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A globally relevant stock of soil nitrogen
in the Yedoma permafrost domain

Jens Strauss 1 , Christina Biasi 2, Tina Sanders 3, Benjamin W. Abbott 4,
Thomas Schneider von Deimling 1,5, Carolina Voigt 2,6, Matthias Winkel 7,
Maija E. Marushchak 2,8, Dan Kou 2, Matthias Fuchs 1, Marcus A. Horn 9,
Loeka L. Jongejans1,10, Susanne Liebner 11,12, Jan Nitzbon 1,
Lutz Schirrmeister 1, Katey Walter Anthony 13, Yuanhe Yang 14,
Sebastian Zubrzycki 15, Sebastian Laboor 1, Claire Treat 1 &
Guido Grosse 1,10

Nitrogen regulates multiple aspects of the permafrost climate feedback,
including plant growth, organic matter decomposition, and the production of
the potent greenhouse gas nitrous oxide. Despite its importance, current
estimates of permafrost nitrogen are highly uncertain. Here, we compiled a
dataset of >2000 samples to quantify nitrogen stocks in the Yedomadomain, a
region with organic-rich permafrost that contains ~25% of all permafrost car-
bon. We estimate that the Yedoma domain contains 41.2 gigatons of nitrogen
down to ~20metre for the deepest unit, which increases the previous estimate
for the entire permafrost zone by ~46%. Approximately 90% of this nitrogen
(37 gigatons) is stored in permafrost and therefore currently immobile and
frozen. Here, we show that of this amount, ¾ is stored >3 metre depth, but if
partially mobilised by thaw, this large nitrogen pool could have continental-
scale consequences for soil and aquatic biogeochemistry and global-scale
consequences for the permafrost feedback.

Soils and sediments of the northern permafrost zone store a globally
relevant reservoir of organic matter (OM). The amount of soil organic
carbon (OC) is estimated at ~1500 gigatons (Gt, billions of tons) of OC
(down to ~50m for some deep deposits) in terrestrial environments of
the permafrost region, with an additional ~400 Gt in regions with thick
sediment overburden and Arctic deltas1–4. Global climate change is
warming northern permafrost regions substantially (nearly four times)
faster than the global average5–7, and current Siberian heating is

unprecedented during the past seven millennia8, triggering wide-
spread permafrost degradation and collapse9,10. Permafrost thaw is
exposing currently frozen, long dormant OM to microbial processes
(up to mean loss of 341 Gt (~20%) of the now frozen OM mineralised
until 2300 under RCP8.511) and physical mobilisation (not fully quan-
tified yet12,13). Recent studies have improved our understanding of
present and future permafrost OC dynamics3,11,14,15 and highlighted the
importance of abrupt and deep permafrost thaw10,16,17. Regions with a
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high amount of excess ice are especially prone to abrupt thaw and
associated mobilisation of OM. A prime candidate for rapid thaw
processes is the focus region of this study: the Yedoma domain in
Siberia and Alaska (Fig. 1). This region consists of tens ofmetres of ice-
rich silty soil intersected by ice wedges that developed in tundra-
steppe environments of the late Pleistocene (ca. 100–12 thousand
years (ka) ago). Additional deposits such as thermokarst lake and Alas
sediments or Holocene cover layers started developing due to per-
mafrost degradation and aggradation during the Late Glacial and the
Holocene warm periods (ca. 14.5–0 ka ago). Because of the region’s
high OM content and substantial sedimentary volume, the Yedoma
domain contains 327–466 Gt OC calculated down to ~20m, repre-
senting ~26% of total permafrost OM while just covering ~12% of the
northern permafrost region4,18.

Compared to OC stocks and vulnerability, little is known about
the stocks and fate of nitrogen (N) of the permafrost zone. Even
though several studies have suggestedglobally relevant quantities ofN
are stored by the permafrost zone, large uncertainties remain about
quantity, distribution, and vulnerability of these N stocks to climate
change19–23.

