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Abstract

Finding an appropriate satellite image as simultaneous as possible with the

sampling time campaigns is challenging. Fusion can be considered as a

method of integrating images and obtaining more pixels with higher spa-

tial, spectral and temporal resolutions. This paper investigated the impact

of Landsat 8-OLI and Sentinel-2A data fusion on prediction of several toxic

elements at a mine waste dump. The 30 m spatial resolution Landsat 8-

OLI bands were fused with the 10 m Sentinel-2A bands using various fusion

techniques namely hue-saturation-value, Brovey, principal component analy-

sis, Gram-Schmidt, wavelet, and area-to-point regression kriging (ATPRK).

ATPRK was the best method preserving both spectral and spatial features

of Landsat 8-OLI and Sentinel-2A after fusion. Furthermore, the partial

least square regression (PLSR) model developed on genetic algorithm (GA)-

selected laboratory visible-near infrared-shortwave infrared (VNIR–SWIR)
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spectra yielded more accurate prediction results compared to the PLSR

model calibrated on the entire spectra. It was hence, applied to both in-

dividual sensors and their ATPRK-fused image. In case of the individual

sensors, except for As, Sentinel-2A provided more robust prediction models

than Landsat 8-OLI. However, the best performances were obtained using

the fused images, highlighting the potential of data fusion to enhance the

toxic elements’ prediction models.

Keywords: Soil contamination, data fusion, satellite image, Earth

observation, genetic algorithm.

1. Introduction1

The quality of soil directly affects the health of its organisms. However,2

soil is subjected to anthropogenic disturbance by various mining, industrial,3

and agricultural activities that leads to severe contamination. Among vari-4

ous soil contaminants, toxic elements are considered as significant threats to5

human and livestock health and food security (Xu et al., 2020; Järup, 2003;6

Jia et al., 2019). Therefore, monitoring the concentration and distribution of7

these types of contamination is a prerequisite for soil remediation projects.8

However, traditional sampling and laboratory analysis methods have always9

been costly and time-consuming (Kästner et al., 2022; Gholizadeh et al.,10

2021) and limited to sampled point locations and do not well specify the11

spatial distribution of contaminants. Hence, using a time- and cost-efficient12

technique with high spatial impact seems inevitable.13

Application of visible–near infrared–shortwave infrared (VNIR–SWIR)14

reflectance spectroscopy has been investigated by some researchers for fast15

2

Jo
urn

al 
Pre-

pro
of



and non-destructive estimation and mapping of various toxic elements (Gholizadeh16

et al., 2018; Shi et al., 2018). The relationship between soil toxic elements and17

spectrally active attributes such as iron (Fe), soil organic carbon (SOC), and18

clay has also made it possible to monitor toxic elements on a large scale, using19

spectral data from airborne and spaceborne remote sensing (Heller Pearl-20

shtien & Ben-Dor, 2020). For instance, Kemper & Sommer (2004) used21

airborne hyperspectral imagery provided by the HyMap sensor to map the22

distribution of lead (Pb) and chromium (Cr) in floodplains located in Spain.23

HyMap data was also used together with field spectroscopy to map toxic ele-24

ments around a mining area in Spain (Choe et al., 2008). Recently, Hymap-C25

airborne hyperspectral imagery was successfully used in another study to es-26

timate the distribution of soil toxic elements (i.e., As, Cr, Pb, and Zn) in27

Yitong County mining area in China (Tan et al., 2021). In addition, Sim-28

ulated HyMap thematic mapper (TM) and QuickBird satellite images were29

used to predict the concentration of Ni, Cu, and Cr in soils of Baguazhou30

Island and Jiangning County in China (Wu et al., 2011). Moreover, Peng31

et al. (2016) used Landsat 8 multi-spectral images and successfully modeled32

and mapped the spatial distribution of arsenic (As), nickel (Ni), copper (Cu),33

zinc (Zn), Pb, and Cr in Qatari soils.34

Most studies have used the images spectra and other ancillary data or35

environmental covariates to predict the distribution of toxic elements (Peng36

et al., 2016; Shi et al., 2018). Despite all efforts made, the successful estima-37

tion of the toxic elements by implementation of laboratory-based models on38

spectra of airborne and satellite imagery is limited to a few studies (Khosravi39

et al., 2021; Choe et al., 2008). One issue with this application is the gap be-40
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tween the soil sampling and image acquisition dates due to cloud or shadow41

in satellite images, which may cause differences in spectral characteristics42

of soil samples and co-located pixels in images. In this case, fusion can be43

used, as a solution, to increase the temporal resolution of images taken from44

a specific area.45

In remote sensing, fusion is typically defined as integrating two or more46

images with different spectral and spatial features. In this way, the fusion47

product contains all features of both single images, hence, it is more infor-48

mative (Palsson et al., 2018). The fusion process must preserve both spectral49

and spatial resolutions of the resulting fused image, while avoiding spectral50

and/or spatial distortion in it (Qu et al., 2018). Image fusion is performed51

at three different levels (Pohl & Van Genderen, 1998) namely, 1) decision52

level, 2) feature level, and 3) pixel level. At the decision (or interpreta-53

tion) level, as the highest processing level, the input images are processed54

separately and the extracted information with different confidence degrees55

are then fused based on decision rules. In feature level, the input images’56

geometrical, structural, and spectral features are being derived and fused.57

Finally, in pixel level as the lowest processing level of image composition,58

input images are being fused using pixel-by-pixel values combination sce-59

nario (Ghassemian, 2016; Javan et al., 2021). The fusion algorithms at pixel60

level are generally divided into four classes of component substitution (CS),61

multiresolution analysis (MRA), Bayesian probability and variational Loncan62

et al. (2015); Yokoya et al. (2017). The CS approach, i.e., replacing one of the63

