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Abstract: The elastic response of solid earth to glacier and ice sheet melting, the most important
consequences of climate change, is a contemporaneous uplift. Here, we use interferometric synthetic
aperture radar (InSAR) measurements to detect crustal deformation and mass loss near the Helheim
glacier, one of the largest glaciers in southeastern Greenland. The InSAR time series of Sentinel-1 data
between April 2016 and July 2020 suggest that there is a maximum cumulative displacement of ~6 cm in
the line of sight (LOS) direction from the satellite to the ground near Helheim. We use an exponentially
decreasing model of the thinning rate, which assumes that the mass loss starts at the lower-elevation
terminal region of the glacier and continues to the higher-elevation interior. A linear inversion of
the derived crustal uplift in the vicinity of bedrock using this model for surface loading in an elastic
half-space suggests a mass loss of 8.33 Gt/year, which agrees with the results from other studies.

Keywords: Helheim glacier; isostatic rebound; mass loss; Sentinel-1A; InSAR

1. Introduction

The balance of ice mass in glaciers, ice caps, and ice sheets is a very important issue
associated with global climate change. Several studies have indicated rapid ice melting
in Greenland over the last two decades [1–4]. The total volume of ice melting raises the
global mean sea level at a rate of approximately 0.7–1.8 mm/year [5,6], which likely will
increase in the future due to further global warming. The solid earth beneath glaciers is
under the pressure of ice accumulation and ice melting. The response of the ground to
current and past ice mass loss is an uplift signal, which consists of two components: (1) an
instantaneous elastic component, and (2) a delayed viscous component (Figure 1) [7–9].
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Figure 1. Earth response to the discharge. The magenta line represents the contemporaneous elastic 
response due to the current ice loss and the green line represents the long-term viscous response 
due to the prior ice melting. 

Space geodetic techniques provide important observations for estimating ice mass 
balance. For example, laser and radar altimetry [2], space gravimetry [12], global 
navigation satellite system (GNSS) [13], and InSAR [14,15] have been used to resolve ice 
mass balance for glaciers, ice caps, and ice sheets in regions that cannot be easily accessed. 
The integration of such space geodetic techniques with ice thickness data and regional 
models can be used to estimate changes in mass balance [16,17]. 

Given the global availability of suitable SAR data derived from various national and 
international missions, spaceborne differential interferometric synthetic aperture radar 
(DInSAR) allows high-density measurements of surface deformation over large areas by 
combining the information from two SAR radar images acquired from approximately the 
same position in space over a length of time. DInSAR has been utilized for a variety of 
applications, such as volcanoes [18,19], earthquakes [20,21], landslides [22–25], surface 
subsidence due to groundwater pumping [26–28], glacier kinematics and surface 
unloading [29,30], and infrastructure monitoring [31–34]. 

The ability of DInSAR to measure large gradient displacements is limited due to 
problems arising from phase unwrapping [35], for which other techniques such as offset 
tracking can be used [36,37]. Furthermore, DInSAR fails if coherence, a measure of the 
radar reflection between two SAR observations, is lost due to, e.g., vegetation and snow 
cover [38]. Additionally, atmospheric artifacts can seriously affect the accuracy of DInSAR 
measurements, particularly if the rate of deformation is small (few cm/year—mm/year). 
To overcome such limitations, multiple interferograms using a stack of SAR acquisitions 
are generated and analyzed using InSAR time series techniques to obtain a time series of 
surface deformation. This approach is known as multi-temporal InSAR (MT-InSAR), 
which can be divided into three main categories: (1) persistent scatterer InSAR (PSI or 
PSInSAR), focusing on permanent/persistent scatterers (PS) defined as individual pixels 
with stable scattering properties over time, (2) small baseline subset, or SBAS, focusing on 
distributed scatterers (DS) defined as pixels whose neighboring pixels share similar 
statistical behavior [39], and (3) combined MT-InSAR methods that incorporate 
information from both PS and DS [40–42]. 

The InSAR-based measurements from older SAR missions such as ERS and Envisat 
presented a major challenge for assessing the elastic response to ice sheet melting due to 
their small temporal resolution, i.e., their sampling intervals of several weeks. This 
disadvantage has been improved with the launch of the Sentinel-1A satellite in 2014 and 
the Sentinel-1B in 2016, providing a repeat cycle of 6 days over Europe and 12 days for the 
rest of the world [43]. Sentinel-1 has four operational modes (SM, IW, EW, and WV). 
Interferometric wide swath (IW) is its main operational mode over land, featuring data 
products in single (HH or VV) or double (HH plus HV or VV plus VH) polarization at 5 

Figure 1. Earth response to the discharge. The magenta line represents the contemporaneous elastic
response due to the current ice loss and the green line represents the long-term viscous response due
to the prior ice melting.
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The elastic component indicates current uplift in response to the existing melting. The
viscous component, on the other hand, is the response to deglaciation of the Pleistocene
ice sheets that occupied a significant proportion of the Northern Hemisphere, and the
advance and retreat cycles of the Antarctic and Greenland ice sheets since the Last Glacial
Maximum (LGM) approximately 20,000 years ago [10]. The viscous component is related
to flow in the mantle, more than 40 km below the surface, above which the lithosphere
behaves like an elastically bending plate, resulting in displacements at wavelengths of
several hundred kilometers [11]. To interpret ground deformation with respect to mass
balance, it is essential to separate these spatial and temporal components (Figure 1).

Space geodetic techniques provide important observations for estimating ice mass
balance. For example, laser and radar altimetry [2], space gravimetry [12], global navigation
satellite system (GNSS) [13], and InSAR [14,15] have been used to resolve ice mass balance
for glaciers, ice caps, and ice sheets in regions that cannot be easily accessed. The integration
of such space geodetic techniques with ice thickness data and regional models can be used
to estimate changes in mass balance [16,17].

