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Forest soils have large contents of carbon (C) and total nitrogen (TN), which have significant spatial
variability laterally across landscapes and vertically with depth due to decomposition, erosion and
leaching. Therefore, the ratio of C to TN contents (C:N), a crucial indicator of soil quality and health, is also
different depending on soil horizon. These attributes can cost-effectively and rapidly be estimated using
visibleenear infraredeshortwave infrared (VNIReSWIR) spectroscopy. Nevertheless, the effect of
different soil layers, particularly over large scales of highly heterogeneous forest soils, on the perfor-
mance of the technique has rarely been attempted. This study evaluated the potential of VNIReSWIR
spectroscopy in quantification and variability analysis of C:N in soils from different organic and min-
eral layers of forested sites of the Czech Republic. At each site, we collected samples from the litter (L),
fragmented (F) and humus (H) organic layers, and from the A1 (depth of 2e10 cm) and A2 (depth of 10
e40 cm) mineral layers providing a total of 2505 samples. Support vector machine regression (SVMR)
was used to train the prediction models of the selected attributes at each individual soil layer and the
merged layer (profile). We further produced the spatial distribution maps of C:N as the target attribute at
each soil layer. Results showed that the prediction accuracy based on the profile spectral data was
adequate for all attributes. Moreover, F was the most accurately predicted layer, regardless of the soil
attribute. C:N models and maps in the organic layers performed well although in mineral layers, models
were poor and maps were reliable only in areas with low and moderate C:N. On the other hand, the study
indicated that reflectance spectra could efficiently predict and map organic layers of the forested sites.
Although, in mineral layers, high values of C:N (� 50) were not detectable in the map created based on
the reflectance spectra. In general, the study suggests that VNIReSWIR spectroscopy has the feasibility of
modelling and mapping C:N in soil organic horizons based on national spectral data in the forests of the
Czech Republic.

© 2022 International Research and Training Center on Erosion and Sedimentation, China Water and
Power Press, and China Institute of Water Resources and Hydropower Research. Publishing services by
Elsevier B.V. on behalf of KeAi Communications Co. Ltd. This is an open access article under the CC BY-

NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

Soil organic carbon (SOC) is the largest terrestrial carbon (C)
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pool in the biosphere (Lal, 2008) and plays a key role in mitigating
global atmospheric carbon dioxide (CO2) level. SOC has several
significant functions in the environment (Murphy, 2014) such as
maintaining soil structure and physical stability (Ayoubi et al.,
2020). Accordingly, it is crucial to a number of natural processes
linked to soil health and fertility (Dinakaran et al., 2016). Soil total
nitrogen (TN) is also one of the important indicators of the
ecological environment and part of the organic matter components
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Fig. 1. Locations of the forests and soil sampling sites in the Czech Republic.
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andmineralization process in soil (Li et al., 2014; Shang et al., 2014).
These attributes affect the supply of food, air, fresh water and
agritourism and even associate to the sustainable development of
the local economy (Keesstra et al., 2012; Zhang et al., 2007). They
have also been used as proxies to assess soil quality and land
degradation in some Himalayan and Mediterranean areas (Kukal &
Bawa, 2014; Munoz-Rojas et al., 2015).

Forest soils contain a large amount of the world's SOC, TN and
energy resources. They influence the quality and composition of the
atmosphere and form climate conditions on different scales (Baciak
et al., 2015). In forest ecosystems, SOC and TN cycles are related via
a number of fundamental processes including litterfall, primary
production, mineralization of organic matter components and
decomposition rate (Albrechtova et al., 2008). The ratio of SOC toTN
(hereafter C:N) in soil, particularly in forest soil, is another impor-
tant indicator of soil fertility and quality reflecting the interaction
or coupling between SOC and TN (Lou et al., 2012; Xu et al., 2018),
which is considered as a proxy of C sequestration potential in soils
(Akselsson et al., 2005; Vries et al., 2006). Soil C:N also delivers
information about the decomposition stage of soil organic matter
that is known as an essential factor of soil fertility, and hence
highlights the microorganism activities in soil. High values of C:N
(>40) demonstrate the availability of fresh organic matter, whereas
lower values (around 5e15) indicate partially to fully decomposed
organic matter (Nolan et al., 2011). Therefore, the level of C:N in
forest soils is one of the important predictors for estimating soil
functions such as C storage capacity of soil and biomass production.
When integrated into risk assessment, these functions can serve for
modelling scenarios of soil sustainability with climate change is-
sues (Carre et al., 2010). The abovementioned issues highlight that
quantifying the concentration and spatial distribution of SOC, TN
and specifically their ratio (C:N) are useful for evaluating and
improving forest soil management, ecological environment moni-
toring and climate policy establishment.

The concentrations of SOC, TN and consequently C:N level in
forest ecosystem are different depending not only on geographic
location but also on soil horizon (Brahma et al., 2018; Lal, 2008) due
to different stages of decomposition, erosion and leaching (Black
et al., 2014; Gibson et al., 2002). For instance, the decreasing
trend of SOC concentration with depth in different forested sites of
China and the Czech Republic were reported (Gholizadeh et al.,
2021; Jia et al., 2017) and linked to the reduction of below-
ground plant biomass with soil depth that as a result has a
considerable effect on C:N vertical alteration. Moreover, C:N verti-
cal changes can also happen in response to TN leaching (Cools et al.,
2014). Lal (2017) stated that there need to be much attention in the
storage of SOC in the top 40 cm of soil. Zanella et al. (2017) cate-
gorized this depth into organic and mineral horizons. Accordingly,
since these soil layers noticeably contribute to concentrations of
SOC, TN and thus C:N level, particularly in forested areas, the ver-
tical quantification and variability analysis of them should be taken
into account.

The number of observations and soil variability to a great extent
influence on soil attributes determination at large-scale (e.g.,
regional and national) studies (Bellamy et al., 2005; Chamberlain
et al., 2010). Nevertheless, the cost and efficiency connected to
soil sampling, laboratory analysis and assessment of SOC, TN and
therefore C:N in organic and mineral horizons of forest soils using
conventional analytical techniques limit their large-scale predic-
tion due to the requirement of a large number of samples (Chen
et al., 2019; Vanguelova et al., 2016), particularly if the aim is
measurement of depth (England & Viscarra Rossel, 2018). Quick,
cost-effective and reliable approaches for effective determination
of SOC, TN and C:N in forest soil horizons are thus essential.

Visibleenear infraredeshortwave infrared (VNIReSWIR)
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spectroscopy is an efficient technique to rapidly and accurately
predict soil attributes over large areas at depth, while reducing the
cost of soil sampling and analysis (Ben-Dor & Banin, 1995;
Gholizadeh et al., 2013; Naimi et al., 2022). The spectral data ac-
quired from VNIReSWIR spectroscopy can then sufficiently char-
acterize the spatial (vertical and lateral) as well as the temporal
variability of soil (Viscarra Rossel et al., 2017). The technique has
been successfully used to measure SOC and TN concentrations at
different scales (Barthes et al., 2006; Gholizadeh et al., 2011, 2018;
Knadel et al., 2012; Viscarra Rossel & Hicks, 2015). There are also a
few local-scale studies investigating the use of reflectance spec-
troscopy for assessing forest SOC in different horizons (Wang et al.,
2019; Zhao et al., 2019). Developing large-scale (e.g., national,
continental and global) spectral-based model though may be an
approach to enhance the success of the technique (Viscarra Rossel
et al., 2016). Gholizadeh et al. (2021) used VNIReSWIR spectros-
copy to predict and characterize SOC in different horizons of forest
soils over the Czech Republic; however, so far, the capability of
VNIReSWIR spectroscopy for large-scale prediction and spatial
analysis of C:N in forest soil layers has not yet fully been exploited.

In this context, the current study attempts to overcome this
lacuna and foster VNIReSWIR reflectance spectroscopy to quantify
the levels of SOC, TN and C:N in forest soil organic and mineral
horizons. In addition, as there is a lack of information on the depth
distribution of C:N at the national scale in the Czech Republic, the
study aims to evaluate the efficiency of VNIReSWIR spectroscopy to
examine the spatial distribution of C:N in different forest soil layers
of the whole country. The premise of this study is that there is a
large heterogeneity in the vertical spatial distribution of soil C:N in
the forested areas of the country. As VNIReSWIR spectroscopy can
cover large sampling points, both horizontally and vertically, it is
also anticipated that the technique can provide massive SOC, TN
and thus C:N data, which can facilitate to get a general overview on
quality of forest soils in Central Europe.

2. Materials and methods

2.1. Study sites, soil sampling and laboratory analysis

One-third of the Czech Republic land (78,865 km2) is covered by
forests (Czech Statistical Office for Surveying, Mapping and
Cadastre, 2019). The sampling sites of the current study were
distributed over all the country's forested sites (Fig. 1).

The samples used in this study were originally from the Forest
Soil Survey (Fiala et al., 2013). During the years 2000e2008, the
samples were collected from the forested areas of the whole
country. Five-hundred and one (501) samples were separately
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obtained from three individual organic horizons of litter (L), frag-
mented (F), humus (H), as well as the mineral horizon of A1 (with
thickness usually from 2 to 10 cm) and the subsurface mineral
horizon of A2 (typically to the depth of 40 cm) to build a dataset of
consisting 2505 samples. The position of each sampling point was
recorded using a GeoXM (Trimble Inc., Sunnyvale, CA, USA) receiver
with an accuracy of 1 m.

Before any analysis, the soil samples were gone through com-
mon preparation procedure (air-dried, finely ground, sieved
to � 2 mm) and thoroughly mixed (ISO11464:2006). SOC was
measured as total oxidized C usingwet oxidation (Sparks,1996) and
TN was determined by the Kjeldahl digestion distillation method
(Bremner &Mulvaney, 1982). The histograms of SOC, TN and C:N in
different layers can be seen in Fig. 2. Since TN and C:N in the
mineral layers (A1 and A2) didn't meet the requirements of a normal
distribution, the log transformation of their values was carried out
to drastically reduce the skewness and obtain reliable predictions.

2.2. Spectroscopic measurements

Spectral reflectance was recorded across the 350e2500 nm
wavelength range using an ASD FieldSpec III Pro FR spectroradi-
ometer (ASD Inc., Denver, Colorado, USA) with a high-intensity
contact probe. Fig. 3 indicates the scanning setup for the samples’
measurement in this study.

The spectral resolution of the spectroradiometer was 2 nm for
the region of 350e1050 nm and 10 nm for the region of
1050e2500 nm. In addition, the radiometer bandwidth from 350 to
1000 nm was 1.4 nm while it was 2 nm from 1000 to 2500 nm.
Based on our laboratory's protocol, the instrument ran for about
30 min to warm up the spectrometer and lamp before any mea-
surement. To avoid beam reflectance from the bottom of the dish
(Jensen, 2007), the soil samples were placed in 9 cm diameter Petri
dishes and formed 2 cm layers of soil. According to Mouazen et al.
(2005), a smooth soil surface guarantees maximum light reflection
and a high signal to noise ratio (SNR). Thus, to generate a flat sur-
face with the top of the Petri dish, the samples were leveled off and
spectral scanning was made in three replications (in the center of
each sample) in a dark room and the average was saved. The
spectroradiometer was optimized using a white Spectralon™ (Lab-
sphere, North Sutton, New Hampshire, USA) before the first scan
and after every six measurements (Shi et al., 2016).

2.3. Data preprocessing and spectral modelling

All spectra, per soil layer, were preprocessed before modelling.
First, we removed the noisy portions between 350 and 400 nm, as
well as 2451 and 2500 nm, spectra in the range from 400 to
2450 nm (2051 variables) were kept for further processing. The
spectral reflectance (R) was transformed into apparent absorbance
spectra through log 10(1/R) and the spectra were then subjected to
Savitzky-Golay smoothing (Savitzky & Golay, 1964) with a second-
order polynomial fit and 11 smoothing points in order to remove
the artificial noise within the working spectral range. The first de-
rivative was afterwards generated and used to remove baseline
offset and enhance spectral features (Gholizadeh et al., 2013).
Because of high collinearity of the spectra and to reduce dimen-
sionality, 0.1 nm resolution was extracted from whole spectra and
we retained only every tenth wavelength from 400 to 2450 nm
(Gholizadeh et al., 2021). It is also necessary to analytically detect
reference data outliers in the datasets (Martens & Naes, 1992). The
histograms of data, from all soil layers, were therefore plotted and
distribution and normality of data were checked. Afterwards, the
outliers were identified and eliminated, both visually and
employing the principle of the Cook distance. This outlier detection
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technique is applied in regression analysis to detect influential
outliers in a set of predictor variables (Cook, 1977; Kim, 2017). The
number of removed outliers was 73, 70, 53, 23 and 57 for layers L, F,
H, A1 and A2, respectively. The principal component analysis (PCA)
was also performed and the scoreplot of the first two principal
components (PCs) was used to visualize the structure of the data
(Dotto et al., 2018) and to highlight the soil variations in different
horizons with different C:N levels.