multispectral image components with the panchromatic (PAN) image, has64

been used more frequently along with the MRA in which the spatial details65
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obtained by multiscale decomposition of the PAN image, are injected into66

the multispectral data Loncan et al. (2015). The state of the art geostatisti-67

cal (e.g., area-to-point regression kriging (ATPRK)) and deep learning (e.g.,68

convolutional neural networks (CNN) and enhanced super-resolution genera-69

tive adversarial network (ESRGAN)) techniques have also gained popularity70

in recent years in fusion of multispectral images (Wang et al., 2017a; Lanaras71

et al., 2018; Salgueiro Romero et al., 2020; Gargiulo et al., 2019).72

Sentinel-2 and Landsat 8 operational land imager (OLI) provide free73

medium-spatial resolution multispectral images for several fields of appli-74

cations including soil contamination determination (Khosravi et al., 2021;75

Dkhala et al., 2020; Liu et al., 2018). Landsat 8-OLI and Sentinel-2 to-76

gether provide an average revisit of 2.9 days (Li & Roy, 2017). Therefore,77

it is expected that their synergistic application will improve timely and ac-78

curate observations of the Earth’s surface as well as their usage in different79

disciplines of remote sensing such as environmental research Agapiou (2020).80

The current study aims to explore the potential of the individual images81

of Landsat 8-OLI and Sentinel-2A as well as their fusion on quantifying As,82

Pb, Zn, and Cr in Sarcheshmeh mine case study. For the fusion purpose,83

different techniques namely, hue-saturation-value (HSV), Brovey, principal84

component analysis (PCA), Gram-Schmidt (GS), wavelet, and ATPRK are85

tested. The main specific objective is to take full advantage of the infor-86

mation available in both Sentinel-2 and Landsat 8-OLI images to provide a87

quantitative outcome of the fusion process for assessing soil contamination.88

It is expected that the complementary effect of data fusion will have a promis-89

ing influence on the toxic elements’ prediction and mapping. The study also90
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employs genetic algorithm (GA) to select important wavelengths of the lab91

spectra needed for developing the partial least square regression (PLSR) pre-92

diction models to assess the impact of variable selection on performance of93

the final models. Due to selection of wavelengths of greater importance us-94

ing GA feature selection technique, the improvement of the toxic elements95

assessment is anticipated in lab spectroscopy and consequently, in satellite96

imaging.97

2. Materials and methods98

2.1. Study area, sample collection and analysis99

This study was conducted in an inactive waste dump located at the north-100

eastern part of the main pit in Sarcheshmeh porphyry copper mine, southern101

Iran (Figure 1). Sarcheshmeh is Iran’s largest mine and one of the world’s102

largest porphyry copper mines in which sulphide rich waste rocks are accu-103

mulated and transported to certain areas known as waste dumps. Oxidation104

of sulphide minerals such as pyrite (FeS2) in waste dumps produces large105

amounts of acid drainage that leaches toxic elements in the path through106

rocks and mining wastes, causing water and soil pollution in surrounding107

areas (Park et al., 2019; Rambabu et al., 2020; Simate, 2021).108
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Area.jpg

Figure 1: Study area in Iran (a), in Sarcheshmeh copper complex (b), and in the waste

dump (c).

One hundred and twenty (120) soil samples were collected on August 12th,109

2015 from uniformly distributed predetermined points on the surface of the110

waste dump (depths 0 to 2 cm). The geographical locations of the sampling111

points were recorded using a global positioning system (GPS) instrument112

with an accuracy of ±3 m. After being dried at 40° C, samples were pulverised113
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to 200 mesh with the aim of minimizing the effect of particle size on soil114

reflectance spectra. They were then passed through a four mesh (4.76 mm)115

sieve, divided into two parts to be transferred to the laboratory for chemical116

and spectroscopic measurements. They were stored at ambient temperature117

until the chemical and spectral analyzes were performed.118

Qualitative and quantitative analyses of clay minerals and Fe-oxides/hydroxides119

were performed through thin and polished sections and X-ray diffraction120

(XRD) at the Iran mineral processing center. The concentration of As, Pb,121

Zn, and Cr were measured using the inductively coupled plasma (ICP) anal-122

ysis method (LabWest Minerals Analysis Pty Ltd., Malaga, WA, Australia).123

2.2. Spectra measurement and pre-processing124

In order to avoid spectral noise caused by water content of the soil, sam-125

ples were dried at 105° C overnight (Lobell & Asner, 2002). Fieldspec 3126

portable spectroradiometer (ASD Inc., Boulder, Co, USA) was employed to127

measure the samples’ spectra in the laboratory. For each measurement, soil128

samples were placed into 2 cm diameter glass containers, forming a 10 cm129

layer of soil with a flat surface to guarantee maximum light reflection and a130

high signal-to-noise ratio (SNR). Three consecutive readings were recorded131

for every sample and their average was considered as the main spectra. After132

recording every ten samples, the spectrometer device was re-calibrated using133

a white BaSO4 panel.134

Afterwards, pre-processing was applied to the raw spectra. First, two very135

end parts (350 to 399 nm and 2451 to 2500 nm) were eliminated to remove136

noise at edges of the spectra. The reflectance spectra was then transformed137

into absorbance to avoid scattering effects (Kemper & Sommer, 2002).138
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Each sample’s spectra was re-sampled into 10 nm wavelength intervals139

