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Inversion of Three-Dimensional Electromagnetic 
_ Induction Through Inverting Scattering Current 

Distribution With Tikhonov Regularisation 

SUMMARY 

The nonlinear 3D EM conductivity inverse problem is treated iteratively as 

inversion of an ill-posed linear Fredholm integral equation of the first kind relating 

the scattering cunent and the data (EM fields) using Tikhonov regularisa.tion. 

This equation is regularized with the integral equation for the forward modeling 

which describes the relation between inhomogeneous conductivity, scattering cur­

rent and total electrical field within the inhomogeneity. Beginning with an initial 

conductivity for the inhomogeneity, the regularized minimal problem is solved for 

· the scattering current from which the conductivity is again calculated, which ini­

tiates the iteration process. The solution converges in few iteration:i. N umerical 

result., show the efficiency of this algorithm. The inversion is completed with a 

little more computation time than forward modeling. 
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l INTRODUCTION 

While the forward modeling in the study of electromagnetic (EM) induction 

has made great progress, the theory for the inverse problems, especially for multi­

dimensional inverse problems, is only at a experimental stage, although they have 

attracted many geophysicists. The grounds lie mainly in the inherency of the 

nonlinearity of EM induction. 

In most reports on 2D and 3D EM inversion, the nonlinear inverse problems are 

approached with linearization methods which linearize the data-model-relation, or 

the direct relation between observed data and model parameters (Chave &: Booker, 

1987). Those methods suffer in general a burden of tremendous computation time. 

Our new a.pproach is based on the fact that surface observations of electro­

magnetic and telluric tields are correlated linearly to the subsurface scattering 

current distributions through a Fredholm integral equation of the first kind whose 

inverse is ill-posed and whose solution requires some k.ind of stabilization. Once 
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the scattering current is obtained, the anomalous conductivity of the inhomoge­

neous structure can be calculated using the relation between the scattering current 

and the total electric field within the inhomogeneity which in turn is derived from 

the scattering current itself. 

The concept to infer anomalous internal currents from surface observations 

is not new. In the simplest form equivalent line or sheet currents are deduced 

from the anomalous magnetic surface field, using potential theory or, with further 

assumptions, Biot-Savart law (Banks 1978). Jones (1983) has reviewed the studies 

on current channelling, discussing the distortions of electric ·current.s by conductive 

heterogeneities. Those are qualitative interpretations of the induc:.tion problem. 

Here we try to approach the inverse problem of EM induction in a quantitative 

way. 

2 INTEGRAL EQUATIONS FOR THE FORWARD PROBLEM 

Fora given 3D inhomogeneity E with conductivity u. in a homogeneous medium 

of conductivity tr" there exists an integral equation governing the scattering cur- • 

rent J. in E (Hohmann, 1983; Xiong et al, 1986): 

E(r) = E;(r) + h G(r, r')J.(r')d,,', (1). 

where E is the total electric field, E; the incident electric field, and G the tensor 

Green's function. The second term in the right side of eq. (1) represents the 

secondary, or the induced electric field in E. J • is defined by 

J.(r) = ßtr(r)E(r), (2) 

Where ~tr(r) = tr.(r) - u,.. Thus we can write a Fredholm integral equation that 

J • must satisfy: 

J.(r) = ßu(r)E;(r) + ßu(r) h G(r, r')J.(r')du'. (3) 

In the forward calculation, equation (3) is solved for J. and the secondary 

electric field E. at the earth's surface is calculated as follows: 

E.(r) = h, G(r,r')J.(r')dv', Jor z = 0. (4) 

The secondary magnetic field is calculated in the same way with appropriate 

Green's function. 
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3 INVERSION 

The inversion of EM conduction problems is nonlinear. Here we try to approach 

this nonlinear problem indirectly by means of an ill-posed linear inverse problem 

which dennes a third parameter linking the data and the model parameters, and 

then to reconstruct the conductivity structure. We find that the scattering current 

distribution may be the proper parameter that is directly related to the observable 

data (E. and secondary magnetic tield H. at the surface of the Earth) through eq. 

( 4) and to the anomal conductivity through eq. (2). 

In fact, any anomalous induced current distribution J. that reproduces the data 

is to some extend already a solution to the inverse problem, for the conductive 

structure can be qualitatively outlined by J •. 

But the inversion of eq. (4) is not a simple matter. Eq . (4) is a Fredholm's 

integral equation of the 6.rst kind whos~ inversion is always ill-posed (Baker, 1977; 

l\,filler, 1974; Tikhonav & Arsenin, 1977). The solution to the inverse problem (4) 

might not exist, or it might not be unique, even for exact data. ~ven if it exists 

the solution does not depend continuously on the data. Small perturbations in the 

data result in large errors in the current distribution. Remedies for this problem 

are to find a quasi-solution, to solve for J. subject to certain conditions, or to 

approach the problem with some other kind of regularisation . 

Generalized Inversion 

A possible solution of (4) is the least squares solution of minimal norm (Baker, 

1974), which 6.nds J. of minimal L' norm from the least squares solution of eq. 