To build prediction models that given a spectrumwill be able to
predict either SOC, TN and C:N, the data from each soil layer (L, F, H,
A1 and A2) as well as the dataset obtained from merging all indi-
vidual layers (profile) were randomly split into training (75%) and
testing (25%) datasets using the Kennard Stone (KS) technique
(Kennard & Stone, 1969). To develop the regression models and to
validate the developed models' generalization capability, the
training sets and the testing sets were used, respectively (Kooistra
et al., 2003). The spectral modelling was performed using support
vector machine regression (SVMR) algorithm with radial basis
kernel. The algorithm follows supervised learning based on the
statistical learning theory (Vohland et al., 2011). It has been iden-
tified to strike the correct balance between the accuracy gained
from a given limited amount of training patterns and the general-
ization capability to handle unseen data (Kovacevic et al., 2009). It
should be noted that a basic grid search approach was applied to
tune SVMR's hyperparameters (i.e., cost function and sigma). The
implementation of SVMR for spectroscopic modelling has previ-
ously been described in detail by Viscarra Rossel and Behrens
(2010) and Gholizadeh et al. (2016). The spectroscopic models were
finally validated using 10-repeated 10-fold cross-validation (Hastie
et al., 2009) and the validation statistics provided here are the
means of the 10 repeats. The entire spectra preprocessing and
modelling procedures were done using the software R 4.1.0 (R
Development Core Team, Vienna, Austria).
2.4. Prediction performance assessment

The final performance of the models was assessed using stan-
dard model evaluation statistics: the coefficient of determination
(R2) values between the observed and predicted values of SOC, TN
and C:N, Lin's concordance correlation coefficient (LCCC), root
mean squared error (RMSE) and bias. R2 (Eq. (1)) is the proportion
of variation in the response that can be described by the regression
model and shows the precision of the relationships. RMSE (Eq. (2))
is usually used in VNIReSWIR spectroscopy to explain the predic-
tion capability of a model and bias (Eq. (3)) is an independent
metric that represents the error of means (Bellon-Maurel et al.,
2010; Gomez et al., 2016), which both indicate the accuracy of
the prediction models (Ghebleh et al., 2021). LCCC (Eq. (4)) is a
single index that ranges between 0 and 1 (the larger the value, the
better the fitting effects) and evaluates the precision and accuracy
of the model (Lin, 1989).

R2 ¼
Pn

i¼1ðpredictedi � observedÞ2Pn
i¼1ðobservedi � observedÞ2

(1)

LCCC¼ 2rsobservedspredicted
s2observed þ s2predicted þ ðpredicted� observedÞ2

(2)

RMSE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
n

Xn

i¼1

ðobservedi � predictediÞ2
vuut (3)



Fig. 2. Histograms of SOC, TN and C:N for each soil layer.
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Fig. 3. Spectra measurement setup.

Table 1
Statistics description of soil attributes for profile and the individual horizons.

Layer N Minimum Maximum Mean Std. CV (%) Skewness

SOC (%)

L 426 36.67 50.91 43.08 2.93 7 0.47
F 431 29.50 48.79 39.46 4.12 10 �0.05
H 446 15.10 42.84 28.80 5.60 19 0.06
A1 476 0.82 12.20 5.96 2.29 39 0.02
A2 444 0.18 10.70 2.65 1.76 67 1.01
Profile 2223 0.18 50.91 23.29 17.05 73 �0.08

TN (%)

L 426 0.97 2.01 1.44 0.20 14 0.29
F 431 1.03 2.11 1.58 0.20 13 0.27
H 446 0.69 1.86 1.28 0.22 18 0
A1 476 0.03 0.55 0.25 0.11 45 0.37
A2 444 0.01 0.54 0.12 0.08 70 1.28
Profile 2223 0.01 2.11 0.91 0.65 71 �0.15

C:N

L 426 21.07 47.16 30.54 5.15 17 0.39
F 431 17.69 33.92 25.19 2.90 12 0.08
H 446 14.98 32.10 22.66 3.29 15 0.30
A1 476 6.16 111.60 26.23 12.20 47 2.84
A2 444 1.13 112.00 28.83 21.00 73 2.02
Profile 2223 1.13 112.00 26.55 11.77 44 3.43

L: litter; F: fragmented; H: humus; N: number of samples; Std.: standard deviation;
CV: coefficient of variation.
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bias ¼ 1
n

Xn

i¼1

ðobservedi �predictediÞ (4)

where predictedi and observedi are the predicted and observed

values at the time i; n is the number of total samples; predicted and

observed are the mean values of the predicted and observed soil
attribute; r is the Pearson correlation coefficient between the pre-
dicted and observed soil attribute; spredicted and sobserved are the
standard deviations of predicted and observed soil attribute.

2.5. Spatial distribution of C:N

The spatial distribution of C:N in different forest soil layers ac-
quired through chemical analysis and lab spectroscopy, was then
mapped as follows:

i) semi-variograms were created to estimate the spatial correla-
tions and the appropriate variogram models.

ii) spatial distribution maps of C:N were obtained using an ordi-
nary kriging method.

Afterwards, the resulting maps were compared to evaluate the
capability of prediction models to determine the depth spatial
distribution of C:N. The mapping procedure was conducted in the R
4.1.0 software (R Development Core Team, Vienna, Austria).

3. Results

3.1. Preliminary findings of soil attributes at different layers

General statistical results of SOC, TN and C:N including mini-
mum, maximum, mean, standard deviation (Std.), coefficient of
variation (CV) and skewness from all sampling locations for the
profile and the individual layers (L, H, F, A1 and A2) are shown in
Table 1.

Different layers were remarkably different in terms of SOC
contents, and a large variation in SOC content in soils of the profile
as well as the individual layers was seen, which is linked to the
different depths fromwhich the soil was sampled. The SOCmean in
the L layer was very high (mean ¼ 43.08% ± 2.93% (Std.)) ranged
from 36.67% to 50.91%. These contents decreased to
mean ¼ 39.46% ± 4.12% and 28.80% ± 5.60% in layers F and H and
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ranges ¼ 29.50e48.79% and 15.10e42.84%, respectively. In the
mineral layers A1 and A2, the average SOC contents were noticeably
lower (5.96% and 2.65%) than the organic layers (L, F and H) with
minimum and maximum of 0.82% and 12.20% for A1 and 0.18% and
10.70% for A2. Almost a similar trend can be observed in average of
TN contents, declining with the depth, except in layer F
(mean ¼ 1.58% ± 0.20%), which showed the highest TN contents
among all layers (even more than L with mean ¼ 1.44% ± 0.20%).
The TN contents were low in mineral layers, particularly in A2 with
minimum and mean values of 0.01% and 0.12%, respectively.

In terms of C:N, the similar pattern of reducing C:N by increasing
depth was not followed despite the trend were seen for SOC and TN
contents. Table 1 indicates that the average C:N in the L layer was
higher than all the other individual layers, presenting a high mean
value of 30.54 ± 5.15, while layer H showed the lowest C:N mean of
22.66 ± 3.29. In addition, there were higher C:N contents in the
mineral layers of A1 and A2 (mean ¼ 26.23 and 28.83, respectively)
compared to the organic layers of F and H. A comparison of the
studied layers’ CVs highlights that layer A2 had the highest varia-
tion of C:N (CV¼ 73%), which shows that its distribution is themost
heterogeneous among all soil layers. The very wide range of C:N in
this layer (1.13e112.00) caused lack of homogeneity in the popu-
lation, probably due to the availability of SOC in different decom-
position stages. In contrast, layer F had the CV ¼ 12%, considered as
low variability. The data with CV > 35%, 15% < CV < 35% and CV <
15% values has been classified as high, moderate and low variability,
respectively (Wilding, 1985). The C:N data for all layers positively
skewed with the highest skewness of 2.84 in A1. The individual
organic layer of F had approximated a normal distribution
(skewness¼ 0.08), whereas layers L and Hweremildly skewed. The
whole profile results highlight that the average C:N of all samples
was 26.55% ± 11.77%, with a distribution that shows rather a
moderate variability (CV¼ 44%) and a highly and positively skewed
distribution (skewness ¼ 3.43).

3.2. Soil spectral information at different layers

PCA was applied on the VNIReSWIR spectra of the forest soil
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samples from different organic and mineral layers with different
concentrations of SOC and TN. As shown in Fig. 4 and mentioned in
section 2.3., some samples were scattered away from the majority
of the samples and therefore were considered as outliers. The first
two PCs demonstrated about 98.63% variation and the organic
layers (L, F and H) spectra were obviously separated from the
mineral layers (A1 and A2) spectra; however, a spectral similarity
was observed between the layers in each group of spectra (Fig. 4).
This can be related to changes in concentrations and types of the
studied soil attributes by depth (Table 1), particularly due to SOC
decomposition process (Gholizadeh et al., 2021). The findings of the
PCA scoreplot justify the need to investigate the effect of different
soil layers on C:N ratio using VNIReSWIR spectroscopy. It also
demonstrates the power of PCA to discriminate VNIReSWIR
reflectance spectra of soils from different depths.

Fig. 5 presents the average reflectance of soil samples from
different layers (L, H, F, A1 and A2) and their standard deviation.
Average raw spectra shapes and patterns for all soil layers,
regardless of the depth, were typical for soil reflectance, with a
steady increase through VIS wave range (400e700 nm) and sharp
absorption bands, particularly in the SWIR range (1900e2500 nm).
The organic layers of L, F and H obviously followed a progression
associated with reduction in their organic matter contents; how-
ever, the spectra of layer H showed remarkably lower mean
reflectance values. Furthermore, the soil samples of the A1 layer
also indicated lower albedo intensity and reflectance across the
entire spectra than other the L, F and A2 layers. Nevertheless, they
had wider variance compared to layers L and F. In addition, it can be
seen in Fig. 5 that the spectra for the forest soil samples collected
from the A2 layer were typical of soils with lower SOC concentra-
tion, with common absorptions due to iron oxides, water and clay
minerals, mainly in NIR and SWIR regions.

3.3. SOC and TN prediction model performance at different soil
layers

The results of the SOC and TN estimation models at different
forest soil layers according to their R2, LCCC, RMSE and bias values
are presented in Table 2.

For SOC prediction, the differences between individual layers’
models in case of R2 were somehow negligible (0.63 � R2 � 0.77).
Layer H showed the lowest R2¼ 0.63 and also the highest RMSE and
bias values (RMSE¼ 3.56% and bias¼�0.49%) among all individual
layers in estimation of SOC, while F performed the best prediction
Fig. 4. PCA for VNIReSWIR spectra applied on different soil layers.
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results with the highest R2 and lowest RMES and bias (low-biased
spatial estimates) values (R2 ¼ 0.77, RMSE ¼ 1.72% and
bias¼�0.05%). In addition, layer F had LCCC¼ 0.85, which is higher
than other layers and shows the best 1:1 fit. The prediction accu-
racies obtained for assessing TN in the individual soil layers in
terms of R2 were noticeably lower (0.45 � R2 � 0.71) than those
gained for SOC. But similarly, they showed the same trend as SOC,
where the F layer (R2 ¼ 0.71, LCCC ¼ 0.85, RMSE ¼ 0.07% and
bias ¼ 0%), performed better than the other layers and especially
than H (R2 ¼ 0.45, LCCC ¼ 0.63, RMSE ¼ 0.18% and bias ¼ 0.02%).
The most significant finding about TN prediction in all examined
layers (either individual or merged) was that they were almost
unbiased (�0.01% � bias � 0.02%). Furthermore, for both SOC and
TN, the models developed for the organic horizons of L and F were
more accurate than those of the mineral horizons of A1 and A2.

Table 2 also highlights that for both assessed attributes (SOC and
TN), the best prediction accuracies with high R2 and LCCC and low
RMSE values were obtained, when all layers (profile) were used for
development of the models (R2 ¼ 0.97 and 0.95, LCCC ¼ 0.99 and
0.98, RMSE ¼ 1.68% and 0.06%, respectively). Moreover, the profile
models for both attributes showed low error (bias), although the
profile model of TN was unbiased (bias ¼ 0).

3.4. C:N quantification and spatial distribution at different soil
layers

Assessment metrics in Table 3 show the performance of the
SVMR models, when predicting C:N in profile and the individual
layers. It can be seen that the difference in C:N prediction accuracy
between the organic and mineral layers was more considerable
than their SOC and TN separately. In other words, the assessment
metrics obtained for the organic layers in general, and for the L and
F data in particular (R2 ¼ 0.69 and 0.71, LCCC ¼ 0.81 and 0.84,
RMSE ¼ 2.72% and 2.17% and bias ¼ 0.37% and �0.23%), were
noticeably better than of the mineral layers of A1 and A2 particular
(R2 ¼ 0.32 and 0.31, LCCC ¼ 0.48 and 0.44, RMSE ¼ 7.66% and 9.52%
and bias ¼ 0.85% and 1.26%).