First-order estimates of permafrost soil N range from 22 to 106 Gt
Nwith ameanof 66GtN19,24. However, these estimates only include the
uppermost 3m, excluding deeper soils and sediments such as deltaic
and Yedoma deposits, which represent a large portion of OM pools
that could result in N release in the coming decades18. It is estimated
that abrupt thaw processes could affect 1.6 million km2 by 2100,
impacting half of permafrost OM through collapsing ground, rapid
erosion, and landslides10. Especially Yedoma landscapes are one of the
major reasons why so much permafrost carbon is stored in areas
classified as “very high” risk of abrupt thaw and surface collapse in the
future25. Because ice wedges extend through the full depth of Yedoma

deposits (Fig. 2), permafrost thaw triggers surface collapse as well as
fluvial and coastal erosion10,26,27. The melting of ice can also create
macropores and microtopography that alter soil hydrology, poten-
tially mobilising soil N from well below the surface27. Thus, also deep
mobilisation of OM is expected to intensify on the short- to mid-term
term(comingdecades28 to end this century10), in total up to twelve-fold
faster than expected29. However, exact numbers aremissing as inmost
models still the abrupt thaw processes are not implemented.

Nitrogen availability regulates key components of the OC cycle at
high latitudes30–32 and the mineral N cycle provides the substrate for
microbial production of nitrogenous gases, most importantly nitrous
oxide (N2O), which is a potent, ozone-depleting greenhouse gas with a
global warming potential approximately 300 times greater than CO2

on a centennial timescale33. N2O production and release represents an
only recently recognised non-carbon climate feedback from thawing
permafrost34,35. Consequently, reducing uncertainty about permafrost
N stocks is critical for improving estimates of the overall magnitude
and timing of the permafrost climate feedback11,36. Permafrost N stocks
have the potential to influence the permafrost climate feedback in four
interrelated ways. First, increased N availability in terrestrial ecosys-
tems following permafrost degradation can stimulate primary
productivity37,38. Generally, permafrost-affected soils are assumed to
have a strong mineral N-limitation for microbes and plants due to low
mineralisation rates in cold soils39,40. However, a recent synthesis
showed that gross ammonification and nitrification rates in active
layerswereof similarmagnitude as observed in temperate and tropical
systems41. Instead, the rather short period when soils are not frozen
seems to be the main factor limiting N turnover. Nevertheless,
increased availability of N may lead to CO2 sequestration through
plants given that they successfully compete with microbes for avail-
able nutrients42. Second, increased N availability can affect OM
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Fig. 1 | Spatial distribution of the Yedoma domain in the northern high lati-
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decomposition. While some studies found that greater N availability
can accelerate OM decomposition30,32, at least for the first years after
thaw43, others show the opposite effect thereby either amplifying or
reducing the climate feedback depending on the net interaction11,44–47.
Third, increased N availability in combination with changes in soil
redox conditions and vegetation disturbance can stimulate microbial
production of N2O during and after permafrost degradation21,36,48–52.
High N2O emissions were recently found at Yedoma thawing sites35

putting N reservoirs in the Yedoma domain high on the agenda in
Arctic soil and climate change research. In addition to the gaseous N
loss as N2O, release of the final denitrification product dinitrogen (N2)
could further enhance N limitation in northern soils. Fourth, perma-
frostdegradation increases lateral export of organic and inorganicN to
aquatic ecosystems53–55. As for terrestrial ecosystems, increased nutri-
ent availability can alter aquatic and marine food webs, affecting
ecosystem C balance and biodiversity21,56–58. To understand the mag-
nitude of these processes, it is important to assess the quantity and
vulnerability of permafrost N stocks to climate change.

In study our specific goals are to estimate the N pools across
different stratigraphic units of Yedoma domain permafrost soils and
deposits (Fig. 1) to enhance the understanding of potential climate
feedbacks. Therefore, we analyse 2,213 soil samples from the Yedoma
domain in Alaska and Siberia to assess N distribution and content.
Additionally, based on a subset of 1200 samples, we synthesise the
availability of mineral N forms (ammonium (NH4

+) and nitrate (NO3
−)),

to assess potential impact of N released from decomposing OM. Here
we show that the Yedoma domain contains a globally relevant N stock
of 41:2+3:3

�3:9 Gt N with 90% of which occurs in currently inaccessible
permafrost. These large N stock also appear to be highly bioavailable
based on their low C:N ratios and relatively high proportion of inor-
ganic forms of N. As climate change degrades Yedoma landscapes, a
portionof thisNwill be activated andwill affect thepermafrost-climate
feedback.