(4), i.e.: 

{ 
II E. - J1; G J.du II'= min 

II J. II'= min . 
(5) 

This is achieved by the generalized inoersion (Ben-Israel and Greville, 1974; Pe­

ters and Wilkinson, 1970), which will be refered later again. 

The minimal norm solution is not stable. For data with noise the minimal 

norm solution could be of no physical meaning. That is to say, it could be likely 

a plll'e mathematical solution to (5) rather than a physical scattering current. 

For example, thus inverted conductivity could be negative or complex. Numerical 

calculations have proved this . We obtained the correct conductivity of an inho­

mogeneity only with exactly the same parameterisation in the inversion as in the 

forward computation. 

J 
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Tikhonov Regularisation 

Physical constrainsts must be considered in the inversion. We find that one 

possibble constraint might be the definition of the scattering current J., or eq. 

(3), which is in fact the Ohm's law. From the viewpoint of functional analysis J. 

can be considered as a functional mapping .O.t1 onto J. by eq. (3). The solution of 

eq. (4) must be an element from the function space of all the J •. From a physical 

viewpoint eq. (3) takes into account that J. is produced by the induction of E; . 

Another powerful tool for treating ill-posed problems that merges constra.ints 

for the solution into the minimum problem is Tikhonoo regulariaation (Groetsch, 

1984; l\,filler, 1974; Tikhonov & Glasko, 1964; Tikhonov & Arsenin, 1977); FQr an 

ill-posed problem 

A z=b, (6) 

in which Ais a compact operator, one can approach it approximately by a well­

posed least squares problem 

II A z - b II'+ o'II L z II' = min, (7) 

where o is a small number, and L a well-posed linear operator. L can be any 

physical constra.int for :e which is well-posed. 

So far, we can construct an inverse algorithm for the 3D EM problem using a 

kind of Tikhonov regularisation as follows: 

II E. - h G J.du 11
2 
+ o-2 11 .O.o-E; - (J. - .O.o-h G J.dt1) 11

2 = min. (8) 

The minimazation is done with respect to J. and .O.t1. The first term represents the 

ill-posed least squares problem of eq. (4). The second term is the regularization 

operator which is the physical constraint for J. that confines it in the family of 

scattering currents produced by EM induction. 

Problem (8) connects the unknown scatterring current J. and the unknown 

anomalous conductivity .O.t1 with the known scatterring field E. at the earth's 

surface and the known source field E; within the inhomogeneity E. We can add 

in problem (8) the secondary magnetic field analogously to E •• 

Here we solve the two unknowns in problem (8), J. and .O.t1, iteratively: given 

an initial guess for .O.t1, a J. can be found from {8) by minimazing J. only. A 

new 6.t1 is then calculated according to (3) with some physical constraints for .O.t1. 

This begins the iteration. 
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4 NU:MERlCAL TREATMENTS 

Problem (8) reduces numerically to a matrix form of 

II E. - K J. 11
2 + 0 2 11 B - r J. 11

2 = min. (9) 

The dimensions of the two terms in the left side of problem (9) are not equal, for 

the second term contains a factor AtT comparing with the first term. In order to 

obtain a dimensionless a we rewrite problem (9) as 

II E. - K J. 11
2 + a 2 II ß(B - r J.) 11

2 = min, (10) 

with 

ß = { 1/I AtT Im, 1 AtT Im :P 0 

1, I AIT Im= 0 
(11) 

in which I AtT Im means the arithmetieal mean value of I AO'(r) I• The solution of 

problem (10) is obtained by solving its normal equation, 

(12) 

where the index '*' means transpose conjugate. Eq. (12) is solved by Cholesky 

decompasition, beeause the eoefficient matrix is symmetrical. 

As a goes to zero, eq. (12) ean be arbitrarily bad conditioned, because E- K + 
a2,82r•r differs numerically not much from the ill-conditioned K• K, so does the 

right side of {12) also, and the numerieal results tend to inaecurate . 

• An alternative possibility to solve problem (10) is (Lawson & Hanson, 1974) 

( K ) J. _ ( E. ) = min, 
a{Jf' aßB 

(13) 

which can be interpreted as a weighting approximation to eq. ( 4). lt is also 

called ridge regression or damped least squares. Problem (13) ean again be solved 

by generalized invemon using Householder transformations or using any other 

method. 

Here we shall introduee brießy an algorithm for generalized inverse with House­

holder transformations (Lawson & Hanson, 1974). 

Suppose a m x n real matrix A with rank r has an orthogonal decomposition 

A= URVT, (14) 

J 

1 

1 

1 

1 

1 

1 

1 
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where U is an m x m orthogonal matrix, V a.n n x n orthogonal matrix, R an 

m x n matrix of the form 

(15) 

with Ru being a r x r matrix of rank r. Then, the unique generalized inverse 

matrix At of A is 

At = V ( R,t : ) !P (16) 

and the minimal norm solution of A% =bis given by :r• = Atb. A FORTRAN 

program HFTI is supplied by Lawson and Hanson (197 4) for solving general ­

ized inverse problems with Househoulder transformations . Solving eq. (13) using 

Householde r transformations require more computation time and more computer 

storage than solving eq. (12) with Cholesky decompostion, because the complex 

coefficient matrix of eq. (13) must be rewritten as real matrix and thus the stor ­

age requirement and the dimension of the linear system double. But the former is 

much more accurate than the later, especially when a is very small . 