yielding 205 variables. In order to remove the artificial noise of the instru-140

ment, Savitzky-Golay (SG) smoothing (Savitzky & Golay, 1964) was im-141

plemented and followed by a polynomial first-derivative (FD) filter on the142

smoothed spectra. Outliers were also detected using PCA transformation as143

described in (Khosravi et al., 2021) and removed from further processing.144

2.3. Satellite image selection and pre-processing145

Freely available Landsat 8-OLI and Sentinel-2 satellites have bands, al-146

most similar in terms of positions in both VNIR and SWIR regions (Table147

S1) and in terms of geometric accuracy (Earth Resources Observation and148

Science Center, 2019), which provide a great opportunity to fuse their data149

in order to provide more continuous monitoring at a large scale Wang et al.150

(2017a).151

A standard L1T radiometric and geometric corrected Landsat 8-OLI im-152

age was downloaded from the United States geological survey (USGS) Earth-153

Explorer website. Atmospheric correction was also performed using the fast154

line-of-sight atmospheric analysis of spectral hypercubes (FLAASH) algo-155

rithm (Cooley et al., 2002). The acquisition time of the image was on August156

13th, 2015, very close to the soil sampling date. Moreover, a cloud-free level157

1-C top of atmosphere (ToA) reflectance image of Sentinel-2 was acquired158

on January 20th, 2016, from the European space agency (ESA) open-access159

Copernicus hub. Atmospheric correction was performed through SNAP soft-160

ware with Sen2cor algorithm to convert ToA reflectance values to surface161

reflection.162

9

Jo
urn

al 
Pre-

pro
of



2.4. Fusion approaches163

Some of the most commonly used image fusion techniques including CS,164

HSV (Ehlers et al., 2010), Brovey (Ltd, 1990), GS (Laben & Brower, 2000),165

PCA Shah et al. (2008), and MRA-based wavelet Nunez et al. (1999) were166

used in this study, along with the novel geostatistics-based method of AT-167

PRK proposed by Wang et al. (2015). In ATPRK, regression modeling and168

residual down-scaling are the two processing steps yielding Zlregression(x) and169

Zlresidual(x), as the result of each step, respectively:170

Z l
F (x) = Z l

Regression(x) + Z l
Residual(x) (1)

where ZlF (x) is the ATPRK prediction. The general trend of the results171

for fine spatial resolution is achieved by the regression modeling, using Eq.172

2:173

Z l
Regression(x0) =

K∑
k=1

akZ
k
F (x0) + b (2)

where ak is the fine band k weighting coefficient, and b is a constant.174

ATPK method is then used to down-scale the coarse residual image Rl
C ob-175

tained in the previous step:176

Z l
Residual(x0) =

N∑
i=1

λiR
l
C(xi), s.t.

N∑
i=1

λi = 1 (3)

where Rl
C(xi) is the ith neighbor relating residual. Kriging matrix is used177

to produce weights.178
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The two 20 m Sentinel-2A bands (bands 11 and 12) were firstly pan-179

sharpened to 10 m using all above mentioned fusion techniques, the best180

results were selected and then the 30 m pixel size bands 2–7 of Landsat 8-OLI181

were down-scaled to 10 m using the corresponding 10 m resolution Sentinel-182

2A bands (bands 2, 3, 4, 8, 11, and 12) (Table S1). All re-sampling in this183

study were performed using the nearest neighbor method. The resulting184

fused bands are shown with Greek letters of β, γ, δ, ε, ζ, η throughout the185

manuscript (Table S2).186

2.5. Fusion evaluation criteria187

A reference image is imperative for quantitative evaluation of the fusion188

product. As there was no such image available in our study, the coarse189

resolution bands were down-graded in spatial resolution (i.e., re-sampled to190

coarser resolution pixels) by a factor equal to the spatial resolution ratio of191

the original and fused images. The reference for evaluation of the fusion192

method would be the original image which is about to be fused Palsson et al.193

(2018). In our study, the Landsat 8-OLI 30 m pixel bands were down-graded194

by the factor of three to 90 m pixel size bands and the main 30 m pixel image195

was used as the reference for evaluation of the fusion techniques.196

The performance of the fusion techniques was evaluated using three in-197

dicators, namely the spectral angle mapper (SAM), root mean square er-198

ror (RMSE), and relative global dimensional synthesis error (ERGAS) Wald199

(2000). The overall spectral difference between the reference and fused im-200

ages is calculated by RMSE. In SAM, the angle between two vectors is used201

to calculate their spectral similarity. The value of SAM for the whole image202

is the average of all angles obtained for every pixels of that image. ERGAS203

11

Jo
urn

al 
Pre-

pro
of



uses the mean square error (MSE) to calculate the degree of spectral/spatial204

distortion in the fused image (Eq. 4).205

ERGAS = 100
h

l

√√√√ 1

N

N∑
k=1

(
RMSE(k)

