Nils Olsen

Globale Analysen von Sq und L – die Abtrennung ihrer äußeren Anteile mit und ohne Erdmodell

1 Einleitung

Schwankungen des Erdmagnetfelds, die sich Tag für Tag in ähnlicher Form wiederholen, bezeichnet man als S-Variationen, an ruhigen Tagen als Sq-Variationen. Ihre Ursachen sind ionosphärische Stromwirbel, die durch tagesperiodische Windsysteme in der E-Schicht hervorgerufen werden.

An der Erdoberfläche wird jedoch nicht nur das Magnetfeld dieser ionosphärischen Ströme beobachtet, sondern auch das der im Erdinneren fließenden induzierten Ströme.

Trotz ihrer außerhalb der Erde liegenden Ursachen haben solare Variationen daher innere und äußere Quellen. Die Abtrennung des äußeren – ionosphärischen – Stromsystems vom inneren – induzierten – ist für Modellrechnungen zum ionosphärischen Dynamo notwendig. Aus der Kenntniss der ionosphärischen Ströme kann man mit Annahmen über die ionosphärische Leitfähigkeit das zugehörige Windsystem ausrechnen und mit Druck- und Windbeobachtungen vergleichen.

Zur Abtrennung des äußeren Anteils wende ich zwei Methoden an: neben der bekannten Methode nach Gauss ein weiteres Verfahren, das mit Annahmen über die elektrische Leitfähigkeit im Erdinneren – d.h. einem Erdmodell – eine Trennung ausschließlich mit den Horizontalkomponenten ermöglicht.

Abbildung 1 zeigt die Periodenuhrdarstellung der halbtägigen Variation S_2 von 100 Stationen während des IGY [Gupta and Chapman 1968]. Die Länge der Pfeile gibt die Amplitude, ihre Richtung die Phase der Schwingung in Ortszeit für jede Station an.

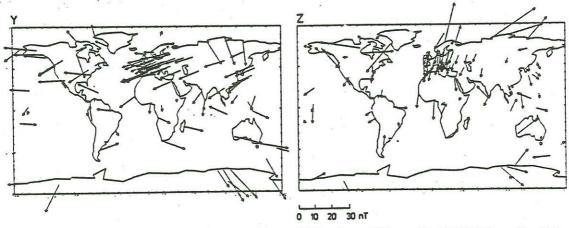


Abb. 1. Periodenuhrdarstellung der verwendeten 100 Stationen (Jahresmittel 1958-59) von S_2 . Links Y-Komponente, rechts Z-Komponente. Die Länge der Pfeile gibt die Amplitude, deren Richtung die Phase der S_2 -Variation für jede Station in Ortszeit an. Ein nach oben zeigender Pfeil bedeutet, daß an dieser Station das Maximum der halbtägigen Variation um 0 h (bzw. 12 h) Ortszeit angenommen wird. In Europa tritt das Maximum der Y-Komponente etwa um 9 h (bzw. 21 h) ein, wie an den nach links zeigenden Pfeilen zu sehen ist.

Die Horizontalkomponente Y ist antisymmetrisch zum Äquator. Auf der Nordhalbkugel zeigen die Pfeile im wesentlichen nach links, auf der Südhalbkugel nach rechts. Für eine feste geographische Breite haben die Pfeile ungefähr gleiche Richtung. Exakt gleiche Richtung würde bedeuten, daß Sq ein reiner Ortszeiteffekt wäre.

Die Amplituden der Vertikalkomponente Z sind i. A. kleiner als die der Horizontalkomponenten X bzw. Y und stärker von lokalen Anomalien, wie z.B. an Küsten, beeinflußt.

2 Trennung von äußerem und innerem Anteil mit Hilfe der Vertikalkomponente Z

Üblicherweise setzt man für das skalare Potential des Magnetfelds jeder Harmonischen des Tagesgangs eine Entwicklung nach Kugelfunktionen mit zu bestimmenden Koeffizienten ϵ_n^m und ι_n^m für den inneren bzw. äusseren Potentialanteil an:

$$V(\tau, \vartheta, \lambda, t) = a \sum_{m=m-i}^{m_{max}} \sum_{n=m}^{m+n_{max}} \left[\epsilon_n^m \left(\frac{\tau}{a} \right)^n + \iota_n^m \left(\frac{a}{\tau} \right)^{n+1} \right] P_n^m(\cos \vartheta) e^{i(pt+m\lambda)}. \tag{1}$$

r ist der Radius des Aufpunktes, a der Erdradius, ϑ und λ die geographische Co-Breite bzw. Länge und t bedeutet Weltzeit (UT); p gibt die Harmonische an; für die solare Variation mit der Periode 12 h gilt z.B. p = 2. Das zugehörige Magnetfeld erhält man durch Bildung des negativen Gradienten: B = -grad V.

