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J,T, WEAVERJ B,V, LE QUANG AND G, FISCHER 

Rernarks on the cornparison of analytical and nurnerical rnodel 

calculations 

Many prograrns now exist for cornputing nurnerically the electrorna

gnetic response of two-dimensional conductivity structures in the 

Earth to an external,time-varying rnagnetic source . In rnost cases, 

as in this paper, the magnetic source is assumed tobe uniform, 

horizontal and harrnonic in time with period T = 2n/w. A cornpari

son of the numerical results given by these rnethods applied to 

several pre-assigned rnodels is currently being organised by Pro

fessor M.S. Zhdanov of Moscow under the project narne COMMEMI. 

At the Observatoire Cantonal we believe that in addition to 

rnaking this numerical cornparison it is desirable, if not essen

tial, to develop sorne simple "control rnodels" for which analytic 

solutions are available. Any nurnerical procedure should at least 

be shown to give acceptable agreernent with these analytic solu

tions before being subjected to a cornparison with other nurnerical 

methods. After all, if three different computer prograrns happen 

to give three different sets of results for any of the proposed 

nurnerical models in the COMMEMI project then there is no knowing 

which of these programs is the most accurate unless analytic con

trol solutions are also available. 

To our knowledge the only detailed investigation of this nature 

to have been undertaken previously is described in the Diplomar

beit of Klügel (1976). In that work the results given by the 

finite difference program of Dr. W. Müller ( see Losecke and Müller, 

1975) were compared with the classical H-polarisation solution 

obtained by d'Erceville and Kunetz (1.962) for the two-plate model 

- actually Klügel took the thickness of the plates tobe several 

skin-depths so that he was effectively considering the quarter

space rnodel shown in Fig. 1a. The corresponding finite difference 

calculations for an E-polarisation field were compared with what 

can be called a "quasi-analytic" solution of the two- plate rnodel 

based on a method of successive approximations first proposed by 

Weidelt (1966). 
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In our opinion the "control model" shown in Fig. 1b is a some

what better one to use for the following reasons: 

(i) It includes such well-known models as the dike (o
1 

= o
3
), the 

vertical fault (o
2 

= o
3
), and the quarter-space (o

2 
= o

3
, 

d + ~) as special cases . 

(ii) The effect of both high and low conductivity contrasts can be 

examined in the same model by choosing (say) o
2
;o

1 
::: 10, 

1 < 02/03 < 5. 

(iii) Programs which can only handle "anornalous" regions of finite 

horizontal extent embedded in a "normal" one-dirnensional 

structure can also be tested by putting o
1 

= o
3 

in the control 

model. 

(iv) With o
1 

< o
2 

< o
3 

(or o
1 

> o
2 

> o
3
), and a chosen srnall so 

that 2a = h, where h is the node separation in the numerical 

grid, the control model can be used to check the accuracy of 

the numerical solution for a model in which the conductivity 

changes· gradually from one value (o
1

) to the next (o
3

) over a 

transition zone cornprising three successive cells - normally 

only simple conductivity contrasts can be considered. 

(v) The perfect conductor at finite depth d provides a clean cut-
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off to the numerical model and permits the use of a reasonably 

small grid (with consequent savings in CPU time) when testing 

programs against the control model. 

A similar model, called the - "segmented overburden" by Wait 

(1982), in which the basement is a perfect insulator rather than a 

perfect conductor, has been solved analytically for H-polarisation 

induction by Wait and Spies (1974) . A closed solution is possible 

in this polarisation because the spatial part of the magnetic 

field external to the 

where, thus providing 

(const) on the surface 

Earth is then uniform and horizontal every

the simple boundary condition B (y,O) = B 
X 0 

z = O. The H-polarisation solution for the 

control model shown in Fig. 1b can be obtained in a similar manner 

by rnaking the appropriate change of boundary condition atz= dto 

account for the perfect conductor. The solution for the rnagnetic 

field (with a time factor exp(iwt) understood and the permeability 

taken as µ everywhere) is then found tobe 
0 

l 
s, (y < -a) 

B (y,z) = B2 ( 1 Y 1 ~ a) 
X 

B3 (y > a) 

where for i = 1,2,3 

with 

and 

B . 
l. 

