved uncertainties is reported in Dottori et al.
(2021a).

Flood protection standards for Europe are a source of large uncertainty for risk esti-
mation. The dataset for protection levels used in the European-wide risk assessment
in Chapter 5 recognizes the high variability in data quality throughout Europe. The
developers Dottori et al. (2021b) report a lack of information in Eastern Europe in
particular. Actual design levels are only available for few countries and urban areas
(Scussolini et al., 2016; Dottori et al., 2017). Much of the protection information used
is therefore derived from policy recommendations or via comparison of modelled
losses against reported loss figures. The creation of a Europe-wide dataset including
the true location and height of protection infrastructure has the potential to greatly
reduce uncertainties in continental risk assessments. Dike location and crest heights
can for example be derived from high resolution (>10 m2) DEM’s based on LiDAR
data (Wing et al., 2019). Such high-resolution elevation data would also improve the
accuracy of hydrodynamic models in regions without flood protection.

Another important source of uncertainty are the climate projections used to predict
changes in the return periods of flood events and flood protection standard in Europe
under two rcp scenarios. An ensemble of 11 EURO-CORDEX models is used to
estimate the climatic changes in Europe forced by hypothetical emission scenarios that
heavily depend on societal and technological developments (van Vuuren et al., 2011).
The different parametrization of these models results in a spread between estimations,
as can be seen in Figure B.4. The regional patterns of climate model variance can be
traced in the risk projections for Europe. Figure B.5 depicts the variance of expected
EAD values around the median estimate. The variation in the IQR of the estimated
EAD for Europe grows towards the end of the century and is higher under rcp85.
Regional hotspots of high qcv are located in northern Scandinavia, western part
of the Alps and in Greece. Risk estimates in these regions have to be understood
as more uncertain and should be critically compared to regional studies based on
detailed local data. For example, in a nation-wide study for Finland Veijalainen et al.
(2010) estimated decreasing flood risk for most regions of the country under climate
change comparable to the results of Chapter 5. The variation between climate models,
though, was found to be higher than between emission scenarios. To reduce and
better quantify the uncertainties related to climate projections, further research on the
parametrization and downscaling methodologies will be required.

6.2.3 Future flood risk in Europe

The results of this thesis concerning fluvial flood risk in Europe align with findings
of the IPCC (2021) report. Climate change will have heterogeneous effects on the
various regions of Europe. The British Isles and Central Europe will experience higher
flood risk, while in Northern and Southern Europe stagnating or decreasing flood
risk is expected. Lower flood risk in Scandinavia and the Mediterranean may be a
positive outlook for the future, but the IPCC (2021) projects increased aridity and risk
of droughts in the Mediterranean at 2 °C global warming. Besides fluvial floods and
droughts, pluvial floods pose an increasing risk for Europe (Kaspersen et al., 2017;
Prokic et al., 2019; IPCC, 2021). In contrast to the findings of Hosseinzadehtalaei et al.
(2020) that climate change is a stronger driver of pluvial flood risk in comparison
to socio-economic development in Europe, Chapter 5 on the drivers of fluvial flood
risk projects that increase in exposure has a dominant impact on fluvial flood risk
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change in all European countries. Development of exposure can be influenced in the
near-term and more directly than changes in the climate system. Societies can use the
tools of spatial planning to limit new constructions in flood plains and adapt to the
climate driven changes in flood risk (Wilson, 2006). The protection of buildings that
already exist can be improved through flood protection infrastructure and private
precaution. The new EU strategy on adaptation to climate change recognizes climate
change and exposure development as risk drivers and explores political options
for adaptation (European Commission, 2021). Current levels of flood protection as
reported in Chapter 5 reduce annual fluvial flood risk to residential buildings by
4.7 billion € in Europe. To preserve the current state of protection under climate
change, many regions in Europe will need to increase their protection level by the
middle of the century (Willner et al., 2018). Nevertheless, It is not economically viable
to build and maintain dyke structures in all risk areas. Dottori et al. (2021b) for
example, shows that strengthening dykes in not cost-effective in many regions of the
Mediterranean.

Chapter 5 shows that, improved private precaution can reduce flood losses by 15 %
on average and up to 20 % in European regions. With the currently available data and
models, however, it was not possible to give detailed recommendations for which
exact measures should be implemented to achieve the best damage reduction. A
broader data basis of building characteristics and further research on the effectiveness
of measures would be required to transfer the knowledge generated in case studies
by Kreibich et al. (2015), Aerts (2018), and Du et al. (2020) for implementation in a
Europe-wide multi-variable model. Dottori et al. (2021b) analysed the effects and
benefit-cost ratio of flood proofing measures in general and based on literature values
fund a potential of 12 % EAD reduction for Europe. Other effective adaptation
strategies include increased local retention and relocation of exposed assets and
population.