Given the global availability of suitable SAR data derived from various national and
international missions, spaceborne differential interferometric synthetic aperture radar
(DInSAR) allows high-density measurements of surface deformation over large areas by
combining the information from two SAR radar images acquired from approximately
the same position in space over a length of time. DInSAR has been utilized for a va-
riety of applications, such as volcanoes [18,19], earthquakes [20,21], landslides [22–25],
surface subsidence due to groundwater pumping [26–28], glacier kinematics and surface
unloading [29,30], and infrastructure monitoring [31–34].

The ability of DInSAR to measure large gradient displacements is limited due to
problems arising from phase unwrapping [35], for which other techniques such as offset
tracking can be used [36,37]. Furthermore, DInSAR fails if coherence, a measure of the
radar reflection between two SAR observations, is lost due to, e.g., vegetation and snow
cover [38]. Additionally, atmospheric artifacts can seriously affect the accuracy of DInSAR
measurements, particularly if the rate of deformation is small (few cm/year—mm/year).
To overcome such limitations, multiple interferograms using a stack of SAR acquisitions
are generated and analyzed using InSAR time series techniques to obtain a time series
of surface deformation. This approach is known as multi-temporal InSAR (MT-InSAR),
which can be divided into three main categories: (1) persistent scatterer InSAR (PSI or
PSInSAR), focusing on permanent/persistent scatterers (PS) defined as individual pixels
with stable scattering properties over time, (2) small baseline subset, or SBAS, focusing
on distributed scatterers (DS) defined as pixels whose neighboring pixels share similar
statistical behavior [39], and (3) combined MT-InSAR methods that incorporate information
from both PS and DS [40–42].

The InSAR-based measurements from older SAR missions such as ERS and Envisat
presented a major challenge for assessing the elastic response to ice sheet melting due
to their small temporal resolution, i.e., their sampling intervals of several weeks. This
disadvantage has been improved with the launch of the Sentinel-1A satellite in 2014 and
the Sentinel-1B in 2016, providing a repeat cycle of 6 days over Europe and 12 days for
the rest of the world [43]. Sentinel-1 has four operational modes (SM, IW, EW, and WV).
Interferometric wide swath (IW) is its main operational mode over land, featuring data
products in single (HH or VV) or double (HH plus HV or VV plus VH) polarization at
5 × 20 m spatial resolution and a 250 km swath. Sentinel-1 SAR images are free and
available for all users around the world [43].

Since the early 1990s, the Greenland ice sheet has experienced an increase in mass
loss. Space geodetic techniques such as satellite altimetry [44–46], satellite gravity anomaly
experiments [47–49], and flux-balance calculations [14,16] reveal an increase in the mass loss
rate between 1992 and 2011. Recently, the observations from the CryoSat-2 altimeter have
demonstrated that the volume loss rates for the period 2011–2014 were 2.5 times greater
than those for the period 2003–2009 [50]. The rapid unloading of ice from southeastern
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Greenland has caused an elastic uplift of ~16 mm/year at a GPS site on the Helheim glacier
between 2001 and 2006 [1].

This study is one of the few to use SAR data from the more recent Sentinel-1 satellite
to assess ice-unloading-induced deformations at rocky outcrops near glaciers. Previous
studies such as Liu et al. (2012), Auriac et al. (2013) [51], or Zhao et al. (2014) all predated
the Sentinel-1 era: Liu et al. (2012) used RADARSAT-1 SAR data to measure elastic crustal
uplift in west Greenland, Auriac et al. (2013) utilized ERS-1, ERS2 and Envisat SAR data to
constrain uplift of the ground all the way up to the edge of the largest ice cap in Iceland,
and Zhao et al. (2014) used C-band ERS imagery and the SBAS method for measuring the
contemporaneous deformation in Iceland.

In this paper, we use the latest archive of Sentinel-1 to assess the contemporaneous
displacement due to mass loss at the Helheim glacier, one of the largest glaciers in south-
eastern Greenland [66.5◦N, 38◦W] (Figure 2). Previous studies suggest that the rate of
thinning of the Helheim glacier has not been constant in the last two decades. For example,
Stearns et al. (2007) [52] analyzed sequential digital elevation models (DEMs) and showed
that the thinning rate was 44± 21 mm/year between 2002–2003, 15± 21 mm/year between
2003–2004, 60 ± 13 mm/year between 2004–2005, and 7 ± 21 mm/year between 2005–2006.
Using optical and SAR remote sensing data analysis, Bevan et al. (2012) [53] suggested a
greater glacier discharge of the Helheim glacier since the mid-1990s. In this research, multi-
temporal InSAR (MT-InSAR) analysis using the SBAS method is carried out to constrain
the spatial and temporal pattern of the thinning rate for the period 2016–2020. The thinning
rate is calculated by an exponential decreasing model which assumes the mass loss begins
from the lower-elevation near the edge of glacier towards the higher-elevation interior and
by a linear inversion-derived surface loading in an elastic half-space.
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Figure 2. (a) Helheim glacier located in the southeast of Greenland, which is one of the important
glaciers in Greenland under dramatic ice melting in the last two decades. The black square in (b)
shows the study area. (b) A close-up view of the study area (circle in (a)) from Google Earth.

2. Materials and Methods
2.1. Interferometric Analysis of Crustal Uplift

For the MT-InSAR analysis, we used GMTSAR software and the SBAS technique.
The interferometric processing in GMTSAR comprises three major elements: (1) a pre-
processor for each type of satellite data to convert the native format and orbital data
into a generic form; (2) an InSAR processor to coregister a stack of images and convert
topography into phase; and (3) a post-processor built on GMT [54,55], which is used for
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filtering interferograms and creating interferometric products such as coherence and line-
of-sight displacement in both geographic and radar coordinates. The small baseline subset
(SBAS) technique [39] was utilized as implemented in GMTSAR software [56] to observe
the temporal and spatial changes in crustal deformation around the Helheim glacier. The
SBAS technique uses all interferometric pairs with short baselines, either in temporal or
spatial terms, to estimate the unknown deformation at each acquisition time. Including a
large number of interferometric pairs in SBAS time series analysis, on one hand, reduces
temporary uncorrelated effects caused by the atmosphere or decorrelation noises; on the
other hand, this approach increases the density of measurement points on the resultant
displacement maps [39,57,58].