Mean(k)
)2 (4)

where, h/l is the ratio between spatial resolution of original and fused206

images, N denotes the number of the fused image bands, RMSE(k) indicates207

the root mean squared error of the kth band between the fused and reference208

images, and finally Mean(k) is the mean value of differences between the kth209

band of the reference and fused images. The optimal value for ERGAS and210

SAM is zero indicating no significant spectral difference between the original211

and fused images.212

2.6. Determination of spectral similarity between samples and images spectra213

The SAM (Kruse et al., 1993) method was applied to determine the degree214

of similarity between the laboratory reflectance spectra of each sample and215

the spectra of the same position pixel for all images used. This was conducted216

to investigate the possibility of applying prediction models on images spectra.217

The degree of spectral similarity was measured separately for the VNIR and218

SWIR spectral ranges.219

In addition, statistical similarity between the spectral features of images220

and soil samples were tested using the one-way analysis of variance (ANOVA)221

method. In case of accepting the null hypothesis in ANOVA, there is no222

significant difference between the mean values of the laboratory reflectance223

spectra and the selected image features. The F-value was also calculated at224
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the significant level of 0.05 to test the hypothesis. In case of any signifi-225

cant correlation, the spectral features of the image were used as independent226

variables in prediction of the models.227

2.7. Model development228

Before modeling to be conducted, a practical approach for improving the229

models’ robustness is the elimination of irrelevant variables in the data and230

the selection of relevant spectral features and effective wavelengths (Xiaobo231

et al., 2010; Xu et al., 2020; Gholizadeh et al., 2021). In our study, GA was232

used to select the optimum input spectral variables of the models. GA is a233

particular class of evolutionary algorithms (EA), which uses mutation, nat-234

ural selection, and crossover as techniques inspired by evolutionary biology235

(Goldberg & Holland, 1988; Katoch et al., 2020). In order to obtain an opti-236

mum selection, different values for GA parameters were tested and following237

parameters were obtained: population size = 100 chromosomes, cross-over238

ratio = 0.8, cross-over probability = 0.5, mutation rate = 0.01, mutation239

probability = 0.2, and number of iterations = 1000.240

Partial least square regression (PLSR) and genetic algorithm-partial least241

square regression (GA-PLSR) techniques were applied on FD spectra to pre-242

dict the concentrations of the toxic elements. The models were developed243

through the leave-one-out cross-validation (LOOCV) method on randomly244

selected 75% of the data (calibration/training dataset).245

2.8. Model evaluation246

Coefficient of determination (R2), RMSE, and residual prediction devia-247

tion (RPD) were performed on the validation dataset to assess the perfor-248

13

Jo
urn

al 
Pre-

pro
of



mance of the models. R2 and RMSE can be measured using the difference249

between the observed and predicted values. RPD is the ratio of standard250

deviation to RMSE. The reliability of the prediction models (quality and251

generalisation) can be defined based on five levels of RPD, including (Saeys252

et al., 2005; Magwaza et al., 2012): 1) unreliable (for values less than 1.5),253

2) appropriate for rough predictions (between 1.5 and 2.0), 3) fit for quan-254

titative predictions (between 2.0 and 2.5), 4) good models (between 2.5 and255

3.0), and 5) satisfactory models (greater than 3.0).256

Figure 2 illustrates the flowchart of the methodology used in this study.257
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Figure 2: A concise description of procedures conducted in this study.

3. Results258

3.1. Soil samples descriptive statistics and correlations259

Table 1 shows descriptive statistics of the selected toxic elements concen-260

trations along with their Fe-oxide/hydroxide and clay contents, as spectrally261

active soil properties.262
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Table 1: Descriptive statistics of the selected soil properties

Soil property Min Max Mean STD Skewness C.V. (%)

As (mg.kg−1) 4.60 201 51.2 47.3 1.54 92

Cr (mg.kg−1) 3.00 137 36.3 28.1 1.49 77

Pb (mg.kg−1) 10.7 1562 251 308 2.39 122

Zn (mg.kg−1) 60.0 3666 914 885 1.19 97

Fe (%) 1.16 25.3 12.3 6.14 -0.49 50

Clay (%) 6.04 8.44 7.46 0.56 -0.85 7.5

pH 2.08 7.53 4.76 1.31 0.25 28

Considering the permissible limits of As (20.0 mg.kg−1 (Monchanin et al.,263

2021)), Cr (0.1 mg.kg−1 (Kinuthia et al., 2020)), Pb (30.0 mg.kg−1 (Mon-264

chanin et al., 2021)), and Zn (50 mg.kg−1 (Denneman & Robberse, 1990))265

in soils, the waste dump under study was considered as over-polluted. In266

addition, high values of STDs and CVs indicate the high heterogeneity of the267

dump, mainly due to accumulation from different areas of the mine. The pH268

values of the samples were between 2.08 to 7.53, with a mean value of 4.76,269

suggesting an acidic condition. Moreover, the Fe-oxides/hydroxides ranged270

between 1.16 and 25.3% , with a mean value of 12.3%. The average clay con-271

tent was 7.46% with Min and Max values of 6.04% and 8.44%, respectively.272

Figure S1 shows the histogram of toxic elements concentration in soil273

samples. Since the concentration values did not meet the requirements of a274

normal distribution, they were normalized using log-transformation (log10).275

Also, five samples were assumed as outliers, which were excluded from the276

dataset. All further analysis was thus performed on the remaining 115 sam-277

ples.278

In order to provide a general perspective on the relation of toxic ele-279

ments concentrations with clay minerals and Fe-oxides/hydroxides (as soil280
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spectrally active attributes), a correlation analysis was performed. As can281

be seen in Table S3, Cr had the highest absolute correlation value with clay282

minerals (r = 0.67) among the other toxic elements. However, the highest283

correlation of Fe-oxides/hydroxides was observed with As (r = 0.71). The284

highest correlation between all toxic elements was seen between Pb and Zn285

(r = 0.78).286

3.2. Soil samples spectral information287

The raw and continuum removed spectra of four randomly selected sam-288

ples can be seen in our previous recent publication (Khosravi et al., 2021).289

Visual inspection of the spectra indicates that the overall reflectance trends290

and wave forms of the spectral curves of different samples were almost similar.291