Ich habe mich bei meinen Analysen auf die Bestimmung von sog. "Ortszeittermen" beschränkt, d.h. für jede Harmonische m=p gewählt. Die Abhängigkeit von λ fällt dann heraus und es bleibt eine Funktion der Ortszeit $T=t+\lambda$ übrig. Pro Harmonische wurden nur 5 Koeffizienten bestimmt, d.h. $n_{max}=4$ gewählt. Da das Magnetfeld an der Erdoberfläche gemessen wurde, kann r=a gesetzt werden und es ergibt sich aus Gl. (1) nach Abspaltung der Zeitabhängigkeit $e^{imT}=e^{im(t+\lambda)}$:

$$V(\vartheta) = a \sum_{n=m}^{m+4} [\epsilon_n^m + \iota_n^m] P_n^m(\cos \vartheta). \tag{2}$$

Für die drei Magnetfeldkomponenten X, Y und Z erhält man:

$$X = -B_{\vartheta} = \sum_{n=m}^{m+4} [\epsilon_n^m + \iota_n^m] \frac{dP_n^m(\cos\vartheta)}{d\vartheta} = \sum_{n=m}^{m+4} \tau_n^m \frac{dP_n^m(\cos\vartheta)}{d\vartheta}$$
(3)

$$Y = B_{\lambda} = -\sum_{n=m}^{m+4} [\epsilon_n^m + \iota_n^m] \frac{im}{\sin \vartheta} P_n^m(\cos \vartheta) = -\sum_{n=m}^{m+4} \tau_n^m \frac{im}{\sin \vartheta} P_n^m(\cos \vartheta)$$
 (4)

$$Z = -B_r = \sum_{n=m}^{m+4} [n\epsilon_n^m - (n+1)\iota_n^m] P_n^m(\cos \vartheta) = \sum_{n=m}^{m+4} \zeta_n^m P_n^m(\cos \vartheta).$$
 (5)

Entwicklung der Horizontalkomponenten X und Y nach Kugelfunktionen ergibt als Entwicklungskoeffizienten die Summe $\tau_n^m = \epsilon_n^m + \iota_n^m$ von äußerem und innerem Potentialanteil; die

Vertikalkomponente liefert $\zeta_n^m = n\epsilon_n^m - (n+1)\iota_n^m$. Damit ist eine Trennung der beiden Anteile möglich (Verfahren nach Gauss):

$$\epsilon_n^m = \frac{(n+1)\tau_n^m + \zeta_n^m}{2n+1} \qquad \qquad \iota_n^m = \frac{n\tau_n^m - \zeta_n^m}{2n+1}.$$
(6)

Mit der Methode der kleinsten Quadrate wurden τ_n^m und ζ_n^m und damit ϵ_n^m und ι_n^m bestimmt, wobei jede Station mit dem Reziproken ihres Datenfehlers bewichtet und die Horizontalkomponenten X und Y zusammen analysiert wurden.

Ein Problem waren "Ausreißer", d.h. Stationen, deren Daten sich nicht durch die verwendeten fünf Kugelfunktionen erklären lassen. Es zeigt sich, daß dies überwiegend Stationen in hohen Breiten sind.

Abbildung 2 zeigt den Anpassungsfehler σ in Abhängigkeit von der Anzahl der Stationen, die in die Analyse eingingen. Bei Verwendung aller 100 Stationen ergibt sich ein Anpassungsfehler, der auf 1 normiert wurde. Läßt man nur Stationen zwischen $70^{\circ}N$ und $70^{\circ}S$ zu, so reduziert sich der Anpassungsfehler bei der ganztägigen Variation S_1 um 10 % auf 0.9 obwohl nur noch 90 Stationen zur Verfügung stehen. Durch Wahl einer zu kleinen maximalen Breite ϕ_{max} steigt der Anpassungsfehler wieder an. Diese Tendenz ist bei allen 4 solaren und lunaren Harmonischen zu beobachten. Ich habe mich daher auf $\phi_{max} = 60^{\circ}$ festgelegt und im Weiteren nur mit den 75 Stationen zwischen $60^{\circ}N$ und $60^{\circ}S$ gerechnet.