According to Table 3, the R2 and LCCC (0.71 and 0.84) were
higher for layer F than other forest soil layers. Likewise, in predic-
tion of samples collected from the layer F, RMSE and bias showed
the lowest values (2.17% and �0.23%, respectively) among all
examined layers. This was similar to SOC and TN prediction results
presented in Table 2. The scatterplots of the observed against pre-
dicted C:N for each soil layer support these results (Fig. 6). Table 3
and Fig. 6 also show that merging all individual soil layers, we
obtained the soil profile prediction model, which could fairly
(Chang et al., 2001) perform (R2 ¼ 0.63, LCCC ¼ 0.79, RMSE ¼ 7.48%
and bias ¼ 0.46%). The profile model was more accurate than the
model for the individual layers of H, A1 and A2; nonetheless, less
accurate than layers L and F models.

When the models were validated, the next step was the spatial
prediction of C:N in different soil layers using the observed data
obtained from wet chemistry and the predicted data derived from
VNIReSWIR spectra. Fig. 7 highlights the resulting depth distribu-
tion maps, which reflect important information of the soil C:N
condition.

It could be observed that the spatial distribution of soil C:N
across the forested sites of the country was similar across all soil
layers, typically decreasing from west to east. It was also noticed
that generally, VNIReSWIR spectroscopy could fairly predict and
spatially analyze C:N in the organic horizons (L, F and H) of the
forested sites of the Czech Republic. In these layers, the same ten-
dency and a coherent spatial distribution were clearly observed
between the observed and predicted maps. Even layer H, with
lower accuracy compared to L and F, highlighted the different



Fig. 5. Average reflectance spectra (bold line) and their variance (shaded area) of forest soil samples collected from different layers.

Table 2
SOC and TN prediction model performance at profile and different soil layers.

Layer N R2 LCCC RMSE bias

SOC

L 426 0.74 0.82 1.75 0.10
F 431 0.77 0.85 1.72 �0.05
H 446 0.63 0.74 3.56 �0.49
A1 476 0.65 0.74 2.03 0.39
A2 444 0.71 0.76 1.87 0.38
Profile 2223 0.97 0.99 1.68 0.21

TN

L 426 0.62 0.70 0.09 �0.01
F 431 0.71 0.73 0.07 0
H 446 0.45 0.63 0.18 0.02
A1 476 0.55 0.66 0.14 0.01
A2 444 0.60 0.69 0.13 0.01
Profile 2223 0.95 0.98 0.06 0

L: litter; F: fragmented; H: humus; N: number of samples; R2: coefficient of deter-
mination; LCCC: Lin's concordance correlation coefficient; RMSE: root mean square
error.

Table 3
C:N prediction model performance at profile and different soil layers.

Layer N R2 LCCC RMSE bias

C:N

L 426 0.69 0.81 2.72 0.37
F 431 0.71 0.84 2.17 �0.23
H 446 0.56 0.66 4.28 0.48
A1 476 0.32 0.48 7.66 0.85
A2 444 0.31 0.44 9.52 1.26
Profile 2223 0.63 0.79 7.48 0.46

L: litter; F: fragmented; H: humus; N: number of samples; R2: coefficient of deter-
mination; LCCC: Lin's concordance correlation coefficient; RMSE: root mean square
error.

A. Gholizadeh, M. Saberioon, N. Pouladi et al. International Soil and Water Conservation Research 11 (2023) 112e124
values of C:N.
This trend did not work thoroughly well for the mineral layers.

For instance, regarding layer A1, in the easternmost part of the
study area, where the lowest values concentrated, a similar spatial
trend could be seen between the observed and predicted maps.
However, towards the west, C:N pattern and values were quite
variable between the maps, without a clearly distinguishable
spatial pattern and without depicting the C:N values higher than 50
(Fig. 7). The least accurate spatial variability map was for the A2
layer as the deepest studied layer. It can be seen that similar to layer
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A1, high values of C:N (� 50) were not detectable in themap created
based on the reflectance spectra and the largest section of the study
area was covered with the low and moderate values with no sig-
nificant spatial variability. It can be mentioned that, in the mineral
layers (A1 and A2), VNIReSWIR reflectance spectra were efficient
only to map lower values of C:N with highly degraded SOC. In
general, findings in Fig. 7 highlighted that VNIReSWIR spectros-
copy could detect different classes of C:N in the organic layers,
especially L and F, but it failed to differentiate various classes of C:N
in forest mineral layers. These results are in agreement with those
of presented in Table 3 and Fig. 6.

4. Discussion

According to Table 1, the forest soils of the Czech Republic had
high SOC concentration in general with the profile mean concen-
tration of 23.29%. In terms of soil layers, the organic layer of L



Fig. 6. Scatterplots of the observed against predicted C:N at different soil layers.
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showed the highest SOC (mean ¼ 43.08%), which decreased with
increasing soil depth. This trend was proved in previous studies
(Gelaw et al., 2013; Gholizadeh et al., 2021; Ugawa et al., 2012;
Zhang et al., 2016). This is attributed to the litter serving as themain
source of forest SOC. The organic composition of litter is gradually
decomposed by microorganisms, hence enriching the top soils
(Jiang et al., 2017). Moreover, SOC decrease by depth is due to the
increasing intensity of microbially-driven decomposition (Kramer
et al., 2017). In addition, the most dominant soil class of the
Czech Republic and this study's sample set was Cambisols, inwhich
there is little C below the organic horizons. These soils do not show
any significant soil development with depth, although they have
thick organic rich surface horizons (Deluca & Boisvenue, 2012). In
this study, TN mirrored the SOC concentrations trend (Table 1) and
almost a similar trend was observed between TN and forest soil
depth, which was also reported in the studies by Kramer et al.
(2017) and Sorenson et al. (2020). This can be associated with the
mineralization of litter from trees into fine particles and substances
such as ammonium (NH4

þ) that usually sticks to the surface layers
(Zhang et al., 2016).

With exception of layer H, all other layers had the values of C:N
higher than 24, suggesting that the net nitrification was low
(Ollinger et al., 2002; Albrechtova et al., 2008). Nevertheless, high
C:N may also be indicative of nitrogen immobilization by nitrogen
restricted soil microbial community (Holub et al., 2005). The
organic horizons of L, F and H followed the decreasing trend of C:N,
similar to what was observed for SOC and TN. Forest floor's (the L
layer) C:N ranged from 21.07 to 47.16 (mean ¼ 30.54), which was
decreased by depth in the other organic layers (Table 1). This
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highlights the availability of more amount of fresh organic and less
decomposed organic matter in this top layer (Carre et al., 2010). On
the other hand, layer H, with the lowest value of C:N among others,
represents well-decomposed organic matter and stable humus
components. This is attributed to high accumulation of more
extensively-decomposed (or microbially-altered) organic com-
pounds in the lower layers after C loss to respiration (Jenkinson &
Coleman, 2008; Krull & Skjemstad, 2003). In contrary, it was also
clear in Table 1 that in the mineral horizons (A1 and A2), the average
C:N increased as soil depth increased. This was opposite to the SOC
and TN trends and the results obtained in a research by Kramer
et al. (2017), who found soil C:N values were generally decreasing
with increasing of soil depth. Whereas supported by the results
yielded in some sites studied by Kramer et al. (2012), Zhang et al.
(2016), Wehr et al. (2020) and Radocaj, Jurisic, and Antonic
(2021). Working on Hawaiian soils, Kramer et al. (2012), found
that organic matter resembling oxidized plant matter accumulated
in the deeper soil horizons due to chemical association with short-
range order minerals.

The scoreplot of PCA (Fig. 4) indicates the data compression and
its dimensionality reduction. As expected, there was an obvious
separation of data by soil layer (L, F, H, A1 and A2). It happened along
the continuum of decomposition process and differences in con-
centrations of soil attributes (i.e., SOC and TN). Based on Fig. 4,
spectral characteristics were consistent with variation in soil layers.
Nevertheless, the obtained outputs were entirely different between
organic and mineral layers, which may be linked to the variation in
SOC concentrations of the samples that has a direct influence on
spectral features and intensity (Ben-Dor & Banin, 1995). Moreover,



Fig. 7. Observed and predicted spatial distribution of C:N at different soil layers.
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this can be expected due to significant differences in CV values of
SOC, TN and C:N between organic and mineral layers (Table 1),
which can cause wider scattering of samples in the mineral layers
with higher CV values compared to the organic layers.

Fig. 5 highlights that the VNIReSWIR spectra of all soil layers
were similar in appearance with respect to pattern, but varied in
reflectance values representing variation in TN and SOC concen-
trations and types (Sherman & Waite, 1985; Song et al., 2012).
Kuang and Mouazen (2011) and Jia et al. (2014) stated that SOC and
TN concentrations possess direct spectral response (overtone or
combination) in the VNIReSWIR region. For example, the bands
around 1150 nm are attributed to the absorption of amine NeH and
the variables near 2450 nm are related to the overtones of CeH
bond in methyl (Viscarra Rossel & Behrens, 2010). In the current
study, the main factors that dominated the spectral behavior of the
soil horizons were probably the wide range of SOC concentrations
(0.18%e50.91%) and types (e.g., recognizable fresh remains, humic
component). This is consistent with the conclusions presented by
Heil and Schmidhalter (2021). As the layers L and F contain less-
decomposed organic matter (e.g., leaves, needles, little branches),
their high spectral reflectance is largely caused by remained
vegetation photosynthetic pigments (e.g., chlorophyll, carotenoids,
xanthophylls) and cell structure (Gitelson et al., 2002). Layer H
followed by A1 indicated the lowest reflectance values compared to
120
the other studied layers (Fig. 5), which is probably because of the
darker colour of these layers and the well-decomposed structure
laying at them (Zanella et al., 2017). However, the high reflectance
of the A2 layer can be associated with the very low contents of SOC
and TN in this horizon (Table 1) that was also confirmed by Conforti
et al. (2015) and Jia et al. (2017).

Prediction results in Table 2 indicate the ability of VNIReSWIR
spectra and the models to predict SOC and TN on a large scale
was satisfactory in forest soils profile (merged individual layers).
This may ascribe to strong correlation of SOC and TN with soil
reflectance as often reported in the literature (Dinakaran et al.,
2016; Peltre et al., 2011). The results also show that for both SOC
and TN, statistics outputs were considerably higher, when all layers
(profile) were used for model development. Such results are
consistent with those described in studies by Xie et al. (2011) and
Jia et al. (2017), in which the total samples from different depths
generally provided better models than the surface and subsurface
sets for the measurement of organic matter, SOC and TN concen-
trations, respectively. Kuang and Mouazen (2011) and Jia et al.
(2017) mentioned that the heterogeneity and high CV of the sam-
ple sets could increase the accuracy of calibration models.

Considering SOC and TN prediction in individual horizons
(Table 2), it was apparent that the L and F organic layers were
predicted more accurately than the mineral layers of A1 and A2,
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which is similar to the results obtained by Jia et al. (2017). It is
probably because the spectral reflectance from the soil, as a pre-
dictor, becomes less efficient due to an acute decrease in the SOC
and TN concentrations (Gholizadeh et al., 2021; Jia et al., 2017).
Nevertheless, despite the decline in prediction capability with
depth, the VNIReSWIR spectra could still fairly assess the target
attributes in deeper layers of the forested areas across the country.
Furthermore, Table 2 indicates that layer F was the best-predicted
horizon among the others, which can be associated with the
contribution of TN and SOC type and their correlation with other
soil attributes in this soil layer. This has also been reported in some
other studies (Gholizadeh et al., 2018; Telles et al., 2003). In
contrast, the H layer had the poorest prediction models of SOC and
TN that can be linked to its very decomposedmaterials and high SD
values (Table 1) among others (Jia et al., 2017; Kuang & Mouazen,
2011). In summary, these results revealed successful VNIReSWIR
models for SOC prediction (with high R2 and LCCC and low error
values) andmoderate spectral models for TN prediction in different
forest soil layers, though the TN developed models were low- or
even zero-biased. These results compared well to previous litera-
ture (Ji et al., 2016; Jiang et al., 2017). It should be noted that the soil
spectroscopic models established in local-scale studies usually
perform better (Guerrero et al., 2016; Stevens et al., 2013), perhaps
because the soils sampled at the local-scale have lower variability
and more similar spectral features (Gholizadeh et al., 2021).

The findings in Table 3 and Fig. 6 explain that C:N prediction
using VNIReSWIR spectra was more accurate in the forest soil
profile as well as organic horizons, particularly in the F layer, which
is similar to those of obtained for SOC and TN individual assessment
(Table 2). It is apparent from Table 3 that the developed models for
the mineral horizons of A1 and A2 were poor and did not have
reliable predictive ability. Mutuo et al. (2006) and Heil and
Schmidhalter (2021) were either unable to accurately predict C:N
in deeper layers in VNIReSWIR studies. The very wide range of C:N
in A1 and A2 layers (6.16e111.60 and 1.13e112.00, respectively)
shows the availability of SOC in different decomposition stages,
which has different spectral responses and generally causes a drop
in model robustness and calibration accuracy due to lack of ho-
mogeneity in the population (Brunet et al., 2007; Dinakaran et al.,
2016; Peltre et al., 2011). Contrarily, Jia et al. (2017) showed that
the wide concentration range in soil attributes would be advanta-
geous in developing satisfactory VNIReSWIR spectroscopy models.