The relationship between soil’s spectrally-active attributes and featureless292

toxic elements leads to determining their concentration. Table S4 highlights293

the correlation between the most important and frequently reported wave-294

lengths of soil’s spectrally-active attributes (Genú & Demattê, 2011; Kooistra295

et al., 2003; Madejova & Komadel, 2001; Clark et al., 1990; Khosravi et al.,296

2017; Chakraborty et al., 2017; Vicente & de Souza Filho, 2011) and the297

concentration of samples’ toxic elements.298

It can be seen that As had the highest correlation values with VNIR299

range wavelengths (Table S4). Visible (VIS) region contains the most im-300

portant spectral range of Fe-oxides/hydroxides (Genú & Demattê, 2011), it301

thus highlights the higher importance of Fe-oxides/hydroxides for As predic-302

tion in comparison to clay minerals. Moreover, the key spectral wavelengths303

for predicting Cr concentration were at about 460, 560, 650, and 930 nm in304

VNIR range as well as at 1400, 1900, and 2200 nm in SWIR region. The305
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higher correlation between Cr and SWIR wavelengths indicates the higher306

ability of clay minerals to absorb Cr rather than the Fe-oxides/hydroxides307

(Kooistra et al., 2003). Furthermore, according to the Table S4, the highest308

correlation for Pb was at about 1900 nm, while the highest correlation of309

Zn was at about 930 nm. High correlation coefficients peaks at about 1400310

and 2200 nm indicate the internal link between clay minerals and Pb and Zn311

(Kooistra et al., 2003).312

3.3. Toxic elements’ prediction models313

In this study, predicted models based on soil spectral data were obtained314

using PLSR approach on the entire FD spectra. In addition, models were315

developed using 31 spectral variables (wavelengths) selected through feature316

selection procedure conducted by GA method on the samples’ laboratory FD317

spectra. The different models’ evaluation statistics are shown in Table 2.318

Table 2: Performance of toxic elements prediction models developed using the entire spec-

tra (PLSR) and the selected wavelengths (GA-PLSR) (validation dataset)

Model Toxic element R2
p RPD RMSEp Latent factor

PLSR

As 0.79 3.70 12.8 5

Cr 0.53 1.82 15.4 5

Pb 0.51 1.77 163 7

Zn 0.48 1.64 494 8

GA-PLSR

As 0.88 5.02 9.42 4

Cr 0.68 2.17 12.9 4

Pb 0.63 2.07 135 4

Zn 0.60 1.95 273 5

By comparing the predicted models’ statistics, it can be concluded that319

the models developed on the GA-selected wavelengths had better perfor-320

mance than those constructed on the entire spectra. Accordingly, the best321
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prediction model was developed for As using GA-PLSR with RPD = 5.02,322

RMSEp = 9.42 mg.kg−1 , and R2p = 0.88, which is satisfactory according to323

the five levels quality criterion. This was followed by the model obtained for324

Cr (RPD = 2.17, RMSEp = 12.9 mg.kg−1, and R2p = 0.68). GA-PLSR mod-325

els were also fit for quantitative prediction of Pb and appropriate for rough326

prediction of Zn. The poorest results were obtained by PLSR approach on327

Zn with RPD = 1.64, RMSEp = 494 mg.kg−1, and R2p = 0.48.328

3.4. Performance of the fusion approaches329

Comparing the performance of different methods on down-scaling the330

20 m Sentinel-2A bands to 10 m, the best results were obtained using AT-331

PRK followed by the GS method. However, the difference in evaluation332

criteria were not considerable between the two techniques. Therefore, due333

to complexity and high computation cost of ATPRK, we decided to use334

GS-produced 10 m images for further fusion steps. Figure 3 is the visual335

presentation of β bands obtained by fusion of bands 2 of Landsat 8-OLI and336

Sentinel-2A, using different fusion approaches. The first row presents the337

original individual images of Landsat 8-OLI and Sentinel-2A.338

It can be seen that the spatial details within the dumpsite were clearly339

emerged in the fusion results indicating a dramatic spatial resolution im-340

provement (Figure 3). Such details could not be recognized in the original341

30 m pixel size Landsat 8-OLI individual image (Figure 3b). The access roads342

on the dumpsite and some facilities and constructions are observable in fused343

images obtained from all fusion techniques. However, the details visible in344

the resulting images were varied to some extent showing the different perfor-345

mance of the methods. Although the exact determination of the best fusion346
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method requires quantitative assessments, scrutiny of the images reveals the347

superiority of GS, wavelet, and ATPRK through enhanced features in the348

dumpsite and nearby areas.349
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Figure 3: Visual comparison between original Sentinel-2A (a), original Landsat 8-OLI (b),