Results
Quantity of N in deposits of the Yedoma domain
To reach the highest possible sample coverage and representative-
ness, our results are based on 1,092 samples from late Pleistocene
deposits and 1121 samples from Late Glacial and Holocene depos-
its (Fig. 2).

We found that the Yedoma domain deposits store a globally
significant pool of N that may partially become activated

following permafrost thaw. In total, the Yedoma domain contains
41:2+3:3

�3:9 Gt N (median with 5th and 95th percentiles) in the studied
five stratigraphic units (Table 1). 90% of these N stocks (37:0+3:1

�3:8

Gt N) are stored in perennially frozen soil (i.e., permafrost). Three
major sub-reservoirs compose this N pool: thermokarst (15:4+2:0

�2:1

Gt N), Taberite (13:8+2:1
�2:9 Gt N) and Yedoma deposits (6:6+1:1

�1:2 Gt N).
The active layer in the Yedoma domain stores 4:2+ 1:0

�1:1 Gt N, and
the Holocene cover on top of Yedoma deposits (excluding active
layer) stores 1:2+0:2

�0:2 Gt N. Of the total N stock of the Yedoma
domain, approximately a quarter is contained in the top 3m, with
the majority stored below that depth (Table 2).

Classification of the of N stocks
Classification of the N pool according to soil stratigraphic age revealed
that the late Pleistocene deposits contain 20:4+2:4

�3:1 Gt N (~49.5 %,
Table 2), and that Holocene soils and sediments contain 20:8+2:2

�2:4 Gt N
(~50.5%). Classified into the categories ‘seasonally thawed’ (active layer
soils, Table 2), ‘thawed in the past’ (Holocene cover, thermokarst
deposits, Taberites), and ‘never thawed’ since deposition (Yedoma)
results in a 10: 74: 16 ratio.

N, NH4
+ and NO3

− density and the C:N ratio
The largest N density occurred in the thermokarst basin deposits
(2:2+0:3

�0:3 kg Nm−3), followed by the Holocene cover (1:9+0:3
�0:3 kg Nm−3),

active layer (1:6+0:4
�0:4 kg N m−3), Taberite (1:5+0:2

�0:3 kg N m−3) and
Yedoma deposits (0:9+0:1

�0:20.9 kg Nm−3) (Fig. 3). This pattern sug-
gests that the N density is substantially altered from Yedoma to
Taberite sediments (i.e. after thawing). This relative enrichment is
explained by the Taberite genesis: the melting of excess ice
increases the bulk density (BD) of the sediment, resulting in higher
N densities.

The total OC to N (C:N) ratios were intermediate to low,
decreasing from a median of 18.8 in Holocene deposits to ~9.2 in
Taberites and Yedoma deposits (Table 1, Fig. 4). The opposite was
true for mineral N pools, determined from pore water con-
centrations of NH4

+ and NO3
−. The highest densities were found in

Taberites (for NO3
−, no data available for NH4

+) and Yedoma
deposits (for both NH4

+ and NO3
−), and the lowest in the active

layer (Fig. 4). Importantly, the high mineral N density in Yedoma
was associated with a low total N density compared to the dif-
ferent stratigraphic units, indicating a high proportion of reactive
N species in total soil N.
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Discussion
Yedoma domain permafrost soils and deposits store much more N
than previously recognised.While the Yedoma domain only comprises
~12% of the global permafrost zone59, our estimate (41.2 Gt N) of per-
mafrostN inYedoma is larger thanwhat hasbeenpreviously suggested
as the lower range of N stock estimates for the entire permafrost
region (31 to 102 Gt N, mean 66 Gt19). Furthermore, the soil N stock in
the Yedoma domain ismore than four times as large as the soil N stock
in northern peatlands (>23° latitude; 10 Gt N60), although the soil OC
stocks are similar (327 to 466 Gt OC in Yedoma deposits, 415 Gt OC in
northern peatlands). This is a consequence of the C:N ratios in the
deposits of the Yedomadomain (9 to 19) compared to peatlands (24 to
35)60, highlighting the importance of Yedoma deposits for the total N
stock of northern soils.