B 
0 

= 
cosh[(d-z)a.lI] 00 

-----~l.~- + f F{i) (y)sih(k z) 
cosh(da./I°) l

0 
rn rn 

l. rn== 

a. = ✓wµ er. , 
l. 0 l. 

F(1)() 
m y = ß ( 1 ) A ( 1 ) e Y J 1 ) ( a +y) 

m m 

F(3) ( ) 
(3) 

= ß(3)A(3)eYm (a-y) 
m y m m 

F (2) ( ) (A ( 1 ) 
(2) 

(A ( 3) = - c{1))eYm (a+y) + m y m m m 

Here we have defined for i = 1 , 3 

= /42 
m 

( 1 ) 

. 2 
+ l.(l . 

l. 

( 2) 
- c(3))eYm (a-y ) 

m 

( ") 2 (2) (') 
Al. = r 2 - a ym K l. 

m ' e - m 
[ 1 + S(i) + (1-ß(i))e- 4 a y ~

2
) ] K(i ) }/D 

rn m m m 
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where 

Y(2) /cr 2ikm(a; -
2 

ß ( i) K ( i) 
(l . ) 

m 2 l. 
= I = { (2) (i)}2 m Y(i)/cr. m 

m l. Ym Ym · 

-( i) ß(1)ß(3) /ß(i) -(i) K ( 1 ) K ( 3 ) /K ( i) 
ßm = K = m m m m m m m 

and 

The derived field components E and E can be obtained from (1) by y z 
differentiation according to Maxwell's equations. 

The field values given by this analytic solution for the model 

parameters cr
1 

= 0.1 S/m, cr
2 

= 1.0 S/m, cr 3 = 0.5 S/m, a = 10 km, 

d = SO km, T = 300 s have been compared with the corresponding 

numerical results given by (i) the finite difference program of 

Brewitt-Taylor and Weaver (1976) .together with some (unpublished ) 

improvements in the method for calculating the derived fields and 

(ii) the finite element program of Kisak and Silvester (1975). It 

should be noted that the skin-depths in the three regions from 

left to right are respectively 27.6 km, 8 . 7 km and 12.3 km so that 

the width of the central segment is only just over two skin-depths 

while the thickness of the left segrnent is under two skin-depths . 

For the finite difference calculation we used a 35 x 16 grid with 

nodes at the points y = -130, -110, -90, -80, -70, -61, -52, -43, 

-34, -25, -19, -15, -12, - 10, -8 . S, -7, -5, - 2 . S, 0, 2 . 5, 5, 7, 

8.5, 10, 12, 15, 18, 22, 26, 30, 34, 38, 43, 50 and 60 km, and 

z = 0, 1.5, 3, s, 7.5, 10, 12.5, 15, 17.5, 20, 24, 28, 32, 40, 45 

and 50 km. For the application of the finite element program the 

region z ~ 0, -130 km< y < 60 km was divided into the triangular 

elements shown in Fig. 2 (N.B. this figure also shows a strip in 

the air region z < 0 divided into the triangular elements useä for 

E-polarisation calculations). The CPU time required for these cal

culations was 50 s with the finite difference prograrn and 90 s 

with the finite element prograrn, on a VAX-780 computer. 
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Fig. 3 compares the variation of the real and imaginary parts 

of the horizontal electric field E (normalised by B) across the 
y 0 

surface of the conductor. A visual inspection of the graphs indi-

cates that the agreement between the finite difference calcula

tions and the analytic solution is excellent. In fact the errors 

were lirnited to the range 1% - 4%. The finite element calculations 

are not quite so satisfactory. The field values for y > -10 km are 

in reasonably good agreement with the analytic results, but some 

discrepancies occur over the region of least conductivity y < -10km. 

The variation of the field there is less srnooth and errors greater 

than 10% are present. 

The close agreernent between the finite difference and analytic 

solutions displayed in Fig. 3 is all the more remarkable because 

E is a derived field, i.e. it is obtained from B, the component 
y X 

actually calculated in the finite difference method, by a process 

which is equivalent to numerical differentiation. In order to com-

pa~e values of Bx (and also values of the other electric field 

component E ), it is necessary to go to the interior of the conz 
ductor. In Fig. 4 the variations of B , E and E along the plane 

X y Z 

z = 15 km are depicted. This time only the finite difference 

results are plotted alongside the ~nalytic solutions because it is 

not possible, without rnodifying the prograrn, to obtain fields 

inside the conductor using the finite element prograrn supplied by 

Kisak and Silvester. Once again excellent agreement between the 

analytical and nurnerical results is obtained. 