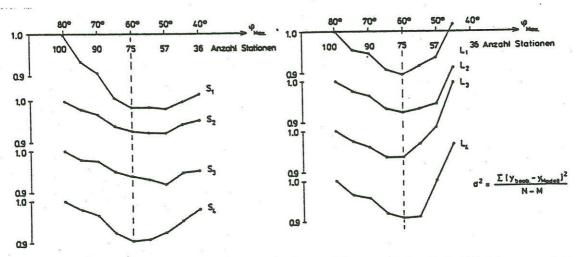


Abb. 2. Anpassungsfehler σ bei Analyse von Stationen mit geographischer Breite $|\phi| \leq \phi_{max}$ normiert auf den Anpassungsfehler bei Verwendung aller 100 Stationen. Links die 4 solaren, rechts die 4 lunaren Harmonische.

Bei der Kugelfunktionsentwicklung ist für jede Harmonische p=m der Term mit n=m+1 der Größte, deshalb wird er als Hauptterm bezeichnet. Abbildung 3a) zeigt die aus Horizontalund Vertikalkomponenten berechneten Eindringtiefen C_n (siehe Gl. (8) mit $Q_n = \iota_n^m/\epsilon_n^m$) für die Hauptterme. Die Zahlen 1 bis 4 geben die jeweilige Harmonische p an. Neben den Ergebnissen meiner Analysen von Sq und L und den aus dem Erdmodell aus Abbildung 3b) berechneten C_n sind auch die Ergebnisse von Malin gezeigt. Er verwendete die gleichen Stationen des IGY (jedoch auch die polnahen), hat diese aber nicht mit dem Reziproken ihres Datenfehlers bewichtet. Bei der ganztägigen Variation S_1 verschwindet der Imaginärteil von Malin's $C_2 = (680 - 0i)$ km. Das Erdmodell liefert $C_2 = (670 - 214i)$ km; bei meiner Analyse ergab sich $C_2 = (700 - 168i)$ km. Die Abweichung bei Malin's C_2 ist auf die Verwendung der Polstationen zurückzuführen.

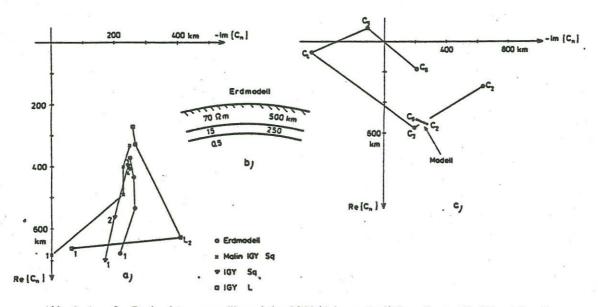


Abb. 3. Aus Sq-Beobachtungen während des IGY (Jahresmittel) berechnete Eindringtiefen C_n .

a) Eindringtiefen C_{p+1} für die Hauptterme.

b) Leitfähigkeitsmodell SCH(1) [SCHMUCKER 1985, S. 396].

c) Eindringtiefen aller 5 Terme bei S2.

Daß man Eindringtiefen auch aus den schwächeren lunaren Variationen bestimmen kann, zeigen die mit einem Quadrat versehenen Ergebnisse. Besonders gut stimmen die C_n bei der 3. und 4. Harmonischen von Sq und L überein. Die stärkere Abweichung bei L_2 könnte auf eine noch nicht vollständige Abtrennung des ozeanischen Dynamos hinweisen (siehe Teil 4).

Wesentlich schlechter als die Hauptterme stimmen die Nebenterme von Modell und Beobachtung überein. In Abbildung 3c) ist das für S_2 dargestellt.

3 Trennung mit Hilfe eines Erdmodells

Die Trennung von äußerem und innerem Potentialanteil mittels Z-Komponente führt u. U. auf Eindringtiefen, die im Widerspruch zu jedem Erdmodell stehen. Deutlich wird das an C_4 und C_5 in Abbildung 3c). So werden auch die ϵ_n^m falsch berechnet. Bei den schwächeren lunaren Variationen wirkt sich dies noch störender aus.