6.3 Conclusion and outlook

This thesis has advanced flood loss modelling for residential buildings in Europe
by developing new modelling approaches and adapting existing probabilistic multi-
variable models through the integration of new data sets.

Information derived from OSM building footprints were found to be valuable for
developing performant loss models. This approach enables transfers of flood loss
models to regions where building geometries are available, but detailed vulnerability
data is lacking. OSM-based models perform significantly better than conventional
stage-damage curves and deliver comparable results to detailed empirical data-based
multi-variable models. Data-scarce regions can therefore profit from more accurate
loss estimations by OSM based models, without the need for resource intense data
collection. Since the OSM based approach does not solve all modelling challenges
concerning the characterization of building vulnerability and the transfer of models,
extending open building databases by additional features such as building level,
age, and construction material will address some of its current shortcomings. The
advancements in automated classification and growing popularity of the OSM project
hold promise for rapid improvements in the development of consistent building data
sets for loss modelling. Through the use of open data and software, this thesis makes
loss modelling approaches more transparent and accessible, while also offering great
potential for automation.
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The transfer of multi-variable loss models from the micro- to the meso-scale is possible
through the integration of large consistent data sets describing building characteris-
tics (OSM) and flood experience of the local population (DFO, HANZE). The results
of this thesis that model development and transfer, especially for continental appli-
cations, could be further improved through the extension of the empirical database.
Standardized post event damage data collection on all scales should be a priority to
promote for future advancements in loss modelling. The finding, that updating exist-
ing graph-based models with new local data improves model performance, further
emphasizes this conclusion.

Loss estimates from probabilistic multi-variable approaches are shown to be more
accurate than those of a model ensemble, and the probabilistic results cover the
variability of the entire ensemble. The probabilistic approach therefore delivers useful
uncertainty information for decision-making requiring the application of only one
model. In flood risk management, this detailed uncertainty information can be used
by individuals or organizations to support the decision process. BN-FLEMOps is the
first probabilistic multi-variable flood loss model for residential buildings in Europe.
Combined with the most recent hazard and exposure projections, BN-FLEMOps can
estimate the contribution of each risk component to flood risk change individually
and in combination. It is shown that exposure change increases risk throughout
all regions of Europe, but has the strongest effects in South-East Europe and the
British Isles. Avoiding unnecessary new construction of buildings in flood prone
areas is a clear conclusion of these results. Climate change as a risk driver has a more
heterogeneous impact on Europe. Central-Europe and the British Isles will experience
higher levels of flood risk. On the contrary, a stagnation, or decline in fluvial flood risk
is projected for Northern Scandinavia and most regions in the Mediterranean. The
two diverging trends of climate driven risk change propagate throughout the century
and lead to more extreme changes under rcp85 than under rcp45. The uncertainties
around the climate driven risk increase are the largest in these regions of northern
and Southern Europe, and uncertainties are higher under rcp85. Limiting climate
change as much as still possible promises lower flood risk in most of Europe and
higher certainty in risk projections.

The detailed spatial resolution of this approach reveals that flood risk increase is
expected to be strongest in urban centres and their surrounding regions located
along major European rivers. Therefore, suggesting that European flood risk man-
agement should focus on these regions. By integrating new vulnerability data into
the multi-variable model the possibility to reduce flood risk for residential buildings
by improving private precautionary measures is quantified at 15 % on average for
Europe. Especially in areas where large scale flood protection structures are unviable,
incentivize or requiring higher levels of private precaution can help to reduce flood
risk significantly.

In conclusion, flood loss estimation for residential buildings can be advanced through
the integration of new data sets representing building characteristics and flood ex-
perience. This allows for model development in data-scares areas and the transfer
in space and scale. The consistent data basis and transparent graph-based model
structure of the European-wide loss estimation enables comparisons of risk change
at the regional level. Finally, probabilistic multi-variable approaches provide new
information about vulnerability and uncertainty for flood risk management and can
contribute to building more resilient societies.
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Appendix to Chapter 2

A.1 Numerical spatial measures

Figure A.1: Definition and examples for numerical spatial measures.

A.2 Code and data availability

Flood damage data of the 2005, 2006, 2010, 2011, and 2013 events along with in-
structions on how to access the data are available via the German flood damage
database, HOWAS21 (http://howas21.gfz-potsdam.de/howas21/). Flood damage
data of the 2002 event was partly funded by the reinsurance company Deutsche
Rückversicherung (https://deutscherueck.de) and may be obtained upon request.
The surveys were supported by the German Research Network Natural Disasters
(German Ministry of Education and Research (BMBF), 01SFR9969/5), the MEDIS
project (BMBF; 0330688) the project “Hochwasser 2013” (BMBF; 13N13017), and by
a joint venture between the German Research Centre for Geosciences GFZ, the Uni-
versity of Potsdam, and the Deutsche Rückversicherung AG, Düsseldorff. OSM is
an open data project and the cartographic information can be downloaded, altered
and redistributed under the Open Data Commons Open Database Licence (ODbL)