Our study area was well covered by SAR images from Sentinel-1A that were collected
in the 5 years from April 2016 to July 2020. In glacial regions, acquisitions in seasons with
less snowfall are more suited for interferometric processing than those in other seasons due
to snow cover that causes significant signal decorrelation in C-band interferograms. We
used 73 SLC images in IW mode that were acquired in a descending track (path 112 and
frame 370). We did not use ascending track images as all of them were acquired in winter
(the last days of December to the beginning of February), hindering us from making a
reliable network for SBAS analysis. Excluding the winter images leads to missing the elastic
response of the earth due to the snow load collected in winter, and makes it impossible to
identify the seasonal signal.

We used HH polarization data, which have a higher signal-to-noise ratio. Unwrapping
of the differential interferograms was performed using the Snaphu technique [59]. We
adapted a multilooking factor of 16 × 4 in range and azimuth to further suppress the noise
and improve the efficiency of phase unwrapping. We used 2 by 2 m elevation cells for
topography phase correction and geocoding. These cells were designed by the National
Science Geospatial-intelligence Agency (NGA) and the National Science Foundation (NSF)
public-private initiative, and they automatically produce a high-resolution, high-quality
digital surface model (DSM) of the Arctic (ArcticDEM).

For the SBAS analysis, we focused on interferograms with small perpendicular and
temporal baselines (<150 m and 150 days) to ensure that errors imposed by topography
and temporal decorrelation remained small, and we minimized orbital gradients across
the interferograms by utilizing coherent data from the entire SAR frame to flatten the
phase. A coherence threshold of 0.3 was used to select reliable pixels as measurement
points after phase unwrapping. To minimize the effect of temporal decorrelation caused
by interferograms covering the winter seasons, the time period has been divided into five
phases, each covering a different summer season. The networks of each year are shown
in Figure 3; interferograms with low quality were excluded from the networks before the
least-squares inversion.

Usually, orbital errors appear as a large extended signal, formed like a ramp that does
not affect local deformations and cannot be mistakenly interpreted as a deformation signal.
Fattahi and Amelung (2014) [60] showed that for Sentinel-1, the range uncertainty depends
on the magnitude of the orbital errors, about 0.2 mm/year per 100 km, and the azimuth
uncertainty is about 0.5 mm/year per 100 km. We used precise orbital determination (POD)
data from ESA (https://scihub.copernicus.eu/gnss) (accessed on 29 August 2020) to filter
out orbital errors from the interferograms.

The stratified atmospheric delay is a major error source in the SBAS time series
analysis which is computed in GMTSAR by a method that uses a common point stacking
technique to estimate the delays in the radar phase induced by propagation through
the atmosphere [61]. It is worth noting that at high latitudes, it is possible for InSAR
measurements to also be influenced by ionospheric disturbances. However, this effect
is usually insignificant for C-band data [50,62] and appears as a ramp in high latitudes
such as Greenland (https://iono.jpl.nasa.gov) (accessed on 24 May 2020). Accordingly,
we estimated this effect by fitting a first order polynomial to the interferograms during
the SBAS analysis. The set of small baseline interferograms were finally translated into

https://scihub.copernicus.eu/gnss
https://iono.jpl.nasa.gov
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a range-change time series that describes the time-dependent surface deformation by a
least-squares inversion [63].
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2.2. Ice Mass Loss Modeling

Ice melting in glaciers results in unloading that causes crustal uplift due to the viscoelastic
deformation of the Earth’s crust and mantle. The viscous component is a long-wavelength
phase contribution to glacial rebound and needs many years of observations to be determined
due to its rather small uplift rate. Thus, for a short period of time such as the one considered
in this paper, the viscous effect is very small and was ignored in our analysis.

To model the surface displacements observed by the MT-InSAR measurements, we
use a model developed by Zhao et al. [30]. The model assumes a unit point mass in elastic
half-space cylindrical coordinates with axial symmetry [30,64], as follows:

V(r) =
g

2rπ

1− ϑ2

E
1
2

(1)

U(r) =
g

2rπ

(1 + ϑ)(1− 2ϑ)

E
(2)

where V is the vertical and U is the radial displacement, ϑ is the Poisson’s ratio, g is the
gravitational acceleration, r is the distance from the point source, and E is the Young
modulus. Under the assumption that the mass loss rate remains constant with time, it is
possible to use velocities instead of displacements in Equations (2) and (3). As the trend
of ice melting decreases from the edge of the glacier to the internal parts, an exponential
decay function to describe the thinning rate in the margin of the glacier is considered [30]:

t(x) = b + (a− b)e−
x
h (3)

where t is the thinning rate, h is the decay factor, b indicates the thinning rate of the inland
portion (away from the ice edge), x denotes distance from the ice edge, and a is the thinning
rate of the ice edge (x = 0). A negative b means ice accumulation at an area away from
the ice edge. In an attempt to extend this one-dimensional model (Equation (3)) into a
two-dimensional model, the load change (Equations (1) and (2)) is split into a series of
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square blocks and the displacement rate is computed for each block. In the next step,
solutions for all blocks are added as follows [65]:

dv
l =

N

∑
i=1

(
b + (a− b)e−

xi
h

)∆2ρg
(
1− ϑ2)

πErli
(4)

de,n
l =

N

∑
i=1

(
b + (a− b)e−

xi
h

)∆2ρg(1 + ϑ)(1− 2ϑ)

πErli
(5)

where d stands for displacement, and the vertical, north, and east directions are depicted
by the superscripts v, n, and e, respectively. xi indicates the distance of an ice block from
the ice edge for i = 1 . . . , N (N is the number of blocks), ρ is the ice density, ∆ denotes
the block dimension, and rli represents the distance of point load i from observation point
l with l = 1, 2, . . . , L (L indicates the number of observations). For a given h, a linear system
of equations can be constructed as follows:

L = AM (6)

where L is the vector of observation velocities (LOS), M is the vector of model parameters
(the unknown parameters a and b), and A is the design matrix of the equation system,
which acts as a mapping function. The l-th line of A reveals mapping of the mass loss rate
onto the l-th velocity field [30]. This system of equations has more equations than variables
and is an overdetermined system of linear equations that can be solved using the least
squares technique [66]:

M =
(

AT A
)−1

AT L (7)

σ2
M = ∑

l

(
(AT A)

−1
ATσl

)2
(8)

where σ2
M is the model standard error of the ith ice block and σl is the standard error of

the lth velocity field. A in Equation (6) is constructed from the two matrices of B and C
as follows:

A = B× C (9)

B = ∆2ρg
πE

[
c1

(
1−ϑ2

r11

)
. . . sc1

(1+ϑ)(1−2ϑ)
2r11

...
... . . . ss1

(1+ϑ)(1−2ϑ)
2r11

. . .
...

...c1

(
1−ϑ2

rL1

)
. . . sc1

(1+ϑ)(1−2ϑ)
2rL1

. . . ss1
(1+ϑ)(1−2ϑ)

2rL1
. . .
] (10)

c1 = cos θ1 (11)

sc1 = −sin θ1cos α1 (12)

ss1 = sin θ1sin α1 (13)

C = [1− e−
x1
h

... 1− e−
xN
h e−

x1
h

... e−
xN
h 1− e−

x1
h

... 1− e−
xN
h e−

x1
h

... e−
xN
h 1− e−

x1
h

... 1− e−
xN
h e−

x1
h

... e−
xN
h ]

(14)

where B is a 2L× 3N matrix generated from Equations (4) and (5) in which the first N
columns correspond to the vertical component of displacement, the second N columns
correspond to the east component, and the third N columns correspond to the north
component. c1, sc1, and ss1 contain the mapping parameters from the three-dimensional
velocities to LOS direction, α is the looking angle of the satellite, θ is the incidence angle,
and C is a 3N × 2 matrix for the thinning model parameters. The mass loss estimated by
this approach is reasonable for glaciers with exponential thinning from the edge of glaciers
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towards the interior of glaciers. Therefore, a thickness reduction of the load points that are
estimated by the model is multiplied the area and ice density to find the mass loss volume
and ice mass loss, respectively. The modeling approach discussed above was implemented
in an in-house Matlab code.

The overall flowchart of the InSAR processing and model development is illustrated
in Figure 4.
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2.3. Auxiliary Data

To investigate the relation between the local land surface temperature (LST) on the
ice mass loss in the study area, we used LST data from Moderate Resolution Imaging
Spectroradiometer (MODIS). MODIS is a sensor operating on the Terra and Aqua satellites,
which were launched by NASA in December 1999 and May 2002, respectively. It helps
scientists to determine the amount of water vapor in a column of the atmosphere and
the vertical distribution of temperature and water vapor, measurements that are crucial
to understanding Earth’s climate system. The MODIS Land Surface Temperature and
Emissivity weekly data (MOD11C2) in the study area are collected for the time span of
InSAR observations, and the LST measurements were extracted at a 1 km resolution to use
them as local land surface temperature data.

3. Results
3.1. InSAR Velocity Field

Figure 5 shows the LOS displacements resulting from the SBAS analysis for the five
summer seasons between 2016 and 2020. Although the area is glacial and rugged and snow
and ice cover reduce the coherence of the interferograms, InSAR has been able to show a
clear signal of deformation. All five plots in Figure 5a–e show a 15–25 km2 wide yellow-red
area in the northern flank of the Helheim glacier, illustrating uplift in an LOS direction. The
rate of uplift, however, is not constant. The maximum rates of approximately 18 mm/year
occurred in the summer 2019 at the edge of the ice sheet in the northern flank of the Helheim
glacier. The average standard error of the LOS velocity fields is 0.59 mm/year, following
Zhao et al. [30], which was calculated in a non-deforming area by using the velocity of the
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points in that area, as shown by the cyan rectangle in Figure 5a–e, and then was averaging
it as a standard error for all the LOS velocity fields.

Remote Sens. 2022, 14, x FOR PEER REVIEW 8 of 21 
 

 

3. Results 
3.1. Insar Velocity Field 

Figure 5 shows the LOS displacements resulting from the SBAS analysis for the five 
summer seasons between 2016 and 2020. Although the area is glacial and rugged and 
snow and ice cover reduce the coherence of the interferograms, InSAR has been able to 
show a clear signal of deformation. All five plots in Figure 5a–e show a 15–25 km2 wide 
yellow-red area in the northern flank of the Helheim glacier, illustrating uplift in an LOS 
direction. The rate of uplift, however, is not constant. The maximum rates of 
approximately 18 mm/year occurred in the summer 2019 at the edge of the ice sheet in the 
northern flank of the Helheim glacier. The average standard error of the LOS velocity 
fields is 0.59 mm/year, following Zhao et al. [30], which was calculated in a non-deforming 
area by using the velocity of the points in that area, as shown by the cyan rectangle in 
Figure 5a–e, and then was averaging it as a standard error for all the LOS velocity fields. 

To better illustrate the temporal behavior of the displacement field, we selected a 
point (P) near the ice edge and plotted its LOS time series for all five periods. The velocity 
of the point was estimated using a linear regression (a constant velocity at each period). 
As illustrated in Figure 5a, point P shows uplift with a rate of 15 mm/year in summer 2016, 
decreasing by up to 46% and 26% in 2017 and 2018, respectively, and increasing again by 
20% to 18 mm/year in summer 2019. The rate of uplift at point P in summer 2020 is reduced 
by more than 60% as compared to summer 2019.  