Da die Vertikalkomponente stärker von lokalen Leitfähigkeitsanomalien beeinflußt wird, entsprang die Idee, gänzlich auf sie zu verzichten und mit in sich widerspruchsfreien, aus einem Erdmodell berechneten Eindringtiefen die Trennung durchzuführen.

Aus Gl. (3) und (4) ist ersichtlich, daß man bei Entwicklung der Horizontalkomponenten X und Y nach Kugelfunktionen P_n^m als Entwicklungskoeffizienten $\tau_n^m = \epsilon_n^m + \iota_n^m$ erhält. Im folgenden wird davon ausgegangen, daß die Leitfähigkeit $\rho(\tau)$ in den die Sq- und L-Variationen betreffenden Tiefen lateral homogen ist, d.h. nur von der Tiefe abhängt. Lokale Leitfähigkeitsanomalien werden somit nicht berücksichtigt. Unter diesen Annahmen ist ι_n^m/ϵ_n^m (das Verhältnis von induziertem zu induzierendem Potentialanteil) für jeden Kugelfunktionsterm unabhängig von der Ordnung m, jedoch abhängig von der Periode und damit von p. Unter Verwendung der "Kugelresponse" $Q_n = \iota_n^m/\epsilon_n^m$ erhält man:

$$\tau_n^m = \epsilon_n^m + \iota_n^m = \epsilon_n^m (1 + \frac{\iota_n^m}{\epsilon_n^m}) = \epsilon_n^m (1 + Q_n). \tag{7}$$

Bei Vorgabe von $\rho(\tau)$ können die Q_n berechnet und so eine Trennung von äußerem und innerem Potentialanteil ohne Vertikalkomponente durchgeführt werden.

 Q_n und C_n lassen sich ineinander umrechnen [SCHMUCKER 1985, S. 109]:

$$Q_n = \frac{n}{n+1} \frac{1 - \frac{n+1}{a} C_n}{1 + \frac{n}{a} C_n} \qquad C_n = \frac{a}{n+1} \frac{1 - \frac{n+1}{n} Q_n}{1 + Q_n}.$$
 (8)

Als Erdmodell diente das in Abbildung 3b) gezeigte Modell SCH(1) [SCHMUCKER 1985, S. 396]. Zu seiner Berechnung wurden nicht Daten aus einer globalen Kugelfunktionsanalyse verwendet, sondern Sq- und Dst-Beobachtungen, die mit dem Z:Y-Verfahren von kontinentalen europäischen Stationen gewonnen worden sind. Die mit diesem Modell berechneten Q_n sind in Tabelle 1 rechts aufgelistet.

Um den äußeren Potentialanteil ϵ_n^m ohne Verwendung der Vertikalkomponente zu erhalten, teilt man die aus den Horizontalkomponenten erhaltenen Entwicklungskoeffizienten τ_n^m durch $(1+Q_n)$:

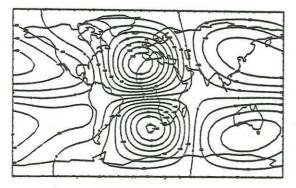
$$\epsilon_n^m = \frac{\tau_n^m}{1 + Q_n} \tag{9}$$

Tabelle 1. Vergleich der beiden Methoden. Links der äußere Potentialanteil ϵ_n^m sowie das Verhältnis $\epsilon_n^m/\epsilon_n^m$ bei Verwendung der Vertikalkomponenten zur Trennung. Rechts die zur Trennung benutzten Q_n sowie die so ermittelten ϵ_n^m . Die komplexen Grössen ϵ_n^m und Q_n sind durch Amplitude und Argument dargestellt.