The observed and predicted data from wet chemistry and
VNIReSWIR reflectance spectroscopy were used to visualize the
depth distribution of C:N in the country's forested sites (Fig. 7). The
spatial distribution of soil C:N across the forests followed a rather
comparable trend across all soil layers reducing from west to east.
This might be connected to variation in forest stands (e.g., forest
composition, soil classes and altitudes), which affect the SOC, TN
and C:N dynamics of the forest soils (Albrechtova et al., 2008;
Zhang et al., 2016), particularly in forest floor that is more easily
influenced by external factors such as tree species (Ollinger et al.,
2002; Zhang et al., 2016). In terms of depth effect, the maps of
C:N created by the spectral data in the organic layers (particularly,
layer F) generally showed similar spatial distribution patterns with
those of obtained from the actual data. The predicted maps in these
layers were capable of not only displaying low and medium C:N
values, but also detecting high and very high classes of C:N. This can
be attributed to rather fair to good prediction accuracy of C:N in
organic layers (Table 3 and Fig. 6). In the target mineral layers (A1

and A2), differences in the range of C:N values occurred and high
values were observed, which might be caused by soluble sub-
stances (such as NO3

�) yielded from litters that are continuously
taken into deep soil layers by infiltration (Zhang et al., 2016).
However, in spite of the organic layers, VNIReSWIR spectroscopy
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was not successful to classify high values of C:N in the mineral
layers. This indicates that the effectiveness of C:N spectroscopic
models in deeper forest soil horizons was limited. Generally
speaking, the current study provided an example on how spectral
data can effectively be used for rapid and cost-effective prediction
of SOC and TN at a national-scale from the upper to lower horizons
of heterogeneous forest soils. Furthermore, the obtained outputs
highlighted that VNIReSWIR spectroscopy potential to be a suitable
technique for quantifying and mapping forest organic layers (L, F
and H) for the purposes of monitoring C:N. Nevertheless, the
technique did not support the determination andmapping of C:N in
the mineral horizons (A1 and A2) of the Czech Republic forested
sites.

Detailed C:N information at different depths has the potential to
set our understanding of soil functioning (Ben-Dor et al., 2008;
Triantafilis et al., 2001). We thus suppose that the study of
VNIReSWIR spectroscopy in C:N assessment at different soil layers
will be worthwhile and can further be used to assess soil quality
and fertility (Lou et al., 2012; Zhou et al., 2021). It should be stated
that there are still some external factors that noticeably affect the
value and distribution of C:N. For instance, tree species and vege-
tation chemistry (Ollinger et al., 2002; Tajik et al., 2019) as well as
climate regime and topographic factors such as slope and elevation
leading to variation in C:N level (Ayoubi et al., 2012; Zhang et al.,
2016). In addition, Kramer et al. (2012) and Wehr et al. (2020)
specified that C:N depth patterns can be driven by soil minerals.
Consequently, the capability of VNIReSWIR spectra for C:N pre-
diction and mapping will be affected, which need to be dealt with
in future works.

5. Conclusions

This study explored the performance of laboratory VNIReSWIR
spectroscopy, SVMR machine learning technique and ordinary
kriging to quantify SOC and TN and consequently tomap the spatial
distribution of the C:N in different soil layers of the forested sites of
the Czech Republic. The conclusions of the study were as follows:

i) There was a large variation in the studied attributes in forest
soil layers depending on the depth from which the samples
were taken.

ii) A similar decreasing trend with depth was seen in average of
the SOC and TN concentrations, except in the F layer. How-
ever, for C:N, the similar declining pattern by increasing
depth was not observed. Layer L presented the highest C:N
though the H layer showed the lowest C:N mean.

iii) Regardless of the depth, the average spectra shapes and
patterns for all soil layers were generally similar, although
layer H indicated the lowest albedo intensity and reflectance.

iv) The SOC and TN models for soil profile performed satisfac-
torily. Moreover, in terms of the prediction accuracy of the
individual layers' models, layer F was the best-predicted
forest soil layer for both SOC and TN.

v) C:N could be predicted in the soil profile and organic layers,
particularly in layer F, but the developed models for the
mineral layers poorly performed.

vi) Reflectance spectra could reasonably map the organic layers.
vii) A noticeable decrease in the map performances of layers A1

and A2 was observed, particularly in the areas with high C:N
(� 50), and it can be stated that VNIReSWIR spectroscopy
failed to show C:N variability in the mineral layers (A1 and
A2).

As C:N is very dependent on forest tree species, topographic
parameters and soil mineralogy, further hypothesis testing and
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evaluating their effects on VNIReSWIR predictive capability are
planned.

Declaration of competing interest

The authors declare that they have no known competing
financial interests or personal relationships that could have
appeared to influence the work reported in this paper.

Acknowledgement

The authors like to thank the Central Institute for Supervising
and Testing in Agriculture for providing the data. The authors also
thank the financial support of the Czech Science Foundation
(project No. 18-28126Y). TheWORLDSOILS project by the European
Space Agency developed within the EO Science for Society slice of
the 5th Earth Observation Envelope Program is also acknowledged.
The comments of Ran Pelta on preliminary methodology and the
kind assistance of Lubo�s Bor�uvka and Lenka Pavl�u for commenting
on Czech soil classes and Karel N�eme�cek for providing the detailed
study area map are greatly appreciated.

References

Akselsson, C., Berg, B., Meentemeyer, V., & Westling, O. (2005). Carbon sequestra-
tion rates in organic layers of boreal and temperate forest soils d Sweden as a
case study. Global Ecology and Biogeography, 14(1), 77e84.

Albrechtova, J., Seidl, Z., Aitkenhead-Peterson, J., Lhotakova, Z., Rock, Alexander, J. E.,
Malenovsky, Z., & McDowell, W. H. (2008). Spectral analysis of coniferous fo-
liage and possible links to soil chemistry: Are spectral chlorophyll indices
related to forest floor dissolved organic C and N? Science of the Total Environ-
ment, 404(2e3), 424e432.

Ayoubi, S., Mirbagheri, Z., & Mosaddeghi, M. R. (2020). Soil organic carbon physical
fractions and aggregate stability influenced by land use in humid region of
northern Iran. International Agrophysics, 34(3), 343e353.

Ayoubi, S., Mokhtari, P., Mosaddeghi, M. R., & Honarjoo, N. (2012). Soil aggregation
and organic carbon as affected by topography and land use change in western
Iran. Soil & Tillage Research, 121, 18e26.

Baciak, M., Warmiski, K., & Bes, A. (2015). The effect of selected gaseous air pol-
lutants on woody plants. Forest Research Papers, 76, 401e409.

Barthes, B. G., Brunet, D., Ferrer, H., Chotte, J. L., & Feller, C. (2006). Determination of
total carbon and nitrogen content in a range of tropical soils using near infrared
spectroscopy: Influence of replication and sample grinding and drying. Journal
of Near Infrared Spectroscopy, 14, 341e348.

Bellamy, P. H., Loveland, P. J., Bradley, R. I., Lark, R. M., & Kirk, G. J. D. (2005). Carbon
losses from all soils across England and wales 1978-2003. Nature, 437, 245e248.

Bellon-Maurel, V., Fernandez-Ahumada, E., Palagos, B., Roger, J. M., &
McBratney, A. B. (2010). Critical review of chemometric indicators commonly
used for assessing the quality of the prediction of soil attributes by NIR spec-
troscopy. TRAC Trends in Analytical Chemistry, 29, 1073e1081.

Ben-Dor, E., & Banin, A. (1995). Near-infrared analysis as a rapid method to
simultaneously evaluate several soil properties. Soil Science Society of America
Journal, 59(2), 364e372.

Ben-Dor, E., Heller, D., & Chudnovsky, A. (2008). A novel method of classifying soil
profiles in the field using optical means. Soil Science Society of America Journal,
72, 1113e1123.

Black, K., Creamer, R. E., Xenakis, G., & Cook, S. (2014). Improving forest soil carbon
models using spatial data and geostatistical approaches. Geoderma, 232,
487e499.

Brahma, B., Pathak, K., Lal, R., Kurmi, B., Das, M., Nath, P. C., Nath, A. J., & Das, A. K.
(2018). Ecosystem carbon sequestration through restoration of degraded lands
in Northeast India. Land Degradation & Development, 29, 15e25.

Bremner, J. M., & Mulvaney, C. S. (1982). Nitrogen total 1. In Methods of soil analysis.
Part 2. Chemical and microbiological properties (pp. 595e624). Madison, WI,
USA: American Society of Agronomy, Soil Science Society of America, American
Society of Agronomy.

Brunet, D., Barthes, B. G., Chotte, J. L., & Feller, C. (2007). Determination of carbon
and nitrogen contents in alfisols, oxisols and ultisols from africa and Brazil
using NIRS analysis: Effects of sample grinding and set heterogeneity. Geo-
derma, 139, 106e117.

Carre, F., Jeannee, N., Casalegno, S., Lemarchand, O., Reuter, H., & Montanarella, L.
(2010). Mapping the CN ratio of the forest litters in Europe-Lessons for global
digital soil mapping. In J. L. Boettinger, D. W. Howell, A. C. Moore,
A. E. Hartemink, & S. Kienast-Brown (Eds.), Digital soil mapping. Progress in soil
science (Vol. 2). Dordrecht, New York, NY, USA: Springer.

Chamberlain, P. M., Emmett, B. A., Scott, W. A., Black, H. I. J., Hornung, M., &
Frogbrook, Z. L. (2010). No change in topsoil carbon levels of Great Britain,
122
1978e2007. Biogeosciences Discussions, 7, 2267e2311.
Chang, C. W., Laird, D. A., Mausbach, M. J., & Hurburgh, C., Jr. (2001). Near-infrared

reflectance spectroscopy - principal component analysis of soil properties. Soil
Science Society of America Journal, 65, 480e490.

Chen, D., Chang, N., Xiao, J., Zhou, Q., & Wu, W. (2019). Mapping dynamics of soil
organic matter in croplands with MODIS data and machine learning algorithms.
Science of the Total Environment, 669, 844e855.

Conforti, M., Castrignano, A., Robustelli, G., Scarciglia, F., Stelluti, M., & Buttafuoco, G.
(2015). Laboratory-based ViseNIR spectroscopy and partial least square
regression with spatially correlated errors for predicting spatial variation of soil
organic matter content. Catena, 124, 60e67.

Cook, R. (1977). Detection of influential observation in linear regression. Techno-
metrics, 19, 15e18.

Cools, N., Vesterdal, L., Vos, B. D., Vanguelova, E., & Hansen, K. (2014). Tree species is
the major factor explaining C:N ratios in European forest soils. Forest Ecology
and Management, 311, 3e16.

Czech Statistical Office for Surveying. (2019). Mapping and Cadastre. URL: https://
vdb.czso.cz.

Deluca, T. H., & Boisvenue, C. (2012). Boreal forest soil carbon: Distribution, function
and modelling. Forestry: An International Journal of Forestry Research, 85(2),
161e184.

Dinakaran, J., Bidalia, A., Kumar, A., Hanief, M., Meena, A., & Rao, K. S. (2016). Near-
infrared-spectroscopy for determination of carbon and nitrogen in Indian soils.
Communications in Soil Science and Plant Analysis, 47(12), 1503e1516.

Dotto, A. C., Dalmolin, R. S. D., Caten, A. T., & Grunwald, S. (2018). A systematic study
on the application of scatter-corrective and spectral-derivative preprocessing
for multivariate prediction of soil organic carbon by Vis-NIR spectra. Geoderma,
314, 262e274.

England, J. R., & Viscarra Rossel, R. A. (2018). Proximal sensing for soil carbon ac-
counting. SOIL, 4(2), 101e122.

Fiala, P., Reininger, D., Samek, T., Nemec, P., & Susil, A. (2013). Pruzkum vyzivy lesa na
uzemi Ceske Republiky 1996e2011. Technical Report.

Gelaw, A. M., Singh, B. R., & Lal, R. (2013). Organic carbon and nitrogen associated
with soil aggregates and particle sizes under different land uses in Tigray,
Northern Ethiopia. Land Degradation & Development, 26, 7.

Ghebleh, M., Taghizadeh-Mehrjardi, R., Jafarzadeh, A. A., Triantafilis, J., & Lado, M.
(2021). Using environmental variables and Fourier Transform Infrared Spec-
troscopy to predict soil organic carbon. Catena, 202, Article 105280.

Gholizadeh, A., Amin, M. S. M., Anuar, A. R., & Aimrun, W. (2011). Apparent electrical
conductivity in correspondence to soil chemical properties and plant nutrients
in soil. Communications in Soil Science and Plant Analysis, 42(12), 1447e1461.

Gholizadeh, A., Boruvka, L., Saberioon, M., & Vasat, R. (2013). Visible, near-infrared,
and mid-infrared spectroscopy applications for soil assessment with emphasis
on soil organic matter content and quality: State-of-the-art and key issues.
Applied Spectroscopy, 67(12), 1349e1362.