In order to provide an assessment of the overall cumulative displacement in the 
summertime from 2016 to 2020, we assume that there is not any significant deformation 
in the period between November to March, and we merge the individual time series in 
Figure 6a by shifting the beginning of each time series to the end of the previous one in 
order to derive an estimation for the cumulative uplift during 2016–2020 (Figure 6b). The 
results show a cumulative displacement of up to 58 mm in the summer of the years 2016–
2020, a long-term LOS uplift rate of 12.7 mm/year (assuming a constant velocity). The 
fluctuations with respect to the linear trend observed in Figure 6a,b are caused either by 
transient melting during the summer months, the remaining atmospheric artefacts from 
InSAR processing, or the temporary effect of precipitation in the elastic response of the 
crust in this area. To study the mass loss that caused the observed uplift in Figure 5, an 
area containing the uplift on the northern flank of Helheim is selected (black rectangle in 
Figure 5a–c) and the LOS velocities are used as observations in the model equations.  
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permanent station Hel2.

To better illustrate the temporal behavior of the displacement field, we selected a point
(P) near the ice edge and plotted its LOS time series for all five periods. The velocity of
the point was estimated using a linear regression (a constant velocity at each period). As
illustrated in Figure 6a, point P shows uplift with a rate of 15 mm/year in summer 2016,
decreasing by up to 46% and 26% in 2017 and 2018, respectively, and increasing again
by 20% to 18 mm/year in summer 2019. The rate of uplift at point P in summer 2020 is
reduced by more than 60% as compared to summer 2019.

In order to provide an assessment of the overall cumulative displacement in the
summertime from 2016 to 2020, we assume that there is not any significant deformation
in the period between November to March, and we merge the individual time series in
Figure 6a by shifting the beginning of each time series to the end of the previous one
in order to derive an estimation for the cumulative uplift during 2016–2020 (Figure 6b).
The results show a cumulative displacement of up to 58 mm in the summer of the years
2016–2020, a long-term LOS uplift rate of 12.7 mm/year (assuming a constant velocity).
The fluctuations with respect to the linear trend observed in Figure 6a,b are caused either
by transient melting during the summer months, the remaining atmospheric artefacts from
InSAR processing, or the temporary effect of precipitation in the elastic response of the
crust in this area. To study the mass loss that caused the observed uplift in Figure 5, an
area containing the uplift on the northern flank of Helheim is selected (black rectangle in
Figure 5a–c) and the LOS velocities are used as observations in the model equations.
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Figure 6. (a) The blue line is the LOS displacement time series of point P for the five observation
periods. The red lines are first-degree polynomials fitted to each time series. (b) The cumulative
displacement time series for the summer times at point P. The gray lines are the time span be-
tween summer acquisitions. The blue circles show the InSAR images. The red line is a first-degree
polynomial fit to the displacement time series.

3.2. Mass Loss Estimation

The method described in Section 2 is applied to model displacements and to estimate
the mass loss rate for the five observation periods. An area around the northern flank of
Helheim (the black rectangle in Figure 5; area ~1500 km2 (30 km × 50 km)) was selected
for the modeling. To construct the model, we chose a snow block with a radius of 30 km
around the velocity field as a load in the model. The load change was applied via a gridded
point source based on square blocks with a size of 1 km. The decay factor h in Equation (4)
was changed from 1 to 30 km with a step size of 1 km (Figure 7) to obtain the best decay
factor in the model.
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The best fit between observations and models occurred at h = 7500 m. The cumulative
estimated ice volume loss of all periods of observation is 8.65–9.53 km3/year, equivalent to an
ice mass loss of 7.93–8.75 Gt/year, assuming a snow density of 916.7 kg/m3. This range of
0.81 Gt/year between the minimum and maximum suggests that variations in h are largely
compensated by variations in the parameters a and b. The fit of the model to the data is

presented by the root mean square error: RMSE =

√
∑L

i=1(li−mi)
2

L , where li is the observation,
mi is the model prediction, and L is the number of observations. We assume unit variance for
all observation points and observe that as h changes, the RMSE does not vary significantly
(h = 1–30 km, RMSE = 1.58–1.67 mm/year). Therefore, the data are not sufficient to resolve h.
According to the residuals of the data and model, the best fit of the model occurs at h = 7500 m,
which we selected to find the parameters of the model to estimate the ice mass loss for each
observation period. The average of the model parameters for all observation time spans is
a = 5.07 m/year and b = −2.42 m/year. The model parameters and the estimated ice mass
loss for each period of observation are listed in Table 1.

Table 1. Model parameters and ice mass loss and its averages estimated for the five periods of observation.

Model Parameters 2016/Apr–2016/Oct 2017/May–2017/Oct 2018/May–2018/Oct 2019/Apr–2019/Oct 2020/Apr–2020/Jul

a (m/year) 5.32 4.5 5.14 6.03 4.36

b (m/year) −2.78 −2.14 −2.11 −2.90 −2.17

Ice mass loss (Gt) 7.38–7.875 5.625–6.39 6.48–7.02 10.67–11.56 5.63–6.30

By comparing the average of the ice mass loss in the years 2016–2020, we found that
the maximum ice mass loss occurred in 2019. The increase in ice mass loss in 2019 in
comparison to 2020, 2018, 2017, and 2016 is about 46%, 39%, 45%, and 31%, respectively.

In order to assess how our model illustrates ice sheet/block melting, we plotted two-
dimensional average thinning rates of the ice sheet near the edge of the Helheim glacier in
Figure 8. The figure shows how the thinning rate decreases from the front of the ice sheet to
the interior. On average, the maximum thinning rate of 5.07 m/year occurs at the edge of
the ice sheet at the northern flank of the Helheim glacier. By moving away from the edge,
the ice sheet height increases while the thinning rate decreases.
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4. Discussion
4.1. InSAR and Modeling

In this study, we investigated how InSAR-based measurements of spatial and temporal
variations in crustal uplift along the northern flank of the Helheim glacier in southeastern
Greenland could be used to model and estimate the amount of ice melting in the region as
an unloading problem. The model that we used to detect the thinning rate in the study area
is based on the direct effect of ice melting near the edge of the ice sheet. As we assumed
that ice melting decreases from the edge of a glacier to its interior, we selected a portion of
the InSAR results for modeling, which was located close to the edge and clearly shows the
rebound effect.