P	n	ϵ_n^m	[nT]	ι_n^m/ϵ_n^m		$\epsilon_n^m [nT]$		Q_n	
1	1	1,5	50°	0,486	50°	1,5	65°	0,359	70
	2	11,6	15°	0,366	90	11,5	140	0,381	120
	3	0,8	165°	0,960	186°	0,6	96°	0,342	16°
	4	3,3	152°	0,559	370	3,8	160°	0,292	20°
	5	0,1	58°	9,597	278°	0,7	338°	0,244	240
2	2	1,0	259°	0,550	30°	1,1	265°	0,432	140
	3	5, 1	183°	0,391	15°	5, 1	181°	0,409	20°
	4	0,46	302°	0,750	323°	0,57	280°	0,368	25°
	5	0,39	53°	0,982	3490	0,59	410	0,324	30°
	6	0,17	186°	0,608	26°	0,21	188°	0,283	35°
3	3	0,52	910	0,484	170	0,53	910	0,461	190
	4	2,01	19°	0,454	220	2,06	19°	0,430	25°
	5	0,31	126°	0,370	70	0,32	120°	0,391	30°
	6	0,27	303°	0,374	3480	0,29	290°	0,352	35°
	7	0,17	281°	0,341	38°	0,17	281°	0,316	-40°
4	4	0,22	2820	0,446	100	0,22	2770	0,474	23°
	5	0,41	207°	0,413	30°	0,40	207°	0,441	28°
	6	0,20	3110	0,312	140	0,19	305°	0,405	33°
	7	0,14	1770	0,656	270	0,17	178°	0,370	38°
	8	0, 12	111°	0,354	341°	0,13	95°	0,336	42°

Das aus den jeweiligen Daten berechnete äquivalente Stromsystem ist in Abbildung 4 zu sehen. Obwohl die sehr gute Übereinstimmung im wesentlichen auf die Hauptterme ϵ_{m+1}^m zurückzuführen ist, zeigte sich, daß die Ähnlichkeit auch nach Abzug der jeweiligen Hauptterme noch erstaunlich gut ist.

Zusammenfassend läßt sich feststellen, daß die Abtrennung des äußeren Potentialanteils mit beiden Methoden zu ähnlichen Ergebnissen führt trotz der großen Unterschiede der jeweiligen Eindringtiefen C_n .



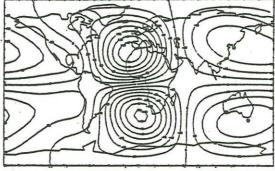


Abb. 4. Äquivalentes Stromsystem des äußeren Potentialanteils zur Zeit 12 UT. Links bei Trennung mittels Z-Komponente, rechts bei Trennung mit Erdmodell. Zwischen je zwei Isolinien fließt ein Strom von 20 kA.

4 Abtrennung des ozeanischen Dynamoanteils bei L2

Die lunare halbtägige Variation L_2 hat neben ionosphärischen auch ozeanische *Ursachen*: Gezeitenströmungen im elektrisch leitenden Ozean induzieren elektrische Ströme. Dieser Anteil ozeanischen *Ursprungs* ist nicht zu verwechseln mit den durch elektromagnetische Induktion ionosphärischer Ströme verursachten ozeanischen Anteilen; diese sind *ionosphärischen Ursprungs*.

Tagesperiodische Windsysteme in der Ionosphäre treiben den ionosphärischen Dynamo, dagegen sind ozeanische Gezeitenströmungen (mit u. U. derselben Periode) die Ursache für den ozeanischen Dynamo. Da dieser überwiegend nach Mondzeit geht, beeinflußt der ozeanische Dynamo hauptsächlich die lunare halbtägige Variation L_2 . Obgleich es auch Gezeitenströmungen mit der Periode eines halben Sonnentags gibt, kann man diese gegenüber dem sehr viel stärkeren ionosphärischen S_2 -Beitrag vernachlässigen.

Mit einem von Malin vorgeschlagenen Verfahren läßt sich bei L_2 eine Trennung beider Anteile durchführen. An einem festen Ort beobachtet man als lunare Variationen:

$$L = \sum_{p=1}^{4} l_p \sin(pT - 2\nu + \alpha_p) = \text{Re} \sum_{p=1}^{4} c_p e^{i(pT - 2\nu)}$$
 (10)

mit ν als Mondphase. Der ozeanische Dynamo hat hauptsächlich einen halbtägigen Anteil $c_2^{ozean} \cdot e^{i2\tau} = c_2^{ozean} \cdot e^{i(2T-2\nu)}$. $\tau = T - \nu$ ist die Mondzeit.