In our applications the solution of (13) on the eight-digit IBM-3090 computer 

of the compute r cente r of Universität Göttingen converges in general for an a 

ranging from 10- 1 to 10, but for problem (12) o sltould n·ot be smaller tha.n 10-2
• 

o depends on the number of data and data error. When the data contain random 

noises, as in practice, o should not be too s~ all, for it acts as a smoothing factor 

also. Empirically we have 0.1 S o S 10. With this value for o we can solve the 

normal equation (12) fairly weil. 

The reconstruction of the c~nductivity from J • can be performed as a minimum 

problem too . The total electric field Eis readily calcula.ted from J. using eq. (4). 

At every point AtT can be calculated such that 

II J . - AtTE 112 = min, Aa > -an, real. (17) 

However, for inconsistent J . and E it is very likely that Aa is complex and 1 ~a IS 
tTn• Therefor , we have simply ~a =1 1,/E I for better convergence. 

Th e conductivity of the body can be ta.ken as a consta.nt or piecewise con­

sta.nt, a.s suggested by Weidelt (private communication) . For this we need only to 

establish an overdetermined system in a similar way as problem (17). 
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Problem (8) is constructed for one frequency. In case of multi-frequency inver­

sion one must evaluate the scatterring current separately for each frequency and 

solve an overdetermined system for the frequency-independent ~u. 

S NUMERlCAL RESULTS 

Fig. 1 shows a cube of 1 km with conductivity 1 Om embedded at a depth of 

0.25 km in a half-space of conductivity 100 Om. O~y a quarter of the body was 

considered in the calculations because of symmetry. In the forward calculation 

the whole cube was divided into 6 x 6 x 6 cells. The computed secondary 6elds as 

data for inversion were Ez, E,, Hz, H, and H1 at four sites in the 6rst quadrant 

of the surface (XOY) plane, (0,0), .(~12), (2,0), and (2,2). ·The incident field is a 

plane wave of frequency 1 Hz propagating in z-direction. 

Frequency 
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1 km 
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PIG. 1: A cube in a half-space. Only a quarter in shadow was considered in 

the calculation because of symmetry. Responses at the 6rst quadrant of the 

surface was calculated and was used as input data for inversion. 
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In the inversion all the parameters except the conductivity of the body were 

assumed known. As initial guess for <T" we had 0.1 Om. Solving eq. (13) with 

a = 0.001 we needed only one iteration to get a solution of 1.0 Om. When we 

added 20 percent artificial random noises to the data, the solution converged in 7 

iterations for a = 1 to 0.96Om which reproduced data with 4 percent error; we got 

after one iteration a. solution of 0.62 Om reproducing data with 14 percent error 

which was within the limit of the random noises, thought <T11 varied a little in the 

later iterations; for comparison, the solution of eq. (12) converged for this case to 

<T4 = 1.8 Om after 2. iterations which reproduced da.ta with 18 percent error . 

The computation time on the IBM 3090 is a.bout 31 sec. for the forwa.rd 

ca.lulation, and 63 sec·. for solving eq. (13) with one iteration of which the execution 

of HFTI costed 32 sec .. For further itera.tions we needed mainly the computation 

time for HFTI. The inversion of eq. (12) needed about 42 sec. for one itera.tion, 

and 10 sec. for one further iteration . We see tha.t for slightly more computation 

time the inverse problem is solved by this a.lgorithm. 

With three frequencies, 0.01, 0.1, and 1 Hz we got almost the same results. 

6 DISCUSSION 

The efficiency of this inverse scheme is proved by the above numerical results. 

We have used data. a.t 4 mea.surement points only which are commonly available in 

practice. The algorithm withstands error disturbences. The computation time for 

inversion is in the order of tha.t for the forward ca.lculation. Therefore, we hope 

that our method can be applied in data interpretations for practical measurements. 

lt rema.ins the problem to determine the geometry of a conductivity structure. 

Theoretically our algorithm s1:ould be applicable to such problems. When one 

inverts a structure !arger than the real one, one should get for the conductivity 

outside the inhomogeneity a value of that of the host medium. U nfortuna.tely we 

ha.ve no good numerical examples so far . We could only see that those regions were 

more resistive than the real conductor in some model exa.mples. For any geometry 

we may obtain a. conductivity reproducing da.ta with minimal error to the original 

da.ta.. This is again a. problem of non-uniqueness. lt ma.y be possible to study the 

non-uniqueness of conductivity inversion using the a.bove-mentioned scheme. 

lt is a disa.dvantage of this algorithm that for every frequency the different 

scatterring currents must be evaluated and the multi-frequency data. influence one 



- 129-

another only a.t the step of solving eq. (17) instea.d of the more important eq. (12) 
' 

or (13). We shall suggest to use one frequency only. 

Anyhow, this novel approach to 3D EM inversion has been proved successful. 
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