While there is someoverlapbetweenourfirst 3mNstock estimate
for the Yedomadomain and the earlier N stock estimates for the global
permafrost zone (66 Gt19), just the deep deposits alone (Taberites and
Yedoma deposits) contain 30:6+3:1

�3:8 Gt N. This increases the current
estimates of total permafrost N stocks by 46% to 97 Gt N (66 Gt19 + ~31
Gt (>3m, this study). These stocks represent a substantial revision to
estimates of global soil N, whichwere previously around 150GtN total,
including global permafrost61. In addition to updating estimates of N
quantity, this study provides valuable information about the type and
bioavailability of these N stocks as reflected by C:N ratios and mineral
N content. Despite the relatively low N density compared to the other
stratigraphic units, permafrost deposits in the Yedoma domain held a
substantial amount of reactive, inorganic N in the forms of NH4

+ and
NO3

− (Fig. 4). High mineral N content has also been observed in (and
outside62) Yedoma domain permafrost previously (of NH4

+ in parti-
cular, but also of NO3

−)43,44,51,56, which could be due to a combination of
OMdecomposition prior to permafrost aggradation, during the frozen
period, or after permafrost degradation. For example, higher inorganic
N concentrations have been observed at the permafrost-active layer
interface63, as well as during fall and spring microbial turnover
periods55,64,65. Additional factors contributing to the low C:N ratios in
the Yedoma and Taberite sediments could be related to the pedo-
genesis: formation of these soils included the rapid burial and freezing
of plant remains composed mostly of grassland plants with low C:N
ratios.

Looking at the influence of thawprocesses in the Yedomadomain
on N stocks we know that thaw processes in the Yedoma domain can
activate deep soil deposits through mechanisms such as thermo-ero-
sion, coastal collapse, fluvial erosion, and thermokarst lake
formation12,16,66. Besides being confident that models considering only
gradual permafrost thaw are substantially underestimating carbon
emissions from thawing permafrost10,16,29, no quantitative circum-
Arctic estimate on future thaw depth and coverage are available. The
high ground ice content, (~80 vol%18,67,68) and the large ice wedges
extending through the full depth of deposits make Yedoma particu-
larly susceptible to abrupt thaw. For example, sediments beneath
newly formed thermokarst lakes showed permafrost degradation to
depths of 10–15 m within 50–60 years17, increasing the total volume of
thawing soil beyond what is visible in changes in lake area. Thawing of
permafrost persists for some time following thaw lake drainage69,
which also indicates a disturbance to permafrost that can be more
widespread across the landscape than observed by the expansion of
thaw lakes. In this study, this long-lasting legacy of permafrost thaw is
evident deep in the soil profile from observed differences between
Yedoma and Taberite sediments that increased the N density between
the soils of the same origin (Fig. 3).

While accurate pan-Arctic estimates of the current abundance of
these abrupt and deep thaw features are lacking due to difficulties in
detecting permafrost degradation from large-scale remote-sensing
data, estimates of total lake area change driven by permafrost thaw in
recent decades in ice-rich permafrost areas range from 3% to 8%Ta
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between 1999 and 201570 With ongoing heat waves and wildfires
(boreal forest and tundra fires) causing an initial disturbance more
deep thermokarst processes71,72 are very likely. Similarly, talik forma-
tion and unfrozen soil not located under thaw lakes cannot be detec-
ted using remote-sensing methods, though this mode of permafrost
degradation appears to be widespread27. Further, widespread surface