Gholizadeh, A., Boruvka, L., Saberioon, M., & Vasat, R. (2016). A memory-based
learning approach as compared to other data mining algorithms for the pre-
diction of soil texture using diffuse reflectance spectra. Remote Sensing, 8(4),
341.

Gholizadeh, A., Viscarra Rossel, R. A., Saberioon, M., Boruvka, L., Kratina, J., &
Pavlu, L. (2021). National-scale spectroscopic assessment of soil organic carbon
in forests of the Czech Republic. Geoderma, 385, Article 114832.

Gholizadeh, A., Zizala, D., Saberioon, M., & Boruvka, L. (2018). Soil organic carbon
and texture retrieving and mapping using proximal, airborne and Sentinel-2
spectral imaging. Remote Sensing of Environment, 218, 89e103.

Gibson, T., Chan, K., Sharma, G., & Shearman, R. (2002). Soil carbon sequestration
utilising recycled organics. Technical Report NSW Agriculture.

Gitelson, A., Zur, Y., Chivkunova, O., & Merzlyak, M. (2002). Assessing carotenoid
content in plant leaves with reflectance spectroscopy. Photochemistry and
Photobiology, 75, 272e281.

Gomez, C., Gholizadeh, A., Boruvka, L., & Lagacherie, P. (2016). Using legacy data for
correction of soil surface clay content predicted from VNIR/SWIR hyperspectral
airborne images. Geoderma, 276, 84e92.

Guerrero, C., Wetterlind, J., Stenberg, B., Mouazen, A. M., Gabarron-Galeote, M. A.,
Ruiz-Sinoga, J. D., Zornoza, R., & Viscarra Rossel, R. A. (2016). Do we really need
large spectral libraries for local scale soc assessment with NIR spectroscopy?
Soil & Tillage Research, 155, 501e509.

Hastie, T., Tibshirani, R., & Friedman, J. (2009). The elements of statistical learning:
Data mining, Inference and Prediction. Dordrecht, New York, NY, USA: Springer.
Springer.

Heil, K., & Schmidhalter, U. (2021). An evaluation of different NIR-spectral pre-
treatments to derive the soil parameters C and N of a humus-clay-rich soil.
Sensors, 21(4), 1423.

Holub, S. M., Lajtha, K., Spears, J. D. H., Toth, J. A., Crow, S. E., & Caldwell, B. A. (2005).
Organic matter manipulations have little effect on gross and net nitrogen
transformations in two temperate forest minerals in the USA and central
Europe. Forest Ecology and Management, 214, 320e330.

Jenkinson, D., & Coleman, K. (2008). The turnover of organic carbon in subsoils. Part
2. Modelling carbon turnover. European Journal of Soil Science, 59(2), 400e413.

Jensen, J. (2007). Remote sensing of the environment: An earth resource perspective
(Vol. 544). Prentice Education.

Jia, X., Chen, S., Yang, Y., Zhou, L., Yu, W., & Shi, Z. (2017). Organic carbon prediction
in soil cores using VNIR and MIR techniques in an alpine landscape. Scientific
Reports, 7, 2144.

Jiang, Q., Li, Q., Wang, X., Wu, Y., Yang, X., & Liu, F. (2017). Estimation of soil organic

http://refhub.elsevier.com/S2095-6339(22)00045-4/sref1
http://refhub.elsevier.com/S2095-6339(22)00045-4/sref1
http://refhub.elsevier.com/S2095-6339(22)00045-4/sref1
http://refhub.elsevier.com/S2095-6339(22)00045-4/sref1
http://refhub.elsevier.com/S2095-6339(22)00045-4/sref1
http://refhub.elsevier.com/S2095-6339(22)00045-4/sref2
http://refhub.elsevier.com/S2095-6339(22)00045-4/sref2
http://refhub.elsevier.com/S2095-6339(22)00045-4/sref2
http://refhub.elsevier.com/S2095-6339(22)00045-4/sref2
http://refhub.elsevier.com/S2095-6339(22)00045-4/sref2
http://refhub.elsevier.com/S2095-6339(22)00045-4/sref2
http://refhub.elsevier.com/S2095-6339(22)00045-4/sref2
http://refhub.elsevier.com/S2095-6339(22)00045-4/sref3
http://refhub.elsevier.com/S2095-6339(22)00045-4/sref3
http://refhub.elsevier.com/S2095-6339(22)00045-4/sref3
http://refhub.elsevier.com/S2095-6339(22)00045-4/sref3
http://refhub.elsevier.com/S2095-6339(22)00045-4/sref4
http://refhub.elsevier.com/S2095-6339(22)00045-4/sref4
http://refhub.elsevier.com/S2095-6339(22)00045-4/sref4
http://refhub.elsevier.com/S2095-6339(22)00045-4/sref4
http://refhub.elsevier.com/S2095-6339(22)00045-4/sref4
http://refhub.elsevier.com/S2095-6339(22)00045-4/sref5
http://refhub.elsevier.com/S2095-6339(22)00045-4/sref5
http://refhub.elsevier.com/S2095-6339(22)00045-4/sref5
http://refhub.elsevier.com/S2095-6339(22)00045-4/sref6
http://refhub.elsevier.com/S2095-6339(22)00045-4/sref6
http://refhub.elsevier.com/S2095-6339(22)00045-4/sref6
http://refhub.elsevier.com/S2095-6339(22)00045-4/sref6
http://refhub.elsevier.com/S2095-6339(22)00045-4/sref6
http://refhub.elsevier.com/S2095-6339(22)00045-4/sref7
http://refhub.elsevier.com/S2095-6339(22)00045-4/sref7
http://refhub.elsevier.com/S2095-6339(22)00045-4/sref7
http://refhub.elsevier.com/S2095-6339(22)00045-4/sref8
http://refhub.elsevier.com/S2095-6339(22)00045-4/sref8
http://refhub.elsevier.com/S2095-6339(22)00045-4/sref8
http://refhub.elsevier.com/S2095-6339(22)00045-4/sref8
http://refhub.elsevier.com/S2095-6339(22)00045-4/sref8
http://refhub.elsevier.com/S2095-6339(22)00045-4/sref9
http://refhub.elsevier.com/S2095-6339(22)00045-4/sref9
http://refhub.elsevier.com/S2095-6339(22)00045-4/sref9
http://refhub.elsevier.com/S2095-6339(22)00045-4/sref9
http://refhub.elsevier.com/S2095-6339(22)00045-4/sref10
http://refhub.elsevier.com/S2095-6339(22)00045-4/sref10
http://refhub.elsevier.com/S2095-6339(22)00045-4/sref10
http://refhub.elsevier.com/S2095-6339(22)00045-4/sref10
http://refhub.elsevier.com/S2095-6339(22)00045-4/sref11
http://refhub.elsevier.com/S2095-6339(22)00045-4/sref11
http://refhub.elsevier.com/S2095-6339(22)00045-4/sref11
http://refhub.elsevier.com/S2095-6339(22)00045-4/sref11
http://refhub.elsevier.com/S2095-6339(22)00045-4/sref12
http://refhub.elsevier.com/S2095-6339(22)00045-4/sref12
http://refhub.elsevier.com/S2095-6339(22)00045-4/sref12
http://refhub.elsevier.com/S2095-6339(22)00045-4/sref12
http://refhub.elsevier.com/S2095-6339(22)00045-4/sref12
http://refhub.elsevier.com/S2095-6339(22)00045-4/sref13
http://refhub.elsevier.com/S2095-6339(22)00045-4/sref13
http://refhub.elsevier.com/S2095-6339(22)00045-4/sref13
http://refhub.elsevier.com/S2095-6339(22)00045-4/sref13
http://refhub.elsevier.com/S2095-6339(22)00045-4/sref13
http://refhub.elsevier.com/S2095-6339(22)00045-4/sref14
http://refhub.elsevier.com/S2095-6339(22)00045-4/sref14
http://refhub.elsevier.com/S2095-6339(22)00045-4/sref14
http://refhub.elsevier.com/S2095-6339(22)00045-4/sref14
http://refhub.elsevier.com/S2095-6339(22)00045-4/sref14
http://refhub.elsevier.com/S2095-6339(22)00045-4/sref15
http://refhub.elsevier.com/S2095-6339(22)00045-4/sref15
http://refhub.elsevier.com/S2095-6339(22)00045-4/sref15
http://refhub.elsevier.com/S2095-6339(22)00045-4/sref15
http://refhub.elsevier.com/S2095-6339(22)00045-4/sref15
http://refhub.elsevier.com/S2095-6339(22)00045-4/sref16
http://refhub.elsevier.com/S2095-6339(22)00045-4/sref16
http://refhub.elsevier.com/S2095-6339(22)00045-4/sref16
http://refhub.elsevier.com/S2095-6339(22)00045-4/sref16
http://refhub.elsevier.com/S2095-6339(22)00045-4/sref16
http://refhub.elsevier.com/S2095-6339(22)00045-4/sref17
http://refhub.elsevier.com/S2095-6339(22)00045-4/sref17
http://refhub.elsevier.com/S2095-6339(22)00045-4/sref17
http://refhub.elsevier.com/S2095-6339(22)00045-4/sref17
http://refhub.elsevier.com/S2095-6339(22)00045-4/sref18
http://refhub.elsevier.com/S2095-6339(22)00045-4/sref18
http://refhub.elsevier.com/S2095-6339(22)00045-4/sref18
http://refhub.elsevier.com/S2095-6339(22)00045-4/sref18
http://refhub.elsevier.com/S2095-6339(22)00045-4/sref19
http://refhub.elsevier.com/S2095-6339(22)00045-4/sref19
http://refhub.elsevier.com/S2095-6339(22)00045-4/sref19
http://refhub.elsevier.com/S2095-6339(22)00045-4/sref19
http://refhub.elsevier.com/S2095-6339(22)00045-4/sref19
http://refhub.elsevier.com/S2095-6339(22)00045-4/sref19
http://refhub.elsevier.com/S2095-6339(22)00045-4/sref20
http://refhub.elsevier.com/S2095-6339(22)00045-4/sref20
http://refhub.elsevier.com/S2095-6339(22)00045-4/sref20
http://refhub.elsevier.com/S2095-6339(22)00045-4/sref21
http://refhub.elsevier.com/S2095-6339(22)00045-4/sref21
http://refhub.elsevier.com/S2095-6339(22)00045-4/sref21
http://refhub.elsevier.com/S2095-6339(22)00045-4/sref21
https://vdb.czso.cz
https://vdb.czso.cz
http://refhub.elsevier.com/S2095-6339(22)00045-4/sref23
http://refhub.elsevier.com/S2095-6339(22)00045-4/sref23
http://refhub.elsevier.com/S2095-6339(22)00045-4/sref23
http://refhub.elsevier.com/S2095-6339(22)00045-4/sref23
http://refhub.elsevier.com/S2095-6339(22)00045-4/sref24
http://refhub.elsevier.com/S2095-6339(22)00045-4/sref24
http://refhub.elsevier.com/S2095-6339(22)00045-4/sref24
http://refhub.elsevier.com/S2095-6339(22)00045-4/sref24
http://refhub.elsevier.com/S2095-6339(22)00045-4/sref25
http://refhub.elsevier.com/S2095-6339(22)00045-4/sref25
http://refhub.elsevier.com/S2095-6339(22)00045-4/sref25
http://refhub.elsevier.com/S2095-6339(22)00045-4/sref25
http://refhub.elsevier.com/S2095-6339(22)00045-4/sref25
http://refhub.elsevier.com/S2095-6339(22)00045-4/sref26
http://refhub.elsevier.com/S2095-6339(22)00045-4/sref26
http://refhub.elsevier.com/S2095-6339(22)00045-4/sref26
http://refhub.elsevier.com/S2095-6339(22)00045-4/sref27
http://refhub.elsevier.com/S2095-6339(22)00045-4/sref27
http://refhub.elsevier.com/S2095-6339(22)00045-4/sref27
http://refhub.elsevier.com/S2095-6339(22)00045-4/sref28
http://refhub.elsevier.com/S2095-6339(22)00045-4/sref28
http://refhub.elsevier.com/S2095-6339(22)00045-4/sref28
http://refhub.elsevier.com/S2095-6339(22)00045-4/sref28
http://refhub.elsevier.com/S2095-6339(22)00045-4/sref29
http://refhub.elsevier.com/S2095-6339(22)00045-4/sref29
http://refhub.elsevier.com/S2095-6339(22)00045-4/sref29
http://refhub.elsevier.com/S2095-6339(22)00045-4/sref30
http://refhub.elsevier.com/S2095-6339(22)00045-4/sref30
http://refhub.elsevier.com/S2095-6339(22)00045-4/sref30
http://refhub.elsevier.com/S2095-6339(22)00045-4/sref30
http://refhub.elsevier.com/S2095-6339(22)00045-4/sref31
http://refhub.elsevier.com/S2095-6339(22)00045-4/sref31
http://refhub.elsevier.com/S2095-6339(22)00045-4/sref31
http://refhub.elsevier.com/S2095-6339(22)00045-4/sref31
http://refhub.elsevier.com/S2095-6339(22)00045-4/sref31
http://refhub.elsevier.com/S2095-6339(22)00045-4/sref32
http://refhub.elsevier.com/S2095-6339(22)00045-4/sref32
http://refhub.elsevier.com/S2095-6339(22)00045-4/sref32
http://refhub.elsevier.com/S2095-6339(22)00045-4/sref32
http://refhub.elsevier.com/S2095-6339(22)00045-4/sref33
http://refhub.elsevier.com/S2095-6339(22)00045-4/sref33
http://refhub.elsevier.com/S2095-6339(22)00045-4/sref33
http://refhub.elsevier.com/S2095-6339(22)00045-4/sref34
http://refhub.elsevier.com/S2095-6339(22)00045-4/sref34
http://refhub.elsevier.com/S2095-6339(22)00045-4/sref34
http://refhub.elsevier.com/S2095-6339(22)00045-4/sref34
http://refhub.elsevier.com/S2095-6339(22)00045-4/sref35
http://refhub.elsevier.com/S2095-6339(22)00045-4/sref35
http://refhub.elsevier.com/S2095-6339(22)00045-4/sref36
http://refhub.elsevier.com/S2095-6339(22)00045-4/sref36
http://refhub.elsevier.com/S2095-6339(22)00045-4/sref36
http://refhub.elsevier.com/S2095-6339(22)00045-4/sref36
http://refhub.elsevier.com/S2095-6339(22)00045-4/sref37
http://refhub.elsevier.com/S2095-6339(22)00045-4/sref37
http://refhub.elsevier.com/S2095-6339(22)00045-4/sref37
http://refhub.elsevier.com/S2095-6339(22)00045-4/sref37
http://refhub.elsevier.com/S2095-6339(22)00045-4/sref38
http://refhub.elsevier.com/S2095-6339(22)00045-4/sref38
http://refhub.elsevier.com/S2095-6339(22)00045-4/sref38
http://refhub.elsevier.com/S2095-6339(22)00045-4/sref38
http://refhub.elsevier.com/S2095-6339(22)00045-4/sref38
http://refhub.elsevier.com/S2095-6339(22)00045-4/sref38
http://refhub.elsevier.com/S2095-6339(22)00045-4/sref39
http://refhub.elsevier.com/S2095-6339(22)00045-4/sref39
http://refhub.elsevier.com/S2095-6339(22)00045-4/sref39
http://refhub.elsevier.com/S2095-6339(22)00045-4/sref40
http://refhub.elsevier.com/S2095-6339(22)00045-4/sref40
http://refhub.elsevier.com/S2095-6339(22)00045-4/sref40
http://refhub.elsevier.com/S2095-6339(22)00045-4/sref41
http://refhub.elsevier.com/S2095-6339(22)00045-4/sref41
http://refhub.elsevier.com/S2095-6339(22)00045-4/sref41
http://refhub.elsevier.com/S2095-6339(22)00045-4/sref41
http://refhub.elsevier.com/S2095-6339(22)00045-4/sref41
http://refhub.elsevier.com/S2095-6339(22)00045-4/sref42
http://refhub.elsevier.com/S2095-6339(22)00045-4/sref42
http://refhub.elsevier.com/S2095-6339(22)00045-4/sref42
http://refhub.elsevier.com/S2095-6339(22)00045-4/sref43
http://refhub.elsevier.com/S2095-6339(22)00045-4/sref43
http://refhub.elsevier.com/S2095-6339(22)00045-4/sref44
http://refhub.elsevier.com/S2095-6339(22)00045-4/sref44
http://refhub.elsevier.com/S2095-6339(22)00045-4/sref44
http://refhub.elsevier.com/S2095-6339(22)00045-4/sref45