Unfortunately it is not possible to find a similar analytic 

solution of the control rnodel for an E-polarisation field. This is 

because no similar boundary condition corresponding to B (y,0)=B 
X 0 

exists on the surface of the conductor in E-polarisation. The 

method of successive approximations proposed by Weidelt (1966) 

and developed by Klügel (1976,1977) and Rodemann (1978), is based 

on the more complicated boundary condition 

( 2) 

where K is the Kertz operator (or negative Hilbert transform) 

defined by 
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f(n) dn 
y-n 

Now B can be related to B by a formula of the type z y 
00 

B (y,0) = - f f(y,v) B (v,0) dv , 
z -00 y 

where the kernel r is a function that can be calculated analyti

cally for the control model in question. In conjunction with (2) 

this leads to Weidelt's scheme 

B(O](y 0) = y , 
00 

B 
0 

1 f dn + - -
rr y-n 

-00 . 

(3) 
00 

J f(n,v) B;N] (v,0) dv, 
-00 

( 4) 

which gives B (y,0) 
y 

converges. 

= lim B;N] (y,0) provided that this sequence 
N-» 

If we define 

t.[N] (y) = B[N] (y,0) - B[N-1] (y,0) 

then the scheme can be recast in the form 

with 

t. [N+1] (y) 

B (y,0) = 
y 

B 
0 

00 00 

1 r d n J r (n,v) t. [N] (v) dv , = rr r y-n 
-ca -ca 

00 

l t. [N] (y) 

N=0 

( 5) 

( 6) 

( 7) 

if this surn converges. The form of the scherne defined by (5), (6) 

and (7) is the method of successive approxirnations proposed inde

pendently by Mann (1970) . Once B (y,0) has been found the other 
y 

cornponents can be calculated with the aid of the appropriate 

Green's functions. 

We have actually chosen to proceed with the iteration in a 

somewhat different manner. It turns out that 
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00 00 

f dn J r ( n, v) dv = 
-00 y-n -00 TT 

00 

f 
-00 

00 

dv f f(n,v) dn 
-00 y-17 

( 8) 

can be evaluated analytically in terms of the exponential integral 

function so that we may write 

(9) 

for the first approximation to the horizontal magnetic field. In 

fact for the special cases of the two-plate (cr
2 

= cr
3

, y' = y + a) 

and quarter-space (cr2 = cr3 , y' = y + a, d + 00 ) models, (9) reduces 

to the analytic solutions found by Treumann (1970) and Weaver and 

Thomson (1972) respectively. If we now add and subtract 

h(y)B (N] (y,O) on the right side of (4), using the integral y 
expression on the right of (8) for the term · subtracted, and then 

interchange the order of integration in the repeated integral in 

(4), we obtain for N ~ 1 

00 

B[N+l] (y,O)=B +h(y)B(N] (y,O) + /=(v,y) {B[N] (v,0)-B[N] (y,O) }dv (10) 
y O y -00 y y 

where 

1 :::(v,y) = 
'IT 

00 

f 
-00 

f (n,v) dn 
y-n 

. , (ii) 

which can be evaluated analytically (again in terms of the e~po

nential integral) for the particular control model under investi

gation. The subtraction of magnetic fields in the integral in 

equation (10) effectively removes a logarithmic singularity in the 

integrand at v = y that would otherwise obtain. Equations ( 9) and 

(10) define the iteration scheme we use. 