The InSAR displacement time series results showed a maximum cumulative LOS uplift
of 58 mm for 2016–2020 and 40.86 km3 ice volume loss in an area of approximately 1500 km2

in the time span from 2016 April to 2020 July. Simpson et al. (2011) [67] showed that the
viscous uplift rates for their best fitting earth model are about ± 0.2 mm/year all around
Greenland, although Khan et al. (2016) [68] argued that the viscous deformation is larger in
this region and estimated a viscous uplift rate of about 3–5 mm/year in southeast Greenland.
Therefore, we also accounted for the viscous component in our results and removed the
modeled viscous deformation (4 mm/year) from the InSAR measurements before inferring
the present-day mass change. Our findings suggest that ignoring the viscous component leads
to an estimation of 7.92 Gt/year for the ice mass loss, and so it will change our results by only
5%, indicating the result was not sensitive to the viscous deformation.

It is worth noting that for homogeneous elastic half-space modeling, it is important to
justify our Young modulus, E, because the surface displacement due to loading is inversely
proportional to the Young modulus (Equations (1) and (2)). Auriac et al. (2013) showed
that one method to select the appropriate Young modulus is by minimizing the residuals
between the observed and modeled values of the InSAR phase. Therefore, we applied this
method and varied E between 1 GPa and 90 GPa. The minimum value for the residuals
occurred at E = 48 GPa, which we used in our model.

The Poisson’s ratio of 0.23 in our model was adapted from the study by Dahl-Jensen et al.
(2003) [69]. To consider the sensitivity of our model to this factor, we changed it from 0.2 to 0.4
by 0.01 steps and considered the results. The RMSE of the residuals did not change significantly,
indicating that the model is not sensitive to this factor.

Figure 9 shows the comparison between observations (a, d, g, j, and m) and the models
(b, e, h, k, and n) with h = 7.5 km. In this area, the model predictions closely resemble
the observations (see the residuals in Figure 9). The standard deviation of the residuals is
2.52–3.77 mm/year and the RMSE between the observation and model varies from 1.493 to
1.789 mm/year for the observation periods (Table 2).

Table 2. Standard deviation of the residuals and the RMSE between the observations and models of
the five periods.

Statistic Parameters 2016 2017 2018 2019 2020

Standard deviation of residual (mm/year) 2.52 2.83 3.02 3.77 3.26

RMSE (mm/year) 1.493 1.612 1.657 1.789 1.665

Despite the strongly scattered measurement points in this region, the model aligns well
with the observations. To show the consistency of the observations and model, we considered
two profiles, A′A and B′B, at the edge of the ice sheet for each observation period, and we
compared the discrepancy between the observation and model along the profiles. The plots in
Figure 10 illustrate how the model fits to the observation. The RMSE values are between 1.467
and 1.875 mm/year for A′A and between 1.152 and 1.698 mm/year for B′B.
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The modelled velocities are calculated for the decay distance h = 7.5 km. The red star shows the
position of the permanent GPS station, Hel2.
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In order to consider the absolute difference between the observation and model in
Figure 10, we used the average of absolute percentage deviation (AAPD) [70] as follows:

AAPD = 100×
∑n

i=1

(∣∣∣Obsi−Modeli
Obsi

∣∣∣)
n

(15)

where |.| computes the absolute values. The minimum (maximum) values of the AAPD
correspond to the best (worst) performance of the model to the observation.

Table 3 shows that in Figure 10, the best performance of the model is 1.8%, while
the worst is 4.9%. Therefore, the model is fitted to the observations with a maximum five
percent difference and the RMSE values are acceptable.

Table 3. AAPD between the observations and models of the five periods in Figure 10.

AAPD (Percentage) 2016 2017 2018 2019 2020

A′A 3.4 3.7 3.1 4.9 3.9

B′B 1.8 2.8 4.2 4.7 4.3
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4.2. Inferring Elastic Rebound from GPS

In order to infer the elastic rebound from the GPS, we used a GPS time series of
displacement recorded at the permanent GPS station, Hel2, which is the only GPS station
in the study area, from http://geodesy.unr.edu/gps_timeseries/txyz/IGS14/HEL2.txyz2
(accessed on 14 January 2021). The data were analyzed in the Nevada Geodetic Laboratory
using GipsyX software that was developed at JPL. The precision of the GPS components is
reported 0.9, 0.8, and 3 mm in the north, east, and up directions. As we had only one GPS
station in the study area, we could not directly compare the SBAS and GPS measurements
with each other; as DInSAR is a relative measuring system, we would need at least two
GPS stations for comparison. Therefore, in the following, we do not focus on the direct
comparison between the GPS and InSAR, but rather on the interpretation that we infer
from the GPS. To do this, we first converted the GPS time-series displacement into the LOS
direction by using the following equations:

dLOS = du(θinc)− dALD(θinc) (16)

dALD = decos cos(αh)− dnsin sin(αh) (17)

where dn, de, and du are the three components of the displacement vector d in the north,
east, and up directions, respectively. θinc is the incidence angle and αh is the azimuth of the
satellite heading. dALD is the projection of the horizontal components on the azimuth look
direction ALD [71].