A. Gholizadeh, M. Saberioon, N. Pouladi et al. International Soil and Water Conservation Research 11 (2023) 112e124
carbon and total nitrogen in different soil layers using VNIR spectroscopy: Ef-
fects of spiking on model applicability. Geoderma, 293, 54e63.

Jia, S., Yang, X., Zhang, J., & Li, G. (2014). Quantitative analysis of soil nitrogen,
organic carbon, available phosphorous, and available potassium using near-
infrared spectroscopy combined with variable selection. Soil Science, 179(4),
211e219.

Ji, W., Li, S., Chen, S., Shi, Z., Viscarra Rossel, R., & Mouazen, A. M. (2016). Prediction
of soil attributes using the Chinese soil spectral library and standardized spectra
recorded at field conditions. Soil & Tillage Research, 155, 492e500.

Keesstra, S. D., Geissen, V., Mosse, K., Piiranen, S., Scudiero, E., Leistra, M., &
Schaik, van L. (2012). Soil as a filter for groundwater quality. Current Opinion in
Environmental Sustainability, 4, 507e516.

Kennard, R. W., & Stone, L. A. (1969). Computer aided design of experiments.
Technometrics, 11, 137e148.

Kim, M. G. (2017). A cautionary note on the use of Cook’s distance. Communications
for Statistical Applications and Methods, 24, 317e324.

Knadel, M., Deng, F., Thomsen, M. A., & Greve, M. H. (2012). Development of a
Danish national Vis-NIR soil spectral library for soil organic carbon determi-
nation. In B. Minasny, B. P. Malone, & A. B. McBratney (Eds.), Digital soil as-
sessments and beyond. Proceedings of the 5th global workshop on digital soil
mapping 2012. CRC Press.

Kooistra, L., Wanders, J., Epema, G., Leuven, R., Wehrens, R., & Buydens, L. (2003).
The potential of field spectroscopy for the assessment of sediment properties in
river floodplains. Analytica Chimica Acta, 484, 189e200.

Kovacevic, M., Bajat, B., Trivic, B., & Pavlovic, R. (2009). Geological units classifica-
tion of multispectral images by using support vector machines. In Y. K. Badr,
S. Caballe, F. Xhafa, A. Abraham, & B. Gros (Eds.), International conference on
intelligent networking and collaborative systems (pp. 267e272). New York, NY,
USA: IEEE.

Kramer, M. G., Lajtha, K., & Aufdenkampe, A. K. (2017). Depth trends of soil organic
matter C:N and 15N natural abundance controlled by association with minerals.
Biogeochemistry, 136(4), 237e248.

Kramer, M. G., Sanderman, J., Chadwick, O. A., Chorover, J., & Vitousek, P. M. (2012).
Long-term carbon storage through retention of dissolved aromatic acids by
reactive particles in soil. Global Change Biology, 18(8), 2594e2605.

Krull, E. S., & Skjemstad, J. O. (2003). d 13 C and d 15 N profiles in 14 C-dated Oxisol
and Vertisols as a function of soil chemistry and mineralogy. Geoderma, 112(1),
1e29.

Kuang, B., & Mouazen, A. M. (2011). Calibration of visible and near infrared spec-
troscopy for soil analysis at the field scale on three European farms. European
Journal of Soil Science, 62, 629e636.

Kukal, D., & Bawa, S. S. (2014). Soil organic carbon stock and fraction in relation to
land use and soil depth in the degraded shiwaliks hills of lower Himalayas. Land
Degradation & Development, 25, 407e416.

Lal, R. (2008). Carbon sequestration. Philosophical Transactions of the Royal Society of
London - B, 363, 815e830.

Lal, R. (2017). Carbon management, technologies, and trends in Mediterranean eco-
systems (Vol. 15, pp. 1e11). Dordrecht, New York, NY, USA: Springer.

Li, Q., Fang, H. Y., Sun, L. Y., & Cai, Q. G. (2014). Use the CS technique to study the
effect of soil redistribution on soil organic carbon and total nitrogen stocks in an
agricultural catchment of Northeast China. Land Degradation & Development, 25,
350e359.

Lin, L. I. (1989). A concordance correlation coefficient to evaluate reproducibility.
Biometrics, 45, 255e268.

Lou, Y., Xu, M., Chen, X., He, X., & Zhao, K. (2012). Stratification of soil organic C, N
and C:N ratio as affected by conservation tillage in two maize fields of China.
Catena, 95, 124e130.

Martens, H., & Naes, T. (1992). Multivariate calibration. New York, USA: John Wiley
Sons.

Mouazen, A. M., Baerdemaeker, J. D., & Ramon, H. (2005). Towards development of
on-line soil moisture content sensor using a fibre-type NIR spectrophotometer.
Soil & Tillage Research, 80, 171e183.

Munoz-Rojas, M., Jordan, A., Zavala, L. M., Rosa, D., Abd-Elmabod, S. K., & Anaya-
Romero, M. (2015). Impact of land use and land cover changes on organic
carbon stocks in Mediterranean soils (1956e2007). Land Degradation & Devel-
opment, 25, 168e179.

Murphy, B. W. (2014). Soil organic matter and soil function e review of the literature
and underlying data. Canberra, Australia: Department of Environment.

Mutuo, P. K., Shepherd, K. D., Albrecht, A., & Cadisch, G. (2006). Prediction of carbon
mineralization rates from different soil physical fractions using diffuse reflec-
tance spectroscopy. Soil Biology and Biochemistry, 38, 1658e1664.

Naimi, S., Ayoubi, S., Raimo, A. D., & Dematte, J. A. (2022). Quantification of some
intrinsic soil properties using proximal sensing in arid lands: Application of Vis-
NIR, MIR, and pXRF spectroscopy. Geoderma Regional, 28, Article e00484.

Nolan, T., Troy, S. M., Healy, M. G., Kwapinski, W., Leahy, J. J., & Lawlor, P. G. (2011).
Characterization of compost produced from separated pig manure and a variety
of bulking agents at low initial C/N ratios. Bioresource Technology, 102(14),
7131e7138.

Ollinger, S. V., Smith, M. L., Martin, M. E., Hallett, R. A., Goodale, C. L., & Aber, J. D.
(2002). Regional variation in foliar chemistry and N cycling among forests of
diverse history and composition. Ecology, 83, 339e355.

Peltre, C., Thuries, L., Barthes, B. G., Brunet, D., Morvan, T., Nicolardot, B.,
Parnaudeau, V., & Houot, S. (2011). Near infrared reflectance spectroscopy: A
tool to characterize the composition of different types of exogenous organic
matter and their behaviour in soil. Soil Biology and Biochemistry, 43(1), 197e205.
123
Radocaj, D., Jurisic, M., & Antonic, O. (2021). Determination of soil C:N suitability
zones for organic farming using an unsupervised classification in eastern
Croatia. Ecological Indicators, 123, Article 107382.

Savitzky, A., & Golay, M. (1964). Smoothing and differentiation of data by simplified
least squares procedures. Analytical Chemistry, 36, 1627e1639.

Shang, Z. H., Cao, J., Guo, R., Henkin, Z., Ding, L., Long, R., & Deng, B. (2014). Effect of
enclosure on soil carbon nitrogen and phosphorus of alpine desert rangeland.
Land Degradation & Development, 28, 1166e1177.

Sherman, D. M., & Waite, T. D. (1985). Electronic spectra of Fe3þ oxides and oxy-
hydroxides in the near infrared to ultraviolet. American Mineralogist, 70,
1262e1269.

Shi, T., Wang, J., Chen, Y., & Wu, G. (2016). Improving the prediction of arsenic
contents in agricultural soils by combining the reflectance spectroscopy of soils
and rice plants. International Journal of Applied Earth Observation and Geo-
information, 52, 95e103.

Song, Y., Li, F., Yang, Z., Ayoko, G. A., Frost, R. L., & Ji, J. (2012). Diffuse reflectance
spectroscopy for monitoring potentially toxic elements in the agricultural soils
of Changjiang River Delta, China. Applied Clay Science, 64, 75e83.

Sorenson, P. T., Quideau, S. A., Rivard, B., & Dyck, M. (2020). Distribution mapping of
soil profile carbon and nitrogen with laboratory imaging spectroscopy. Geo-
derma, 359, Article 113982.

Sparks, D. (1996). Methods of soil analysis. Part 3. Chemical Methods. Madison, WI,
USA: Soil Science Society of America, American Society of Agronomy. Madison,
WI, USA.

Stevens, A., Nocita, M., Toth, G., Montanarella, L., & van Wesemael, B. (2013). Pre-
diction of soil organic carbon at the European scale by visible and near infrared
reflectance spectroscopy. PLoS One, 8, 1e13.

Tajik, S., Ayoubi, S., Khajehali, J., & Shataee, S. (2019). Effects of tree species
composition on soil properties and invertebrates in a deciduous forest. Arabian
Journal of Geosciences, 12(11), 368.

Telles, E., de Camargo, P. B., Martinelli, L. A., Trumbore, S. E., da Costa, E. S., Santos, J.,
Higuchi, N., & Oliveira, R. C., Jr. (2003). Influence of soil texture on carbon dy-
namics and storage potential in tropical forest soils of Amazonia. Global
Biogeochemical Cycles, 17(2), 1040.

Triantafilis, J., Ward, W., Odeh, I., & McBratney, A. B. (2001). Creation and interpo-
lation of continuous soil layer classes in the lower Namoi valley. Soil Science
Society of America Journal, 65, 403e413.