β-band - HSV (c), β-band - Brovey (d), β-band - PCA (e), β-band - GS (f), β-band -

wavelet (g), and β-band - ATPRK (h) images.
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The quantitative performance of each fusion approach for integration of350

the Landsat 8-OLI and Sentinel-2A bands is shown in Table 3). As can be351

seen, the ATPRK considerably outperformed all other examined methods,352

providing lower values of each different criterion for all spectral bands. The353

wavelet and GS techniques yielded the second best results, while they had354

relatively the same performance by considering all bands and assessment355

metrics. Brovey, PCA, and HSV were in the next ranks.356

Table 3: Quantitative assessment of the fusion approaches to integrate the Landsat 8-OLI

and Sentinel-2A bands

Metric Fusion approach β γ δ ε ζ η

RMSE

HSV 0.17 0.17 0.15 0.18 0.20 0.21

Brovey 0.06 0.06 0.05 0.07 0.07 0.07

GS 0.02 0.03 0.02 0.03 0.03 0.03

PCA 0.12 0.13 0.10 0.13 0.14 0.15

Wavelet 0.03 0.03 0.02 0.03 0.03 0.04

ATPRK 0.01 0.01 0.01 0.01 0.01 0.02

SAM

HSV 3.17 3.28 3.11 3.34 3.35 3.56

Brovey 2.10 2.18 2.03 2.31 2.34 2.37

GS 0.97 1.13 0.96 1.14 1.17 1.29

PCA 3.08 3.14 3.03 3.25 3.26 3.49

Wavelet 0.98 1.08 0.93 1.19 1.24 1.26

ATPRK 0.05 0.06 0.05 0.07 0.07 0.08

ERGAS

HSV 9.59 8.87 8.35 8.91 9.32 9.35

Brovey 5.25 5.31 5.06 5.41 5.68 5.92

GS 5.02 5.21 4.97 5.26 5.32 5.42

PCA 8.14 8.25 7.06 8.35 8.41 8.56

Wavelet 5.14 5.17 4.91 5.21 5.29 5.33

ATPRK 2.93 2.99 2.78 3.11 3.16 3.26

As evidenced by the fusion results above, bands 4, which represent the357

red end of the VNIR spectra in both images, were fused to each other in358
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the most efficient way. So that the lowest value of each evaluation criteria359

was obtained for the resulting band δ. As an example, for ATPRK, the360

values of 0.01, 0.05, and 2.78 were obtained for RMSE, SAM, and ERGAS,361

respectively. These values were lower comparing to those obtained for the362

other bands. Actually, the fusion performance was declined by the following363

order of bands β, γ, ε, ζ, and η (Table 3). This is in alignment with what364

can be visually observed in Figure S2.365

3.5. Applying GA-PLSR model to the images366

In order to evaluate the feasibility of applying GA-PLSR model on se-367

lected bands of the image pixels, the similarity between the samples’ labo-368

ratory spectra and corresponding co-located pixels spectra were calculated.369

The obtained SAM values provided different degrees of similarity between370

different images and samples laboratory spectra (Table S5). SAM values371

between the lab spectra and Landsat 8-OLI, Sentinel-2A, and their ATPRK-372

based fusion were significantly lower (0.09, 0.09, and 0.06, respectively) in373

VNIR region compared to SWIR range (0.24, 0.19, and 0.16, respectively),374

which is mainly due to the better spectral resolution of all images in VNIR.375

Furthermore, the fused image of Landsat 8-OLI and Sentinel-2A showed more376

similarity to the spectral response of samples in both VNIR and SWIR re-377

gions.378

Different static similarity thresholds have been proposed in the literature379

to recognize similar and dissimilar spectra (Shahriari et al., 2014). Consid-380

ering the SAM values of lower than 0.3 as the threshold set for this study381

(Galal et al., 2012), GA-PLSR model could be applied to all three images382

spectral regions.383
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Table S6 shows the statistical difference (one-way ANOVA) between the384

mean reflectance values of the selected wavelengths of the samples’ laboratory385

spectra and same location images pixels. According to the null hypothesis in386

one-way ANOVA, there was no significant difference between the mean values387

of the laboratory spectra and the image pixels spectra. This was tested by388

calculating the F-value at the significant level of 0.05.389

It can be seen that in 460 nm, the P-values were higher than 0.05 for390

Sentinel-2A and the fused image. The corresponding F-values were less than391

the critical F indicating no significant difference is available between average392

spectral reflectance of the band in two datasets. In 530 nm, the statistical393

similarity was seen for Landsat 8-OLI and the fusion imagery. Spectral sim-394

ilarity was also found between laboratory spectra and corresponding pixels395

spectra of all three images in 650 nm (Table S6). Generally, similarity be-396

tween laboratory and pixels spectra was observed for 6, 8, and 9 wavelengths397

for Landsat 8-OLI, Sentinel-2A, and their ATPRK-based fused image, re-398

spectively. The wavelengths with no significant difference and confirmed null399

hypothesis were used in the prediction models applied to the images.400

The GA-PLSR models obtained for each toxic element were applied to401

wavelengths listed in Table S6 to predict the concentration of that specific402

element using spectra derived from the satellite imagery. Due to limited spec-403

tral ranges covering by the images, it was not possible to use all wavelengths404

formed the models. The comparison between the predicted and actual con-405

centrations is given in the form of R2, RMSE, and RPD assessment metrics406

in Table 4 .407
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Table 4: Performance of toxic elements prediction models developed by GA-PLSR applied

to the images pixels spectra

Element Metric Sentinel-2A Landsat 8-OLI Sentinel-2A & Landsat 8-OLI (ATPRK)