Mit der Annahme, daß um Mitternacht, d.h. T=0, die ionosphärische Leitfähigkeit verschwindet, also nur ein Beitrag des ozeanischen Dynamos beobachtet wird, ergibt sich:

$$\sum_{\nu=1}^{4} c_{\nu} e^{-2i\nu} = c_{2}^{ozean.} e^{-2i\nu} \quad \text{und daraus} \quad c_{2}^{ozean.} = c_{1} + c_{2} + c_{3} + c_{4}. \quad (11)$$

Für den halbtägigen ionosphärischen Anteil erhält man:

$$c_2^{ionosph.} = c_2 - c_2^{ozean.} = -c_1 - c_3 - c_4. \tag{12}$$

Um also den halbtägigen Anteil ionosphärischen Ursprungs zu bestimmen, werden die 1., 3. und 4. lunare Harmonische der Beobachtungen verwendet, nicht hingegen die 2., halbtägige.

Ich habe dieses Verfahren vor der Kugelfunktionsanalyse bei jeder Station durchgeführt. Ein Indiz für die Zweckmäßigkeit dieser Methode ist die Eindringtiefe C_3 des Hauptterms von L_2 : Bei Analyse der beobachteten L_2 -Variationen, also ohne Abtrennung des ozeanischen Dynamos, ergibt sich $C_3^{beob} = (279-481i)$ km, nach Anwendung der oben beschriebenen Methode jedoch ein Wert, der mit $C_3^{ion} = (631-409i)$ km deutlich näher an dem aus dem Erdmodell berechneten Wert $C_3^{Modell} = (540-235i)$ km liegt.

Wie bei Sq wurden auch die lunaren Harmonischen des IGY mit den beiden Methoden – Bestimmung der ϵ_n^m mittels Z-Komponente bzw. mit Erdmodell – untersucht. Die Ergebnisse sind als äquivalentes Stromsystem in Abbildung 5 dargestellt.

Trotz der groben Annahmen, die dieser Abtrennungsmethode zugrunde liegen, scheint ihre Anwendung "vernünftige" Ergebnisse zu liefern.

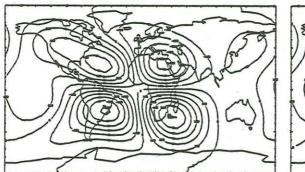


Abb. 5. Äquivalentes Stromsystem des äußeren Potentialanteils bei Neumond über dem Greenwich-Meridian ($\nu=0,12$ UT). Links bei Trennung mittels Z-Komponente, rechts bei Trennung mit Erdmodell. Zwischen je zwei Isolinien fließt ein Strom von 1 kA.

Tabelle 2. Wie Tabelle 1, jedoch für die lunaren Harmonischen.

P	n	ϵ_n^m	nT	l_n^m/ϵ_n^m		$\epsilon_n^m [nT]$		Q_n	
1	1	0,081	1570	0,840	460	0,101	1770	0,358	70
	2	0,362	102°	0,385	40	0,365	100°	0,379	110
I	3	0,033	59°	2,130	57°	0,069	95°	0,340	16°
	4	0,179	264 ⁰	0,543	5°	0,216	261°	0,289	20°
2	2	0,152	910	1,089	10	0,224	870	0,429	140
I	3	0,332	2920.	0,374	310	0,320	296°	0,405	20°
	4	0,102	220	1,065	333°	0,153	10	0,363	25°
	5	0,190	870	0,639	00	0,243	80°	0,319	30°
3	3	0,035	1270	0,040	2270	0,023	1180	0,457	20°
l	4	0,163	100°	0,504	23°	0,172	101°	0,424	25°
H	5	0,052	191°	0,532	346°	0,058	178°	0,385	30°
	6	0,076	327°	0,539	140	0,090	323°	0,346	35°
4	4	0,010	322°	0,485	75°	0,009	3370	0,470	240
l	5	0,031	249°	0,535	28°	0,033	250°	0,435	29°
	6	0,019	33°	0,310	00	0,018	23°	0,399	33°
L	7	0,025	169°	0,647	32°	0,030	171°	0,363	38°

Literatur

- GUPTA, J. C. AND CHAPMAN, S.: Manual of the coefficients of the first four harmonics of the solar and lunar daily variations computed from IGY/C and certain other data. Manuscript 68-110.
 National Center Atmospheric Research, Boulder/Colerado (1968)
- Malin, S. R. C.: Worldwide distribution of geomagnetic tides. Phil. Trans. R. Soc. London A 274 (1973)
- SCHMUCKER, U.: Magnetic and electric fields due to electromagnetic induction by external sources, Electrical properties of the earth's interior. In: Landolt-Börnstein, New Series, 5/2b, Springer-Verlag Berlin - Heidelberg (1985)