http://howas21.gfz-potsdam.de/howas21/
https://deutscherueck.de
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(OSM contributors, 2020). In the presented study, the geographic data were processed
in PostgreSQL 12.2 with PostGIS 3.0.1 extension and R version 3.6.3 (2020-02-29) (R
Core Team, 2020). The spatial measures were calculated in PostgreSQL and imported
in to R for further processing. The RandomForest model was built and applied in
R with the use of the following packages: randomForest 4.6-14 (Liaw & Wiener,
2002), sf 0.6-3 (Pebesma, 2018), reshape2_1.4.3 (Wickham, 2007), gdalUtilities_1.1.0
(O’Brien, 2021), rpostgis_1.4.3 (Bucklin & Basille, 2018), rgdal_1.4-8 (Bivand et al.,
2021), raster_3.0-7 (Hijmans et al., 2021), RPostgreSQL_0.6-2 (Conway et al., 2021),
tidyverse_1.3.0 (Wickham et al., 2019).

A.3 Competing interests

Authors Heidi Kreibich and Kai Schröter are members of the editorial board of
Natural Hazards and Earth System Sciences
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Appendix to Chapter 5

B.1 Exposure projections

File available for download (exposure_1995_2085.csv).

B.1.1 Population growth

Population growth Projections of regional population are based on recent EUROPOP
2019 projections for NUTS-3 regions by Eurostat (2021a) for years 2019-2100. As the
Eurostat projections include only scenario-based projections, we added country-level
uncertainty ranges from probabilistic population projections by the United Nations
(2019b). The Bayesian probabilistic projections provided by the agency based on
the methodology developed by Raftery et al. (2012) present the median and two
confidence intervals (60% and 90%). We assumed that the Eurostat baseline scenario
corresponds to the United Nations’ median scenario. The uncertainty distributions
of United Nations projections evaluated at five given percentiles are almost exactly
uniform for all countries, hence we fit the data points to a uniform distribution to
obtain population numbers for other percentiles.

The Eurostat projections cover all countries in this study except the United Kingdom.
National projections for England, Northern Ireland, Scotland, Wales were gathered
from the statistical offices of the different components of the UK. As the projections are
only until year 2043, the final growth rates were extrapolated assuming convergence
with national growth rate by year 2100 (a manifestation of “Sigma“ convergence; Sala-
i-Martin, 1996; Monfort, 2008). Population growth-rate for the UK was taken from
the United Nations projections. For Northern Ireland, an older set of demographic
projections until 2041 were used because of changed in administrative divisions. Also,
the regional projections from Eurostat are provided for NUTS version 2016, therefore
they were adjusted to NUTS version 2013 by linking the corresponding regions in
both classifications.

B.1.2 Economic growth

The analysis of economic growth started with compiling a database of GDP per
capita in constant prices for all NUTS-3 regions in the study area between 2000
and 2018, using data from (United Nations, 2019a; OECD, 2020; Eurostat, 2021b)
and national statistical institutes. The growth rate of GDP per capita is negatively
correlated with the level of GDP per capita in the preceding year in this dataset
(rank correlation of -0.16). This finding is consistent with the “Beta“ convergence
(Barro & Sala-i-Martin, 1992; Monfort, 2008), which states that poorer regions or



114 Appendix B. Appendix to Chapter 5

countries will grow faster than richer ones. This convergence in turn stems from
Solow (1956) neoclassical growth theory, which postulates (in simplification) that
long-term economic growth will be driven by the diminishing return of increases in
factors of production, particularly capital. Here, we also find that the dependency
structure resembles most closely a Clayton copula, i.e., growth rates of poorer regions
are more concentrated in the probability space than growth rates of richer regions. We
use this information to perform a Markov Chain Monte Carlo (MCMC) simulation.
In this calculation, GDP per capita growth rate in year t depends only on the level
of GDP per capita in year t-1. The Clayton copula quantified with our GDP dataset
is sampled at each step to obtain a prediction of growth rate based on the previous
year’s level of GDP per capita. The procedure is carried out for each region starting
with the GDP level in the latest year available from historical data in yearly time
steps up to 2085. This random walk is repeated 10,000 times to obtain the empirical
uncertainty distribution of GDP per capita in every region for all years until 2085.
The starting year is mostly 2017 or 2018, but for a minority of regions it is within
2014–2016. An out-of-sample validation of the method was carried out for regions
with complete data for 2000–2018. Half of the (randomly selected) regions quantified
the Clayton copula, and the other half was used in the MCMC simulation starting in
2000. The results, show that 85% and 60% of observed GDP per capita levels were
within the 90% and 60% confidence intervals of the simulation in 2018.