Figure 11 shows InSAR and GPS time series for four periods (due to the gap in the
GPS data for 2020, the years 2019–2020 are assumed as one period), where the former was
calculated based on the average of points within a radius of 100 m around the permanent
GPS station Hel2. Both the GPS and InSAR time series show an increasing trend in the LOS
displacement time series. In general, the GPS time series data are noisier than the InSAR,
and they have much more fluctuations. The higher fluctuations in the GPS time series might
be due to the continuous record of data that can affected by environmental effects such as
rain and snowfall. In contrast, the InSAR data are discontinuous and are collected every
12 days, and so they may miss such effects. In addition, due to the employment of tem-
poral filters in the SBAS analysis, the InSAR displacement time series are much smoother
than the GPS, which may mask part of the ground displacement related to ice melting.
As seen in Figure 11, the maximum LOS displacement in the GPS is more than the InSAR.
It may be because the GPS time series is in an absolute reference frame, while the InSAR is
relative to a reference area. The reference area experiences many of the same geophysical
phenomena as the area close to the GPS, e.g., the seasonal elastic deformation due to snow
cover would be similar for the area around the GPS station and for the reference area. The
differencing will consequently remove a part of the displacement signal in the InSAR, while
the signal remains in the un-differenced GPS. This causes the differences in the amount
of uplift between the GPS and InSAR time series. The absolute precision of the GPS is
~3 mm and the relative precision of the InSAR is ~0.6 mm. Therefore, the integration of
the InSAR measurements from the missions with shorter revisit times (1–3 days) with
more continuous GPS stations in the region would improve the capability for a better
interpretation of non-linearity related to ice melting in different seasons and glacier areas.

4.3. Comparison with Previous Studies

As the observation period covered by our SAR data is relatively short and the detected
average uplift of ~13 mm/year around the Helheim glacier in our study can be assigned
to the elastic component of the crust, triggered by the very quick response of crust to
atmospheric and oceanic fluctuations in short time scales. Khan et al. (2007) used the
dem-extraction method to estimate the volume changes in Helheim and determined that
there was 16.6 mm of uplift in this region and 180 km3 volume loss for 2002–2005 in an area
larger than 48,000 km2. Our study has revealed a maximum cumulative line-of-sight uplift
of 58 mm during 2016–2020, corresponding to a cumulative volume loss of 40.56 km3 in

http://geodesy.unr.edu/gps_timeseries/txyz/IGS14/HEL2.txyz2
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an area of about 1500 km2. If we divide the volume loss by the area in these two studies,
the results show that the peak rates of ice melting near the Helheim glacier increased by
almost four times between 2016 and 2020. This temporal acceleration of ice melting has
also been mentioned in previous studies. For example, Bevis et al. (2012) used GPS data
recorded at the Hel2 station and showed that the velocity of the vertical displacement was
11.8 mm/year between 2007 and April 2010, but it increased to 15.3 mm/year between
April 2010 and March 2011, which the authors attributed to the summer of 2010 being
the hottest and longest on record over most of southern Greenland (until 2011). Helm
et al. (2014), using Cryosat-2 altimeter observations, showed that the volume loss rate
at the Helheim glacier between 2011 and 2014 was 2–5 times greater than that between
2003 and 2009. Wake et al. (2016), using GPS data from Hel2 for 2008 to 2013, suggested
that Hel2 was uplifting at a rate of 16 ± 0.36 mm/year, with significant acceleration
(3.7 ± 0.24 mm/year from April 2006 to September 2012). Mouginot et al. (2019) [72], using
an extensive survey of surface elevation, thickness, velocity, and surface mass balance,
suggested that the mass loss acceleration shifted from positive in the 2000–2010 period to
negative in the 2010–2018 period. They suggested a 20 Gt/year mass loss for all glaciers in
southeastern Greenland over 46 years. Sasgen et al. (2020) [73] observed a mass loss in 2017
and 2018 by GRACE and GRACE-FO and reported that these were lower than in any other
two-year period between 2003 and 2019. In June and July 2019, the ice sheet experienced
high rates of melt water runoff close to the maximum rates observed over the full 2003–2018
period. Williams et al. (2021) [74] used a range of remotely sensed datasets and showed
that during 2014–2020, the Helheim glacier had continued to lose mass and thin, and it had
retreated inland, up to 100 m thinner than it was during 2005. Our results also show that
in 2017 and 2018, the LOS displacements related to ice mass loss were lower than other
year periods between 2016 and 2019, and in 2019, the most LOS displacement took placed.
Our InSAR-based analysis indicates that the Helheim glacier plays a significant role in this
process, and it shows a large area of the regional mass loss in southeastern Greenland.
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Figure 11. GPS-derived LOS time series in the four periods of InSAR observation: (a) April–October 2016,
(b) May–October 2017, (c) May–October 2018, and (d) May 2019–September 2020. (e–h) illustrate the
average of the LOS displacement time series of the InSAR measurement points around the GPS station to
a radius of 100 m in the same periods as (a–d), respectively.
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4.4. Influence of Land Surface Temperature

Snow et al. (2021) [75] examined the influence of the sea surface temperature (SST) and
ocean currents near the Helheim glacier and showed that fluctuations in subsurface Atlantic
water temperatures coincided with some of the variability in discharge rates previously
found at Helheim, although this relationship is not straightforward. For example, the SST
was increasing in 2000 when Helheim experienced discharge rates. However, the SST was
relatively warm in 2010, although Helheim did not experience any substantial increase
in ice discharge. These findings suggest that there is no straight relationship between the
SST and discharge rate of the glacier. In addition to the SST and ocean currents, other
environmental factors such as land surface temperature, glacier configuration, and mélange
rigidity may influence glacier discharge rates.

As analyzed above, the InSAR time series suggest faster melting in 2019, in comparison
to periods before and after. Reports from the World Meteorological Organization (WMO)
indicate that 2016–2020 were the five warmest years on record [76], with 2019 being warmer
than the record-level temperatures seen in 2016 and 2018, making 2019 a fast melt year for
the ice sheets.