The actual derivation of the analytic expression for evaluation 

of ( 11) , and the handling of the integral operator in ( 10) involves 

a considerable amount of complicated algebra, which it is not our 

intention ~o reproduce here. Werk is currently in progress on the 

completion of the computer program to cornpute B (y,O) by this 
y 

method. 
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Even though the analytic control solutions are not yet avail

able we have undertaken a preliminary comparison of the E-polari

·sation finite difference and finite element calculations for the 

same model (Fig. 1b). Since asymptotic boundary conditions (Weaver 

and Brewitt-Taylor, 1978) can be used in the finite difference 

method, ten fewer nodes were needed in the horizontal direction 

(the points actually used are the same as those listed previously 

from y = -61 km to y = 30 km inclusive), but the grid had tobe 

extended upwards into the air region with additional nodes at 

z = -1.5, -3, -5, -8, -12, -17, -25, -37, -so and -65 km, making 

the total dimensions of the grid 25 x 26. For the finite element 

calculations the triangulation of the entire region as shown in 

Fig.~2 was used. Only one strip of triangular elements in the air 

is shown. The program of Kisak and Silvester automatically adds 

identical strips above it to cover the region z < O. In our calcu

lations a total of three such strips were specified, each of 

thickness 30 km or approximatively 1 skin-depth of the left seg

ment in the conductivity plate. Fig. 5 depicts the variation of 

the real and imaginary parts of the horizontal electric field E 
X 

across the surface of the conductor.as given by the finite diffe-

rence and the finite element calculations. Very good agreement, 

especially in the real parts, between the two rnethods is observed 

for y < O, but the two sets of curves begin to diverge as y 

·increases through positive values. The same phenomenon can be seen 

in the corresponding variations of the horizontal magnetic field 

B shown in Fig. 6 . The general agreement between the calculated 
y 

values of the vertical magnetic field B, also shown in Fig. 5, 
z 

is not so close andin fact the finite element curve fails to 

reproduce the cusp-like variation at the boundary y = ± 10 km. 

However as IYI ~ ~ both sets of curves are converging to zero as 

required. 

In order to exarnine the differences in E for positive y in 
X 

more detail the calculations were repeated on a much larger grid 

extending from y = -700 km to y = +700 km and for a larger conduc

tivity contrast obtained by putting o
3 

= 0.001 S/ m. Figs. 7(a) and 

{b ) show that as y ~ ~ , E tends to quite different values 
X 
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depending on whether the finite difference or the finite elernent 

method is used, the discrepancy being as rnuch as 20%. We attribute . 

this error to the fact that Kisak and Silvester make the (false) 

assumption that E is constant across the top of their grid where-
x 

as at height h it should in fact change smoothly from its (one-

dimensional) value iwB
0

[tanh(da
1
/I)/a

1
1I - h] on the le~t hand 

side to iwB
0

[tanh(da
3
/I)/a

3
/i - h] on the right. Only if cr 1 = o3 

or if h is very large (so that it dominates tanh(da1 /I)/a11I and 

tanh(da3 ✓I)/a3 ✓I) will the assumed condition of constant Ex be 

approximately valid. Similar errors are found for y large and posi

tive in the values of By calculated by the finite element method 

but they tend to cancel out when the field ratio E /B is taken, 
X y 

so that the program still gives reasonably accurate values of 

apparent resistivity and phase on the right hand edge of the model. 

It is clear, therefore, 'that apparent resistivity is not a reliable 

indicator of the accuracy of a numerical method; it is important 

that actual field values are used when comparing the accuracy of 

different modelling programs. 

Finally, the finite element calculations were repeated with the 

top of the grid at a sufficiently great height h that Kisak and 

Silvester's assumed boundary condition there is approximately ful

filled. This was done by taking the thickness of each strip of tri

angular elements in the air tobe 300 km rather than 30 km, i.e. 

about 1 skin-depth of the right rather than the left segment. It 

can be seen from Fig. 7c that this does indeed correct the value 

of E on the right but only at the expense of introducing numeri-
x 

cal inaccuracies near the centre of the grid caused by underflow. 

This arises because with such a thick strip the triangular ele

rnents near y = 0 - where the density of horizontal points is great

est - becorne extrernely thi.n and elongated. As a result the rninimum 

in the curve for Im E at y = 0 is shifted by about 15%, while the 
X 

effect on the rnagnetic fields (not shown here) is even rnore serious 

with ficti.ti.ous bumps appearing on the curves depicting the varia

tion near the origin. 

We conclude that the finite element prograrn of Kisak and Sil

vester cannot cope with models which have different one-dirnensio~al 
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structures at y = ±m . The finite difference program of Brewitt

Taylor and Weaver appears tobe quite reliable in such cases, but 

we must wait for the completion of our investigation of t he quasi

analytic solution before we can estimate its accuracy in E-polari

sation calculations with confidence. 
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