subsidence by the loss of excess ice73, thermo-erosion and other thaw
slumping associated with abrupt thaw dramatically changes the
landscape, making formerly deep deposits (>3m) accessible even for
shallow rooting plants,which can potentially utilise fractions of largeN
stocks in deep deposits37,38,51. A first-order estimate following the
approach of Nitzbon et al.29 suggests that by 2100 an additional
0.2–0.8 Gt N could be affected by thaw in the Yedoma region under an
ambitious mitigation scenario (RCP2.6), and 4.3–16.3 Gt N—about 40%
of the total N stock estimate—under a high emission scenario (RCP8.5)
(Fig. 5). In comparison, the weathering of near-surface rocks globally
are estimated to mobilise 0.02 to 0.003 Gt N, annually74, indicating
that newly thawed Yedoma N could potentially be a large, non-
anthropogenic additional input to the global N cycle.

If available to plants, this newly thawed N of up to ~16 Gt (high
emission scenario) could have a fertilisation effect and increase plant
growth. However, in a modelling study75 this fertilisation effect was
recently found to be much weaker than expected in permafrsot eco-
systems. This was likely caused by a significant mismatch between the
timing of peak plant growth (early to mid-summer) and peak thaw
depth (late summer to fall) that resulted in incomplete plant use of N
deeper in the profile, near the permafrost table. The increased N
availability enhanced the N loss pathways, leading to increased N2O
emissions in the applied model75. With our data, this could mean that
the deeper the thaw, the greater the temporal mismatch and increas-
ing potential for N2O release. In field conditions, Marushchak et al.35

recently observed large N2O release from eroding Yedoma domains a
few years post-thaw. The N2O release occurred after slope stabilisation
following abrupt permafrost thaw, potentially because of the combi-
nation of drying, the release of inorganic N from decomposing OM,
and the establishment of fungal and plant communities. These
favourable conditions for overall gaseousN losses andN2Oproduction
are most likely to prevail in Taberite and Yedoma deposits, which
comprise nearly half of the total N stock of the Yedoma domain (49%).
As mentioned before, not all Taberite and Yedoma deposits all across
the full depth range will be exposed if thawed. Nevertheless, they have
low C:N ratios, high mineral N pools (Fig. 4) and labile OM in it, all of
which are key factors that can result in N2O production and
emissions34,35.

There is some evidence of N mobility and loss from Yedoma soils
to aquatic ecosystems with permafrost thaw. Walter Anthony et al.31

found strongly elevated dissolved inorganic N concentrations in
Yedoma thermokarst lakes compared to Arctic lakes outside the
Yedoma domain or to floodplain lakes in the Yedoma domain. Wide-
spread and rapid thermokarst and thermo-erosion across the Yedoma
domain also leads to massive hydrological transport of OM to rivers,
lakes, estuaries and Arctic shelves seas76–78. In their study of the Lena

Table 2 | Classification of the N pool according to age, depth
and thaw legacy

N budget (Gt) + − %

Frozen 37.0 3.1 3.8 89.8

Unfrozen 4.2 1.0 1.1 10.2

Holocene 20.8 2.2 2.4 50.5

Pleistocene 20.4 2.4 3.1 49.5

Seasonally thawed 4.2 1.0 1.1 10.2

Thawed in the past 30.4 2.9 3.6 73.8

‘Never’ thawed since deposition 6.6 1.1 1.2 16.0

Below 1m 36.4 3.1 3.8 88.3

Below 3m 30.6 3.1 3.8 74.2
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River to nearshore, Fuchs et al.12 and Sanders et al.79 showed that there
was a significant amount of reactive N released to the river system,
likely also from Yedoma deposits in the catchments.

The thawing of these N-rich sediments can link to C cycling by
enhancing both primary productivity in terrestrial and aquatic
ecosystems37,79. IncreasedN availability also affects soil decomposition
processes, potentially offsetting enhanced vegetation gains32. There-
fore, changes inN availability canpotentially affect theCbalance in the
Yedoma domain through these feedbacks but the net effect is unclear.