We compared the average of the local LST in our study area for each year by using
MOD11C2 data from MODIS (Figure 12). For the 2020 local LST, the average of the first
9 months, for which we had InSAR data, is considered. As seen in Figure 12, the regional
analysis from the LST shows that the LST rate increased from 2016 to 2019 but decreased in
2019–2020. However, as illustrated in Figure 6a, displacement rates decreased from 2016
to 2017 and 2018 and increased again in 2019, before decreasing in 2020. Thus, there is
no direct link between elastic rebound of the crust and land surface temperature, and as
stressed above, other parameters may also influence ice melting and the resulting unloading
at the edges of the glaciers.
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5. Conclusions

InSAR time series interferograms are useful for assessing the elastic surface defor-
mation on the edges of large glaciers subject to ice melting, providing insight into the
rheological characteristics of the region. Based on Sentinel-1 InSAR measurements covering
summer seasons between 2016 and 2020 over the Helheim glacier, we could infer the uplift
on the northern flank of the Helheim margin up to 58 mm in the LOS direction, attributed
to the elastic response of solid earth to ice melting. InSAR time series analysis suggests
faster melting in 2019 than in 2016, 2017, 2018, and 2020. Modeling the thinning rate of
ice thickness and the mass loss rate due to unloading in this region results in an average
thinning rate of 5.07 m/year at the edge of ice sheet and a mass loss of 8.33 Gt/year on the
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northern flank of the Helheim margin. Although the distribution of InSAR measurement
points in this region is rather sparse, this study shows the ability of the Sentinel-1 SAR
system to provide a reliable assessment of the surface deformation on the edges of a large
glacier, which makes it promising for applying to other areas to evaluate the elastic response
of solid earth to glacier and ice sheet melting.

Author Contributions: Conceptualization, Z.E.J. and M.M.; writing—review and editing, Z.E.J., M.M.
and V.K. All authors have read and agreed to the published version of the manuscript.
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Conflicts of Interest: The authors declare no conflict of interest.

References
1. Khan, S.A.; Wahr, J.; Stearns, L.A.; Hamilton, G.S.; van Dam, T.; Larson, K.M.; Francis, O.; Khan, S.A.; Wahr, J.; Stearns, L.A.; et al.

Elastic uplift in southeast Greenland due to rapid ice mass loss. Geophys. Res. Lett. 2007, 34, L21701. [CrossRef]
2. Agency, E.S.; Howat, I.M.; Smith, B.E.; Joughin, I.; Scambos, T.A.; Wahr, J.; Stearns, L.A.; Hamilton, G.S. Rates of southeast

Greenland ice volume loss from combined ICESat and ASTER observations. Geophys. Res. Lett. 2008, 35, 1–5. [CrossRef]
3. Wouters, B.; Chambers, D.; Schrama, E.J.O. GRACE observes small-scale mass loss in Greenland. Geophys. Res. Lett. 2008,

35, L20501. [CrossRef]
4. Khan, S.A.; Wahr, J.; Bevis, M.; Velicogna, I.; Kendrick, E. Spread of ice mass loss into northwest Greenland observed by GRACE

and GPS. Geophys. Res. Lett. 2010, 37, 1–5. [CrossRef]
5. Meier, M.F.; Dyurgerov, M.B.; Rick, U.K.; O’Neel, S.; Pfeffer, W.T.; Anderson, R.S.; Anderson, S.P.; Glazovsky, A.F. Glaciers

Dominate Eustatic Sea-Level Rise in the 21st Century. Science 2007, 317, 1064–1067. [CrossRef] [PubMed]
6. Gardner, A.S.; Moholdt, G.; Cogley, J.G.; Wouters, B.; Arendt, A.A.; Wahr, J.; Berthier, E.; Hock, R.; Pfeffer, W.T.; Kaser, G.; et al.

A Reconciled Estimate of Glacier Contributions to Sea Level Rise: 2003 to 2009. Science 2013, 340, 852–857. [CrossRef] [PubMed]
7. Peltier, W.R. The impulse response of a Maxwell Earth. Rev. Geophys. 1974, 12, 649. [CrossRef]
8. Wu, P. Deformation of an incompressible viscoelastic flat earth with powerlaw creep: A finite element approach. Geophys. J. Int.

1992, 108, 35–51. [CrossRef]
9. Mitrovica, J.X.; Milne, G.A.; Davis, J.L. Glacial isostatic adjustment on a rotating earth. Geophys. J. Int. 2001, 147, 562–578.

[CrossRef]
10. Wake, L.M.; Lecavalier, B.S.; Bevis, M. Glacial Isostatic Adjustment (GIA) in Greenland: A Review. Curr. Clim. Chang. Rep. 2016, 2,

101–111. [CrossRef]
11. Watts, A. Isostasy and Flexure of the Lithosphere; Cambridge University Press: Cambridge, UK, 2001.
12. Slobbe, D.C.; Ditmar, P.; Lindenbergh, R.C. Estimating the rates of mass change, ice volume change and snow volume change in

Greenland from ICESat and GRACE data. Geophys. J. Int. 2009, 176, 95–106. [CrossRef]
13. Bevis, M.; Wahr, J.; Khan, S.A.; Madsen, F.B.; Brown, A.; Willis, M.; Kendrick, E.; Knudsen, P.; Box, J.E.; van Dam, T.; et al. Bedrock

displacements in Greenland manifest ice mass variations, climate cycles and climate change. Proc. Natl. Acad. Sci. USA 2012, 109,
11944–11948. [CrossRef]

14. Rignot, E.; Kanagaratnam, P. Changes in the velocity structure of the Greenland Ice Sheet. Science 2006, 311, 986–990. [CrossRef]
15. Joughin, I.; Smith, B.E.; Abdalati, W. Glaciological advances made with interferometric synthetic aperture radar. J. Glaciol. 2011,

56, 1026–1042. [CrossRef]
16. Rignot, E.; Bamber, J.L.; Van Den Broeke, M.R.; Davis, C.; Li, Y.; Van De Berg, W.J.; Van Meijgaard, E. Recent Antarctic ice mass

loss from radar interferometry and regional climate modelling. Nat. Geosci. 2008, 1, 106–110. [CrossRef]
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