B.1.3 Wealth-to-income ratio

The problem of wealth-to-income ratio has become very prominent since Piketty and
Goldhammer (2014) prediction that wealth will continue to outpace income growth
in the 21 st century. Empirical data show that from 1950 to 2015 the gross stock of
residential buildings in 37 European countries has grown from 150% to almost 220%
of GDP (Paprotny et al., 2018b). Without new construction of dwellings, the wealth-
to-income ratio would have declined in our study area from 184% to 141% between
2000 and 2018, according to Paprotny and Schröter (2020) . Instead, it increased to
221%. Decomposition of this difference shows that almost half can be attributed to
the increase in demand for dwellings: population growth, decline in the average
number of persons per household, increase in average dwelling size and increase
in the number of second homes. The other half results from a strong increase in
dwelling construction costs (not to be mistaken with market prices), which have
continuously outpaced the price inflation in the general economy (as measured by the
GDP deflator). We therefore assume that the upward trend will continue in the future
Europe-wide, according to historical data (1950–1995 from Paprotny et al. (2018a)
and 2000–2018 from Paprotny and Schröter (2020)). This pan-European trend was
applied to modify national ratios recorded in 2018 to estimate their values in 2025,
2055, 2085. The standard error in fitting the trend was computed and used to generate
normally-distributed confidence intervals.
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B.2 Flood loss model variables

Table B.1: Overview of BN-FLEMOps variables

Abbreviation Variable Unit Classes

rbloss Relative building loss of residential buildings Relative 0 to 1 10
wd Water depth relative to ground level Meters 10
rp* Return period of the flood event calculated for peak flood dis-

charges with extreme value statistics on annual maximum series of
discharge

Years 3

d** Inundation duration at the affected building Hours 5
pre Precautionary measures — indicator (0 = no, 1 = good, 2 = very

good precaution) considering the number and type of private pre-
cautionary measures undertaken

Score 3

fe Flood experience — number of floods experienced before the re-
spective damaging flood event

Score 6

ba Footprint area of residential buildings Square meter 3
bt** Building type — 1 = single-family houses, 2 = (semi-)detached

houses, 3 = multifamily houses
Index 3

* For this application of BN-FLEMOps the number of classes for the return period variable was reduced from three
to five bins. This alteration was necessary because the empirical survey data did not populate five classes with
sufficiently large sample sizes.
** Variable not used in this study

B.3 Baseline period

(baseline_protected.shp; baseline_unprotected.csv)

The shape file linked here includes the baseline EAD estimations per NUTS-3 region
with flood protection and without flood protection. The 2013 version of NUTS-3
borders and IDs was used. It is projected in EPSG3035 and the results in S4 – S7 can
be joined to this spatial dataset via the column nuts_id.

B.4 Climate change

File available for download (climate_change.csv).

B.5 Exposure change

File available for download (exposure_change.csv).

B.6 Combined effects
File available for download (combined_effects.csv).

B.7 Private precaution effects

File available for download (private_precaution_effects.csv).
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B.8 Comparison with reported loss

Figure B.1: Comparison of baseline losses with the HANZE database EAD [million €] for the
period from 1981 to 2010 on the national level. The location of CH is shifted to
avoid overlapping. Its true location is given by the orange point. Missing from
the plot are the countries: LV, LI, EE, CY, DK because EAD values are out of range.

Table B.2: Performance indicators for the comparison of baseline losses with the HANZE
database EAD [million €] for the period from 1981 to 2010 on the national level

Model spread BN-FLEMOps HANZE Pearson Spearman RMSE MBE

1. Quartile 453.50 / 0.82 0.84 64.69 -30.93
2. Quartile (median) 885.00 1443.40 0.81 0.84 49.20 -17.45
3. Quartile 1932.70 / 0.81 0.83 90.29 15.29
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B.9 Private precaution scenarios under future conditions

Figure B.2: Future EAD per country under rcp45, combining the effects of climate and expo-
sure change with three levels of private precautionary measures. Note the change
of scale along the y-axis of the right panel for better readability.

Figure B.3: Future EAD per country under rcp85 combining the effects of climate and expo-
sure change with three levels of private precautionary measures. Note the change
of scale along the y axis of the right panel for better readability.
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B.10 Uncertainty of climate model ensemble

Figure B.4: Relative uncertainty of the model ensemble for discharge change projections
under rcp45 and rcp85 scenarios. Darker colour indicates higher uncertainty.
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B.11 Uncertainty of loss estimates under climate scenarios

Figure B.5: Quartile coefficient of variation for Expected Annual Damage in three future
periods and under two rcp scenarios. Calculated as: qcv = Q3 − Q1/Q3 + Q1
Green colours indicate lower uncertainty and orange colours higher uncertainty.
Map projection EPSG3035. (Amanded after paper submission.)
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