In conclusion, we found the Yedoma domain contains a globally
relevantN stock. This Nhas accumulated in theYedomadomaindue to
rapid burial and freezing of plant remains composed mostly of plants
with lowC:N ratios. In total, the Yedomadomain contains 41:2+3:3

�3:9 Gt N
in the studied five stratigraphic units, 90% of which (37.0 Gt) occurs in
perennially frozen sediments, where it is currently inaccessible.
Assuming a high emission scenario, 4–16 Gt of the N (up to 40%) could
become available by thaw until 2100. These large N stocks also appear
to be highly bioavailable as we found that the quality of Yedoma
domains’OM ismaking it vulnerable/favourable formobilisation, as its
N is potentially highly bioavailable, as indicated our results of high N
content, low C:N ratio and lowDON:mineral N ratio. As climate change
degrades Yedoma permafrost deposits, a portion of this N could be
activated, increasing local greenhouse gas release and affecting
regional C balance in terrestrial, aquatic, and marine ecosystems. This
could lead to additional N2O emissions, but also it could mitigate
climate feedbacks through promoting enhanced vegetation C
sequestration. In all cases, there is strong evidence that the
permafrost-climate feedback will be affected by the amount and state
of mobilisation of this previously unquantified N pool.

Methods
Material
We included 1092 samples from late Pleistocene deposits and
1121 samples from Late Glacial to Holocene deposits. The thermokarst
processes started during the Late Glacial warming (ca, 14,670 to ca.
12,890 years BP) and intensified during theHolocene thereafter. As the
majority of the samples from thermokarst is from the Holocene, we
referred to this sample category as Holocene. The Holocene deposits
included 467 samples from the active layer (seasonally thawed layer)
above permafrost soils, 175 samples from perennially frozen Holocene
cover deposits accumulated on the top of Yedoma, and 479 samples
from refrozen thermokarst deposits in drained thermokarst lake
basins (Fig. 2). The late Pleistocenedeposits included 175 samples from

in situ thawed, diagenetically (anaerobic microbial decomposition
possible during unfrozen phase) altered Yedoma deposits, which are
refrozen or still thawed (called Taberite), and 917 samples from frozen
Yedoma deposits. The depth with a complete outcropped sediment
unit (full range, top to bottom) was taken from 21 sites for Yedoma
deposits (range 5 – 41m, mean 20m, median 19m) and 9 sites for
thermokarst deposits (range 2 – 13m, mean 6m, median 5m). For
most Yedoma sites, the base was not reached, so we were just able to
give a minimum value.

Coverage of Yedoma domain
We defined our study area as the maximum, historic coverage of
Yedoma deposits (Fig. 1) excluding marine inundated shelf regions59.

Laboratory measurements and calculations
In total, 2213 individual sediment samples were collected in the time
span of 1998–2018 from permafrost soils from 42 separate locations,
natural exposures along coasts and rivers, shallowboreholes, anddeep
(>20m) permafrost cores.

TN content of 1784 samples and the TOC (carbonate removed)
content of 2213 samples were measured using an elemental analyser
(Vario El III, CS-Autoanalyser ELTRA CS 100/1000S; CNS Micro-
analyser, LECO 932) after being freeze dried. The C:N ratio was cal-
culated from the TOC and TNmeasurements. All measured TN values
are given in weight percentage wt%.

BD were measured directly with a standard cylinder or, for the
permafrost and taberite sediments, calculated using the ice content by
assuming ice saturation following Strauss et al.80.

NH4
+ and NO3

− quantification
Moreover, we established a database associated with mineral N pools
(here: NH4

+ and NO3
−) for different stratigraphic units across the

Yedoma domain. For this, we compiled published and non-published
data. In total, the data consists of 658 samples, including 378 data
points for NH4

+ (active layer, 93; Holocene cover, 108; thermokarst
sediment, 138; Taberite, 0; Yedoma deposit, 39) and 542 data points
for NO3

− (active layer, 94; Holocene cover, 137; thermokarst sediment,
119; Taberite, 6; Yedoma deposit, 186). The data represent mostly
mineral N concentrations in the pore water from thawed sediments
reported as mg N L−1, obtained by rhizon pore water samplers or pore
water presses. There are also somedata points representingNH4