As

R2 0.52 0.58 0.69

RMSE 32.43 21.78 18.23

RPD 1.65 1.98 2.05

Cr

R2 0.31 0.24 0.61

RMSE 40.58 41.55 13.49

RPD 1.12 1.05 1.78

Pb

R2 0.29 0.21 0.58

RMSE 312.89 349.85 129.57

RPD 1.16 1.01 1.70

Zn

R2 0.23 0.19 0.53

RMSE 677.11 735.75 317.31

RPD 1.09 1.02 1.62

Fusion of Landsat 8-OLI and Sentinel-2A yielded better prediction re-408

sults for all toxic elements. The best prediction was obtained for As with409

R2, RMSE, and RPD values of 0.69, 18.2 mg.kg−1, and 2.05, respectively.410

This was followed by Cr, Pb, and Zn, which was compatible with the models411

prediction results obtained for the samples laboratory spectra ( Table 2).412

Considering the individual Landsat 8-OLI and Sentinel-2A images, the per-413

formance of GA-PLSR model was better on Sentinel-2A data except for As,414

which Landsat 8-OLI provided better prediction results (Table 4).415

In addition to down-scaling the synthetic Landsat 8-OLI 90 m pixel size416

data, the performance of various fusion methods was also evaluated in terms417

of predicting the concentration of toxic elements (Table S7). Obtaining re-418

sults were in close agreement with those listed in Table 3. Applying GA-419

PLSR on ATPRK yielded the best prediction results followed by wavelet,420

GS, Brovey, PCA, and HSV, respectively. Therefore, this can be considered421
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another criterion to prove the superiority of ATPRK over the other fusion422

methods.423

4. Discussion424

4.1. Feature selection and prediction models425

The most important spectral range for Fe-oxides/hydroxides is the VIS426

range. Accordingly, the most significant spectral features were around 460,427

500, 560, and 650 nm wavelengths (Khosravi et al., 2021), which occur mainly428

due to the electron transition of Fe3+ in Fe minerals such as goethite (FeOOH)429

and hematite (Fe2O3). The spectral range of 845–870 nm and 900–930 nm are430

also considered as hematite and goethite absorption areas (Genú & Demattê,431

2011). In addition, the observed peaks in the NIR and SWIR regions are432

mainly associated with clay minerals (Kooistra et al., 2003). Furthermore,433

O-H bonds in hydroxyls or clay minerals such as muscovite, montmorionite,434

smectite, kaolinite, and illite cause obvious features in 1400 and 2200 nm435

(Madejova & Komadel, 2001). Also, the absorption peak in the 1900 nm436

is due to the O-H in water (Clark et al., 1990). Therefore, these important437

wavelengths and spectral regions along with those identified using GA feature438

selection method, were used for developing more robust prediction models.439

The prediction models were then developed using PLSR and GA-PLSR440

techniques (Table 2) and it is apparent that GA-PLSR yielded better predic-441

tion performance than the general PLSR. This can be attributed to removing442

the uninformative wavelengths by GA and hence using the bands with greater443

importance, mentioned above, which resulted in the lowest RMSEp. In a444

study by Gholizadeh et al. (2021), the superiority of GA was explained by445
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its inherent ability in optimum selection of the spectral wavelengths. On the446

other hand, general PLSR faces a significant challenge dealing with the entire447

VNIR–SWIR spectra, which contains lots of redundant information (Wang448

et al., 2014). Various researchers obtained similar results, where GA-based449

selection of the spectral features has led to a better prediction performance450

of soil toxic elements (Wang et al., 2014; Sun et al., 2018; Zhang et al., 2019).451

4.2. Fusion approaches452

Valuable information is provided by the 10 m spatial resolution bands453

of Sentinel-2A. Therefore, in this study, we down-scaled the 30 m bands of454

Landsat 8-OLI (bands 2–7) to a finer spatial resolution of 10 m, with the455

aid of 10 m resolution data in the corresponding Sentinel-2A bands 2, 3, 4,456

8, 11, and 12. Three types of image fusion approaches including component457

substitution, multi-resolution analysis, and geostatistical-based ATPRK were458

used to provide an acceptable comparison between different fusion techniques.459

Visual and quantitative interpretations of the image fusion results (Fig-460

ure 3 and Table 3) showed that the best fusion outcome was obtained by461

ATPRK method for each separate band. The superiority of ATPRK can be462

explained by the inherent ability of geostatistics in the analysis and predic-463

tion of spatial features. One other advantage of the ATPRK is that geo-464

statistical methods can significantly preserve the spectral properties of the465

original Landsat coarse image (Wang et al., 2016c). The application of AT-466

PRK fusion technique was initially used for down-scaling moderate resolution467

imaging spectroradiometer (MODIS) data (Wang et al., 2015). It was also468

successfully used in several fusion studies ever since (Wang et al., 2016c,a;469

Zhang et al., 2017; Wang et al., 2017b). Considering this, ATPRK has been470
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used as a basis to develop geostatistics-based fusion techniques (Zhang et al.,471