Ugawa, S., Takahashi, M., Morisada, K., Takeuchi, M., Yoshinaga, S., Araki, M.,
Tanaka, N., Ikeda, S., Matsuura, Y., Miura, S., Ishizuka, S., Kobayashi, M.,
Inagaki, M., Imaya, A., Nanko, K., Hashimoto, S., Aizawa, S., Hirai, K., Okamoto, T.,
Mizoguchi, T., Torii, A., Sakai, H., Ohnuki, Y., & Kaneko, S. (2012). Carbon stocks
of dead wood, litter, and soil in the forest sector of Japan: General description of
the national forest soil carbon inventory. Bulletin FFPRI, 11, 207e221.

Vanguelova, E. I., Bonifacio, E., Vos, B. D., Hoosbeek, M. R., Berger, T. W., Vesterdal, L.,
Armolaitis, K., Celi, L., Dinca, L., Kjnaas, O. J., Pavlenda, P., Pumpanen, J., Putt-
sepp, Reidy, B., Simoncic, P., Tobin, B., & Zhiyanski, M. (2016). Sources of errors
and uncertainties in the assessment of forest soil carbon stocks at different
scales review and recommendations. Environmental Monitoring and Assessment,
188, 630.

Viscarra Rossel, R. A., & Behrens, T. (2010). Using data mining to model and interpret
soil diffuse reflectance spectra. Geoderma, 158, 46e54.

Viscarra Rossel, R. A., Brus, D., Lobsey, C., Shi, Z., & McLachlan, G. (2016). Baseline
estimates of soil organic carbon by proximal sensing: Comparing design-based,
model-assisted and model-based inference. Geoderma, 265, 152e163.

Viscarra Rossel, R. A., & Hicks, W. S. (2015). Soil organic carbon and its fractions
estimated by visible near infrared transfer functions. European Journal of Soil
Science, 66, 438e450.

Viscarra Rossel, R. A., Lobsey, C. R., Sharman, C., Flick, P., & McLachlan, G. (2017).
Novel soil profile sensing to monitor organic C stocks and condition. Environ-
mental Science & Technology, 51(10), 5630e5641.

Vohland, M., Besold, J., Hill, J., & Frund, H. C. (2011). Comparing different multi-
variate calibration methods for the determination of soil organic carbon pools
with visible to near infrared spectroscopy. Geoderma, 166, 198e205.

Vries, W. D., Reinds, G. J., Gundersen, P., & Sterba, H. (2006). The impact of nitrogen
deposition on carbon sequestration in European forests and forest soils. Global
Ecology and Biogeography, 12(7), 1151e1173.

Wang, Y., Jiang, J., Niu, Z., Li, Y., Li, C., & Feng, W. (2019). Responses of soil organic
and inorganic carbon vary at different soil depths after long-term agricultural
cultivation in Northwest China. Land Degradation & Development, 30,
1229e1242.

Wehr, J. B., Lewis, T., Dalal, R. C., Menzies, N. W., Verstraten, L., Swift, S., Bryant, P.,
Tindale, N., & Smith, T. E. (2020). Soil carbon and nitrogen pools, their depth
distribution and stocks following plantation establishment in south east
Queensland, Australia. Forest Ecology and Management, 457, Article 117708.

Wilding, L. (1985). Spatial variability: Its documentation, accomodation and
implication to soil surveys. In J. P. Bouma, & D. R. Nielsen (Eds.), Workshop on
soil spatial variability.

Xie, H., Yang, X., Drury, C., Yang, J., & Zhang, X. (2011). Predicting soil organic carbon
and total nitrogen using mid-and near-infrared spectra for Brookston clay loam
soil in Southwestern Ontario, Canada. Canadian Journal of Soil Science, 91,
53e63.

Xu, Y., Li, Y., Li, H., Wang, L., Liao, X., Wang, J., & Kong, C. (2018). Effects of topog-
raphy and soil properties on soil selenium distribution and bioavailability
(phosphate extraction): A case study in yongjia county, China. Science of the
Total Environment, 633, 240e248.

http://refhub.elsevier.com/S2095-6339(22)00045-4/sref45
http://refhub.elsevier.com/S2095-6339(22)00045-4/sref45
http://refhub.elsevier.com/S2095-6339(22)00045-4/sref45
http://refhub.elsevier.com/S2095-6339(22)00045-4/sref46
http://refhub.elsevier.com/S2095-6339(22)00045-4/sref46
http://refhub.elsevier.com/S2095-6339(22)00045-4/sref46
http://refhub.elsevier.com/S2095-6339(22)00045-4/sref46
http://refhub.elsevier.com/S2095-6339(22)00045-4/sref46
http://refhub.elsevier.com/S2095-6339(22)00045-4/sref47
http://refhub.elsevier.com/S2095-6339(22)00045-4/sref47
http://refhub.elsevier.com/S2095-6339(22)00045-4/sref47
http://refhub.elsevier.com/S2095-6339(22)00045-4/sref47
http://refhub.elsevier.com/S2095-6339(22)00045-4/sref47
http://refhub.elsevier.com/S2095-6339(22)00045-4/sref48
http://refhub.elsevier.com/S2095-6339(22)00045-4/sref48
http://refhub.elsevier.com/S2095-6339(22)00045-4/sref48
http://refhub.elsevier.com/S2095-6339(22)00045-4/sref48
http://refhub.elsevier.com/S2095-6339(22)00045-4/sref49
http://refhub.elsevier.com/S2095-6339(22)00045-4/sref49
http://refhub.elsevier.com/S2095-6339(22)00045-4/sref49
http://refhub.elsevier.com/S2095-6339(22)00045-4/sref50
http://refhub.elsevier.com/S2095-6339(22)00045-4/sref50
http://refhub.elsevier.com/S2095-6339(22)00045-4/sref50
http://refhub.elsevier.com/S2095-6339(22)00045-4/sref51
http://refhub.elsevier.com/S2095-6339(22)00045-4/sref51
http://refhub.elsevier.com/S2095-6339(22)00045-4/sref51
http://refhub.elsevier.com/S2095-6339(22)00045-4/sref51
http://refhub.elsevier.com/S2095-6339(22)00045-4/sref51
http://refhub.elsevier.com/S2095-6339(22)00045-4/sref52
http://refhub.elsevier.com/S2095-6339(22)00045-4/sref52
http://refhub.elsevier.com/S2095-6339(22)00045-4/sref52
http://refhub.elsevier.com/S2095-6339(22)00045-4/sref52
http://refhub.elsevier.com/S2095-6339(22)00045-4/sref53
http://refhub.elsevier.com/S2095-6339(22)00045-4/sref53
http://refhub.elsevier.com/S2095-6339(22)00045-4/sref53
http://refhub.elsevier.com/S2095-6339(22)00045-4/sref53
http://refhub.elsevier.com/S2095-6339(22)00045-4/sref53
http://refhub.elsevier.com/S2095-6339(22)00045-4/sref53
http://refhub.elsevier.com/S2095-6339(22)00045-4/sref54
http://refhub.elsevier.com/S2095-6339(22)00045-4/sref54
http://refhub.elsevier.com/S2095-6339(22)00045-4/sref54
http://refhub.elsevier.com/S2095-6339(22)00045-4/sref54
http://refhub.elsevier.com/S2095-6339(22)00045-4/sref54
http://refhub.elsevier.com/S2095-6339(22)00045-4/sref55
http://refhub.elsevier.com/S2095-6339(22)00045-4/sref55
http://refhub.elsevier.com/S2095-6339(22)00045-4/sref55
http://refhub.elsevier.com/S2095-6339(22)00045-4/sref55
http://refhub.elsevier.com/S2095-6339(22)00045-4/sref56
http://refhub.elsevier.com/S2095-6339(22)00045-4/sref56
http://refhub.elsevier.com/S2095-6339(22)00045-4/sref56
http://refhub.elsevier.com/S2095-6339(22)00045-4/sref56
http://refhub.elsevier.com/S2095-6339(22)00045-4/sref57
http://refhub.elsevier.com/S2095-6339(22)00045-4/sref57
http://refhub.elsevier.com/S2095-6339(22)00045-4/sref57
http://refhub.elsevier.com/S2095-6339(22)00045-4/sref57
http://refhub.elsevier.com/S2095-6339(22)00045-4/sref58
http://refhub.elsevier.com/S2095-6339(22)00045-4/sref58
http://refhub.elsevier.com/S2095-6339(22)00045-4/sref58
http://refhub.elsevier.com/S2095-6339(22)00045-4/sref58
http://refhub.elsevier.com/S2095-6339(22)00045-4/sref58
http://refhub.elsevier.com/S2095-6339(22)00045-4/sref59
http://refhub.elsevier.com/S2095-6339(22)00045-4/sref59
http://refhub.elsevier.com/S2095-6339(22)00045-4/sref59
http://refhub.elsevier.com/S2095-6339(22)00045-4/sref60
http://refhub.elsevier.com/S2095-6339(22)00045-4/sref60
http://refhub.elsevier.com/S2095-6339(22)00045-4/sref60
http://refhub.elsevier.com/S2095-6339(22)00045-4/sref61
http://refhub.elsevier.com/S2095-6339(22)00045-4/sref61
http://refhub.elsevier.com/S2095-6339(22)00045-4/sref61
http://refhub.elsevier.com/S2095-6339(22)00045-4/sref61
http://refhub.elsevier.com/S2095-6339(22)00045-4/sref61
http://refhub.elsevier.com/S2095-6339(22)00045-4/sref61
http://refhub.elsevier.com/S2095-6339(22)00045-4/sref62
http://refhub.elsevier.com/S2095-6339(22)00045-4/sref62
http://refhub.elsevier.com/S2095-6339(22)00045-4/sref62
http://refhub.elsevier.com/S2095-6339(22)00045-4/sref63
http://refhub.elsevier.com/S2095-6339(22)00045-4/sref63
http://refhub.elsevier.com/S2095-6339(22)00045-4/sref63
http://refhub.elsevier.com/S2095-6339(22)00045-4/sref63
http://refhub.elsevier.com/S2095-6339(22)00045-4/sref64
http://refhub.elsevier.com/S2095-6339(22)00045-4/sref64
http://refhub.elsevier.com/S2095-6339(22)00045-4/sref65
http://refhub.elsevier.com/S2095-6339(22)00045-4/sref65
http://refhub.elsevier.com/S2095-6339(22)00045-4/sref65
http://refhub.elsevier.com/S2095-6339(22)00045-4/sref65
http://refhub.elsevier.com/S2095-6339(22)00045-4/sref65
http://refhub.elsevier.com/S2095-6339(22)00045-4/sref66
http://refhub.elsevier.com/S2095-6339(22)00045-4/sref66
http://refhub.elsevier.com/S2095-6339(22)00045-4/sref66
http://refhub.elsevier.com/S2095-6339(22)00045-4/sref66
http://refhub.elsevier.com/S2095-6339(22)00045-4/sref66
http://refhub.elsevier.com/S2095-6339(22)00045-4/sref66
http://refhub.elsevier.com/S2095-6339(22)00045-4/sref66
http://refhub.elsevier.com/S2095-6339(22)00045-4/sref67
http://refhub.elsevier.com/S2095-6339(22)00045-4/sref67
http://refhub.elsevier.com/S2095-6339(22)00045-4/sref67
http://refhub.elsevier.com/S2095-6339(22)00045-4/sref68
http://refhub.elsevier.com/S2095-6339(22)00045-4/sref68
http://refhub.elsevier.com/S2095-6339(22)00045-4/sref68
http://refhub.elsevier.com/S2095-6339(22)00045-4/sref68
http://refhub.elsevier.com/S2095-6339(22)00045-4/sref69
http://refhub.elsevier.com/S2095-6339(22)00045-4/sref69
http://refhub.elsevier.com/S2095-6339(22)00045-4/sref69
http://refhub.elsevier.com/S2095-6339(22)00045-4/sref70
http://refhub.elsevier.com/S2095-6339(22)00045-4/sref70
http://refhub.elsevier.com/S2095-6339(22)00045-4/sref70
http://refhub.elsevier.com/S2095-6339(22)00045-4/sref70
http://refhub.elsevier.com/S2095-6339(22)00045-4/sref70
http://refhub.elsevier.com/S2095-6339(22)00045-4/sref71
http://refhub.elsevier.com/S2095-6339(22)00045-4/sref71
http://refhub.elsevier.com/S2095-6339(22)00045-4/sref71
http://refhub.elsevier.com/S2095-6339(22)00045-4/sref71
http://refhub.elsevier.com/S2095-6339(22)00045-4/sref72
http://refhub.elsevier.com/S2095-6339(22)00045-4/sref72
http://refhub.elsevier.com/S2095-6339(22)00045-4/sref72
http://refhub.elsevier.com/S2095-6339(22)00045-4/sref72
http://refhub.elsevier.com/S2095-6339(22)00045-4/sref72
http://refhub.elsevier.com/S2095-6339(22)00045-4/sref73
http://refhub.elsevier.com/S2095-6339(22)00045-4/sref73
http://refhub.elsevier.com/S2095-6339(22)00045-4/sref73
http://refhub.elsevier.com/S2095-6339(22)00045-4/sref74
http://refhub.elsevier.com/S2095-6339(22)00045-4/sref74
http://refhub.elsevier.com/S2095-6339(22)00045-4/sref74
http://refhub.elsevier.com/S2095-6339(22)00045-4/sref75
http://refhub.elsevier.com/S2095-6339(22)00045-4/sref75
http://refhub.elsevier.com/S2095-6339(22)00045-4/sref75
http://refhub.elsevier.com/S2095-6339(22)00045-4/sref75
http://refhub.elsevier.com/S2095-6339(22)00045-4/sref75
http://refhub.elsevier.com/S2095-6339(22)00045-4/sref76
http://refhub.elsevier.com/S2095-6339(22)00045-4/sref76
http://refhub.elsevier.com/S2095-6339(22)00045-4/sref76
http://refhub.elsevier.com/S2095-6339(22)00045-4/sref76
http://refhub.elsevier.com/S2095-6339(22)00045-4/sref76
http://refhub.elsevier.com/S2095-6339(22)00045-4/sref77
http://refhub.elsevier.com/S2095-6339(22)00045-4/sref77
http://refhub.elsevier.com/S2095-6339(22)00045-4/sref77
http://refhub.elsevier.com/S2095-6339(22)00045-4/sref77
http://refhub.elsevier.com/S2095-6339(22)00045-4/sref77
http://refhub.elsevier.com/S2095-6339(22)00045-4/sref78
http://refhub.elsevier.com/S2095-6339(22)00045-4/sref78
http://refhub.elsevier.com/S2095-6339(22)00045-4/sref78
http://refhub.elsevier.com/S2095-6339(22)00045-4/sref78
http://refhub.elsevier.com/S2095-6339(22)00045-4/sref79
http://refhub.elsevier.com/S2095-6339(22)00045-4/sref79
http://refhub.elsevier.com/S2095-6339(22)00045-4/sref79
http://refhub.elsevier.com/S2095-6339(22)00045-4/sref80
http://refhub.elsevier.com/S2095-6339(22)00045-4/sref80
http://refhub.elsevier.com/S2095-6339(22)00045-4/sref80
http://refhub.elsevier.com/S2095-6339(22)00045-4/sref81
http://refhub.elsevier.com/S2095-6339(22)00045-4/sref81
http://refhub.elsevier.com/S2095-6339(22)00045-4/sref81
http://refhub.elsevier.com/S2095-6339(22)00045-4/sref81
http://refhub.elsevier.com/S2095-6339(22)00045-4/sref82
http://refhub.elsevier.com/S2095-6339(22)00045-4/sref82
http://refhub.elsevier.com/S2095-6339(22)00045-4/sref82
http://refhub.elsevier.com/S2095-6339(22)00045-4/sref83
http://refhub.elsevier.com/S2095-6339(22)00045-4/sref83
http://refhub.elsevier.com/S2095-6339(22)00045-4/sref83
http://refhub.elsevier.com/S2095-6339(22)00045-4/sref83
http://refhub.elsevier.com/S2095-6339(22)00045-4/sref84
http://refhub.elsevier.com/S2095-6339(22)00045-4/sref84
http://refhub.elsevier.com/S2095-6339(22)00045-4/sref84
http://refhub.elsevier.com/S2095-6339(22)00045-4/sref84
http://refhub.elsevier.com/S2095-6339(22)00045-4/sref85
http://refhub.elsevier.com/S2095-6339(22)00045-4/sref85
http://refhub.elsevier.com/S2095-6339(22)00045-4/sref85
http://refhub.elsevier.com/S2095-6339(22)00045-4/sref85
http://refhub.elsevier.com/S2095-6339(22)00045-4/sref85
http://refhub.elsevier.com/S2095-6339(22)00045-4/sref85
http://refhub.elsevier.com/S2095-6339(22)00045-4/sref85
http://refhub.elsevier.com/S2095-6339(22)00045-4/sref86
http://refhub.elsevier.com/S2095-6339(22)00045-4/sref86
http://refhub.elsevier.com/S2095-6339(22)00045-4/sref86
http://refhub.elsevier.com/S2095-6339(22)00045-4/sref86
http://refhub.elsevier.com/S2095-6339(22)00045-4/sref86
http://refhub.elsevier.com/S2095-6339(22)00045-4/sref86
http://refhub.elsevier.com/S2095-6339(22)00045-4/sref87
http://refhub.elsevier.com/S2095-6339(22)00045-4/sref87
http://refhub.elsevier.com/S2095-6339(22)00045-4/sref87
http://refhub.elsevier.com/S2095-6339(22)00045-4/sref88
http://refhub.elsevier.com/S2095-6339(22)00045-4/sref88
http://refhub.elsevier.com/S2095-6339(22)00045-4/sref88
http://refhub.elsevier.com/S2095-6339(22)00045-4/sref88
http://refhub.elsevier.com/S2095-6339(22)00045-4/sref89
http://refhub.elsevier.com/S2095-6339(22)00045-4/sref89
http://refhub.elsevier.com/S2095-6339(22)00045-4/sref89
http://refhub.elsevier.com/S2095-6339(22)00045-4/sref89
http://refhub.elsevier.com/S2095-6339(22)00045-4/sref90
http://refhub.elsevier.com/S2095-6339(22)00045-4/sref90
http://refhub.elsevier.com/S2095-6339(22)00045-4/sref90
http://refhub.elsevier.com/S2095-6339(22)00045-4/sref90
http://refhub.elsevier.com/S2095-6339(22)00045-4/sref90
http://refhub.elsevier.com/S2095-6339(22)00045-4/sref91
http://refhub.elsevier.com/S2095-6339(22)00045-4/sref91
http://refhub.elsevier.com/S2095-6339(22)00045-4/sref91
http://refhub.elsevier.com/S2095-6339(22)00045-4/sref91
http://refhub.elsevier.com/S2095-6339(22)00045-4/sref92
http://refhub.elsevier.com/S2095-6339(22)00045-4/sref92
http://refhub.elsevier.com/S2095-6339(22)00045-4/sref92
http://refhub.elsevier.com/S2095-6339(22)00045-4/sref92
http://refhub.elsevier.com/S2095-6339(22)00045-4/sref93
http://refhub.elsevier.com/S2095-6339(22)00045-4/sref93
http://refhub.elsevier.com/S2095-6339(22)00045-4/sref93
http://refhub.elsevier.com/S2095-6339(22)00045-4/sref93
http://refhub.elsevier.com/S2095-6339(22)00045-4/sref93
http://refhub.elsevier.com/S2095-6339(22)00045-4/sref93
http://refhub.elsevier.com/S2095-6339(22)00045-4/sref94
http://refhub.elsevier.com/S2095-6339(22)00045-4/sref94
http://refhub.elsevier.com/S2095-6339(22)00045-4/sref94
http://refhub.elsevier.com/S2095-6339(22)00045-4/sref94
http://refhub.elsevier.com/S2095-6339(22)00045-4/sref95
http://refhub.elsevier.com/S2095-6339(22)00045-4/sref95
http://refhub.elsevier.com/S2095-6339(22)00045-4/sref95
http://refhub.elsevier.com/S2095-6339(22)00045-4/sref96
http://refhub.elsevier.com/S2095-6339(22)00045-4/sref96
http://refhub.elsevier.com/S2095-6339(22)00045-4/sref96
http://refhub.elsevier.com/S2095-6339(22)00045-4/sref96
http://refhub.elsevier.com/S2095-6339(22)00045-4/sref96
http://refhub.elsevier.com/S2095-6339(22)00045-4/sref97
http://refhub.elsevier.com/S2095-6339(22)00045-4/sref97
http://refhub.elsevier.com/S2095-6339(22)00045-4/sref97
http://refhub.elsevier.com/S2095-6339(22)00045-4/sref97
http://refhub.elsevier.com/S2095-6339(22)00045-4/sref97