+/NO3
−

concentrations in ice wedges, which were measured by ion chroma-
tography. Since the concentrations in the porewater are dependent on
soil water content, which varies greatly between stratigraphic units, we
converted the data into NH4

+/NO3
− density values (g N m−3 soil) to

better relate them to the total soil N content. For the conversion, we
used NH4

+/NO3
− concentrations (mg N L−1), mean BD of each strati-

graphic unit (Table 1), and mean soil water content of each strati-
graphic unit (grav-%, calculated based on the mineral N database). In
detail, we used following mean values derived from data published by
Schirrmeister et al.81 for each class (given as gravimetric (related to dry
basis, grav-%) and absolute (relates towetweight, abs-%): AL: 56grav-%|
36 abs-%; H: 84 grav-%| 46 abs-%; TK: 209 grav-%| 68 abs-%; T:31 grav-%|
24 abs-%; Y: 77 grav-%| 44 abs-%. With this dataset, we compared the
mineral N pools among stratigraphic units, and analysed the relation-
ship between NH4

+/NO3
− and C:N ratio.

Statistical methods
We used statistical bootstrapping techniques to resample observed
values for amore robust estimate of N stocks82. A total N pool estimate
was derived for each of the 10,000 bootstrapping runs, providing an
overall estimate of mean and variance. The number of resampling
steps for each parameter is connected to the original number of
observations of the different parameters deposit thickness, N content,
BD, and wedge ice. Because N content and BD of individual sediment

Fig. 5 | Projection of thaw-affected N stocks. The model estimate for thaw-
affected C stocks by Nitzbon et al.29 was adjusted to our N stocks by scaling
simulated thaw depths under consideration of excess ice melt with the total areal
extent of three geomorphological units composed of five stratigraphical classes
(see Table 1, Fig. 2). For each warming scenario the indicated ranges correspond to
11-year running means of the annual maximum of thawed N under contrasting
hydrological conditions.
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samples are correlated, paired values were used in the resampling
process. We used this relationship to calculate the BD using an expo-
nential function BD = 1.0341 × e(−0.062×TOC) (r2 = 0.67) that was fitted to
those data for which both values were available. We used the R sta-
tistical computing program for all computations.

Generally, we calculated the total N stock as follows:

mTN,tot =
Xn

i= 1

mTN,i =
Xn

i= 1

dið1� f wedge,iÞρb, icTN,iAi ð1Þ

mTN,tot: pool of total N in the included units,
i = 1…n: index numbers of the single unit considered for the N

budgeting,
di deposit thickness of unit i,
f wedge,i: volume fraction of ice wedges in unit i,
ρb,i: bulk density of deposits of unit i, paired with cTN,i,
cTN,i: content of total nitrogen (TN) in deposits of unit i, paired

with ρb,i,
Ai: area of unit i.
The error estimates in this study represent the 5th and 95th per-

centiles. We estimate the N stocks for each unit separately, and then
sum them up for the total N stock estimate.

Projection of thaw-affected nitrogen stocks
We followedNitzbonet al.29 to estimate theportionof theN stocks that
could become subject to thawed conditions within the course of the
current century. For this, we took themaximumthawdepths simulated
by Nitzbon et al.29 for two different geomorphological units (Ther-
mokarst lake basins and Yedoma uplands) using climatic forcing data
for the central Lena River delta under three different emission sce-
narios (Representative Concentration Pathway (RCP) 2.6, RCP 4.5, and
RCP 8.5) and under contrasting hydrological conditions (water-logged
and well-drained). The simulations took into account rapid thaw pro-
cesses due to the presence of excess and wedge ice. Wemultiplied the
simulated thaw depths with the areal coverage of the respective geo-
morphological units and the N densities of the corresponding strati-
graphic classes that would be affected by thaw (Table 1).

Data availability
All data generated in this study are available here: https://doi.org/10.
1594/PANGAEA.948079 (PANGAEA repository)83.

Code availability
The bootstrapping code we adjusted for this study is available from
https://doi.org/10.5281/zenodo.3734247. The code is published under
a GNU General Public License v3.0.
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