2020; Dewage et al., 2020; Zhang et al., 2017; Wang et al., 2016b) or a bench-472

mark to evaluate and compare the performance of other novel fusion methods473

(Shao et al., 2019; Nguyen et al., 2020, 2021).474

By considering the fusion results using each of the sentinel-2A bands as475

the high spatial resolution panchromatic images (Table 3), those obtained476

using bands 11 and 12 (ζ and η, respectively), were not as satisfactory as477

what obtained using bands 2, 3, 4 and 8 (β, γ, δ and ε, respectively). This is478

because these bands originally were of 20 m pixel size, down-scaled to 10 m479

using the GS method. Therefore, this extra down-scaling process may cause480

the lower performance of the fusion methods yielded by using bands 11 and481

12 of the Sentinel 2-A image. The 15 m spatial resolution panchromatic482

band of Landsat 8-OLI can also be used for the pan-sharpening, but the483

pixels of the resulting image are coarser than 10 m, which can be achieved484

by the Sentinel-2A data. The 5 m difference in spatial resolution is critical485

for monitoring toxic elements using the pixels spectra. One more problem486

is that, OLI bands 5–7 are not being covered by the wavelength of Landsat487

8-OLI panchromatic band, which may cause lower fusion accuracy for these488

bands (Wang et al. (2017a).489

Evaluating the performance of different fusion methods by synthetic data490

(down-scaling from 90 to 30 m in this study) may not be accurate enough.491

The main difference between down-scaling synthetic and original images is492

that finer spatial details must be restored in the original down-scaling (from493

30 to 10 m in this study). It is therefore recommended that auxiliary data494

such as field samples, aerial photos, and high spatial resolution multispectral495
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satellite imagery be used in future studies to evaluate the performance of496

fusion methods Wang et al. (2017a).497

4.3. Models from individual and fused images spectra498

Regardless of some gap in Landsat 8-OLI and Sentinel-2A images ac-499

quisition time, the best performance was generally obtained using the fused500

data. The time gap between the two images did not affect the fusion re-501

sults’ accuracy. This can mainly be explained by the inactivity of the waste502

dump, which led to minimum changes on the dump surface. Actually, no503

waste materials were dumped there during the time between the two images504

acquisition and even after that. Moreover, no vegetation can germinate and505

grow in that waste dump mostly due to acidic condition and loss of organic506

carbon and required nutrients. Furthermore, Sarcheshmeh is located in a507

semi-arid area with low precipitation rate (Khosravi et al., 2017), particu-508

larly during summer and autumn (the time between two images). The results509

of this study were comparable to the best of those obtained by (Wang et al.,510

2017a), in which the fusion performance of ATPRK and some other meth-511

ods were compared under different time intervals between Landsat 8-OLI512

and Sentinel-2A images. Although fusion of images with shorter time gaps513

performed better in that study, all others were still fairly acceptable.514

In terms of the prediction results obtained for each toxic element using515

PLSR on the GA-selected wavelengths (Table 4), the higher performance of516

the fusion product compared to the Landsat 8-OLI is linked to its better517

spatial resolution. The main reason for superiority of the fused imagery518

performance compared to Sentinel-2A can be attributed to the lower time519

gap between the sampling time and Landsat 8-OLI image acquisition time,520
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which leads to lower spectral and radiometric differences between the fused521

imagery and samples’ spectra. However, better prediction results of fused522

imagery for As and Cr can also be linked to better spectral coverage in523

VNIR region in which Fe-oxides/hydroxides have strong spectral features.524

The same reason justifies better As prediction results of individual Landsat525

8-OLI image compared to the Sentinel-2A. For the other toxic elements,526

higher spatial and spectral resolution of Sentinel-2A over Landsat 8-OLI led527

to development of more robust prediction models from individual Sentinel-528

2A spectral bands in spite of the 5 months gap between field sampling and529

image acquisition time.530

Despite the promising results obtained by ATPRK fusion approach, there531

are some issues associated with this kind of geostatistics-based methods.532

They entail complicated semi-variogram modeling based on the co-kriging533

matrix, which is computationally impractical for a broad domain. Further-534

more, ATPRK may not be appropriate for locations where land cover is535

rapidly changing. As an alternative, other novel fusion techniques such as536

deep learning-based methods can be investigated in future studies to improve537

toxic elements prediction results. It is expected that the proposed method-538

ology and developed models can be applied in other locations with similar539

terrestrial and particularly soil and climate conditions without any need to540

new soil sample collection; however, for applying the developed models in541

another location with different soil and climate conditions, new soil sampling542

is suggested. Nevertheless, it’s anticipated that in near future, progress in de-543

veloping new technologies and algorithms in satellite sensors and processing544

algorithms will pave the way for conducting these techniques with minimum545
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requirement to ground-based measurements. As a future study, transferabil-546

ity of the obtained GA-PLSR models for predicting soil toxic elements in547

different geographical locations can be investigated. In addition, The sensi-548

tivity of the proposed methodology on various levels of toxic elements as well549

as its capability on detection of other soil contaminants such as acid drainage550

and petroleum hydrocarbons can further be explored.551

Conclusions552

According to the results of this study, compared to pixels’ spectra of553

individual Sentinel-2A and Landsat 8-OLI imagery, the pixels’ spectra of554

their fusion product showed the highest similarity to the spectral response555

of the samples measured in the laboratory, particularly in the VNIR region.556

One-way ANOVA method also yielded more similar wavelengths between the557

laboratory and fused image pixels spectra. Considering the individual Land-558

sat 8-OLI and Sentinel-2A images, the performance of GA-PLSR model was559

better on Sentinel-2A data except for As that Landsat8-OLI provided bet-560

ter prediction results. Applying the GA-PLSR model on the ATPRK-fused561

image could produce more accurate predictions, for all the examined toxic562

elements, than the other fusion techniques. In all, this study concluded the563

fusion of Landsat 8-OLI and Sentinel-2A images could enhance the perfor-564

mance of soil toxic elements prediction models.565
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