A. Gholizadeh, M. Saberioon, N. Pouladi et al. International Soil and Water Conservation Research 11 (2023) 112e124
Zanella, A., Ponge, J. F., Jabiol, B., Sartori, G., Kolb, E., Gobat, J. M., Bayon, R. C. L.,
Aubert, M., Waal, R. D., Delft, B. V., Vacca, A., Serra, G., Chersich, S., Andreetta, A.,
Cools, N., Englisch, M., Hager, H., Katzensteiner, K., Brthes, A., Nicola, C. D.,
Testi, A., Bernier, N., Graefe, U., Juilleret, J., Banas, D., Garlato, A., Obber, S.,
Galvan, P., Zampedri, R., Frizzera, L., Tomasi, M., Menardi, R., Fontanella, F.,
Filoso, C., Dibona, R., Bolzonella, C., Pizzeghello, D., Carletti, P., Langohr, R.,
Cattaneo, D., Nardi, S., Nicolini, G., & Viola, F. (2017). Humusica 1, article 4:
Terrestrial humus systems and forms Specific terms and diagnostic horizons.
Applied Soil Ecology, 122, 56e74.

Zhang, W., Ricketts, T. H., Kremenc, C., Carneyd, K., & Swintona, S. M. (2007).
Ecosystem services and dis-services to agriculture. Ecological Economy, 64,
253e260.
124
Zhang, S., Yan, L., Huang, J., Mu, L., Huang, Y., Zhang, X., & Sun, Y. (2016). Spatial
heterogeneity of soil C:N ratio in a Mollisol watershed of northeast China. Land
Degradation & Development, 27, 295e304.

Zhao, Z., Wei, X., Wang, X., Ma, T., Huang, L., Gao, H., Fan, J., Li, X., & Jia, X. (2019).
Concentration and mineralization of organic carbon in forest soils along a cli-
matic gradient. Forest Ecology and Management, 432, 246e255.

Zhou, T., Geng, Y., Ji, C., Xu, X., Wang, H., Pan, J., Bumberger, J., Haase, D., & Lausch, A.
(2021). Prediction of soil organic carbon and the C:N ratio on a national scale
using machine learning and satellite data: A comparison between sentinel-2,
sentinel-3 and landsat-8 images. Science of the Total Environment, 755(2),
Article 142661.

http://refhub.elsevier.com/S2095-6339(22)00045-4/sref98
http://refhub.elsevier.com/S2095-6339(22)00045-4/sref98
http://refhub.elsevier.com/S2095-6339(22)00045-4/sref98
http://refhub.elsevier.com/S2095-6339(22)00045-4/sref98
http://refhub.elsevier.com/S2095-6339(22)00045-4/sref98
http://refhub.elsevier.com/S2095-6339(22)00045-4/sref98
http://refhub.elsevier.com/S2095-6339(22)00045-4/sref98
http://refhub.elsevier.com/S2095-6339(22)00045-4/sref98
http://refhub.elsevier.com/S2095-6339(22)00045-4/sref98
http://refhub.elsevier.com/S2095-6339(22)00045-4/sref98
http://refhub.elsevier.com/S2095-6339(22)00045-4/sref99
http://refhub.elsevier.com/S2095-6339(22)00045-4/sref99
http://refhub.elsevier.com/S2095-6339(22)00045-4/sref99
http://refhub.elsevier.com/S2095-6339(22)00045-4/sref99
http://refhub.elsevier.com/S2095-6339(22)00045-4/sref100
http://refhub.elsevier.com/S2095-6339(22)00045-4/sref100
http://refhub.elsevier.com/S2095-6339(22)00045-4/sref100
http://refhub.elsevier.com/S2095-6339(22)00045-4/sref100
http://refhub.elsevier.com/S2095-6339(22)00045-4/sref100
http://refhub.elsevier.com/S2095-6339(22)00045-4/sref101
http://refhub.elsevier.com/S2095-6339(22)00045-4/sref101
http://refhub.elsevier.com/S2095-6339(22)00045-4/sref101
http://refhub.elsevier.com/S2095-6339(22)00045-4/sref101
http://refhub.elsevier.com/S2095-6339(22)00045-4/sref102
http://refhub.elsevier.com/S2095-6339(22)00045-4/sref102
http://refhub.elsevier.com/S2095-6339(22)00045-4/sref102
http://refhub.elsevier.com/S2095-6339(22)00045-4/sref102
http://refhub.elsevier.com/S2095-6339(22)00045-4/sref102

	Quantification and depth distribution analysis of carbon to nitrogen ratio in forest soils using reflectance spectroscopy
	1. Introduction
	2. Materials and methods
	2.1. Study sites, soil sampling and laboratory analysis
	2.2. Spectroscopic measurements
	2.3. Data preprocessing and spectral modelling
	2.4. Prediction performance assessment
	2.5. Spatial distribution of C:N

	3. Results
	3.1. Preliminary findings of soil attributes at different layers
	3.2. Soil spectral information at different layers
	3.3. SOC and TN prediction model performance at different soil layers
	3.4. C:N quantification and spatial distribution at different soil layers

	4. Discussion
	5. Conclusions
	Declaration of competing interest
	Acknowledgement
	References


