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Interrelations of vegetation growth 
and water scarcity in Iran revealed 
by satellite time series
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Mohammad J. Tourian 2, Tanja C. Portele 3 & Christof Lorenz 3

Iran has experienced a drastic increase in water scarcity in the last decades. The main driver has been 
the substantial unsustainable water consumption of the agricultural sector. This study quantifies 
the spatiotemporal dynamics of Iran’s hydrometeorological water availability, land cover, and 
vegetation growth and evaluates their interrelations with a special focus on agricultural vegetation 
developments. It analyzes globally available reanalysis climate data and satellite time series data 
and products, allowing a country-wide investigation of recent 20+ years at detailed spatial and 
temporal scales. The results reveal a wide-spread agricultural expansion (27,000 km2 ) and a significant 
cultivation intensification (48,000 km2 ). At the same time, we observe a substantial decline in total 
water storage that is not represented by a decrease of meteorological water input, confirming an 
unsustainable use of groundwater mainly for agricultural irrigation. As consequence of water scarcity, 
we identify agricultural areas with a loss or reduction of vegetation growth (10,000 km2 ), especially 
in irrigated agricultural areas under (hyper-)arid conditions. In Iran’s natural biomes, the results show 
declining trends in vegetation growth and land cover degradation from sparse vegetation to barren 
land in 40,000 km2 , mainly along the western plains and foothills of the Zagros Mountains, and 
at the same time wide-spread greening trends, particularly in regions of higher altitudes. Overall, 
the findings provide detailed insights in vegetation-related causes and consequences of Iran’s 
anthropogenic drought and can support sustainable management plans for Iran or other semi-arid 
regions worldwide, often facing similar conditions.

Under the expected growth of population and climate projections, a large part of the world’s population is going to 
face conditions of increasing water scarcity and food  insecurity1–6. The higher food demand being a consequence 
of growing global population requires an increase in food production, which can either be met by expanding 
the area under cultivation or intensifying the use of the already existing agricultural  land7. At global scale, it is 
assumed that these options have the potential to fulfil the growing global food  needs3,7. However, regions under 
unsuitable food production conditions (e.g. unsuited climate, soil, and relief) might have to increase their food 
production beyond a sustainable stage or have to rely on food imports to ensure food security for the population.

Iran is a prominent example for such conditions. The country has been facing a rapid population  growth8 
accompanied by unfavorable political conditions preventing extensive food imports, and thus the country 
has significantly increased local food production during the past 30+  years9–12, although large parts of Iran 
are unsuited or of limited suitability for agricultural  purposes7. This development has led to a high and ever 
increasing water demand towards a very unsustainable use of renewable water  sources9,12–14. At present, Iran 
uses more than 80% of its total renewable freshwater resources, while 40% is considered being the limit to ensure 
environmental  sustainability9,12.

Major parts of Iran experience very limited water availability. More than 90% of the country are under arid or 
semi-arid conditions and 75% of the precipitation is received during the winter season when it is not needed for 
the agricultural  sector9. Mesgaran et al. (2017)7 rate almost 80% of Iran’s land as (very) poorly suited or unsuited 
for cropping. Since thousands of years people had to cope with this situation and the Persians once were known 
for their advanced and sustainable (adapted to local conditions) water management, e.g. by building subsurface 
qanats to efficiently transfer water from the mountains to the adjacent plains and  valleys9,15,16. These historical 
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developments had their origin in the foothills of the Zagros Mountains, which are known for an emerging 
agriculture thousands of years  ago16–18.

However, in the last decades the rapid socioeconomic  development19 and climatic change towards drier 
conditions have changed this situation completely. Iran’s population has grown rapidly from approx. 20 million 
in 1960 to more than 80 million people  today8,20,21, with 70% living in urban areas (27% in the 1950s), which 
creates a high pressure on regional available water resources. From the 1960s on, Iran started a big modernization 
project to allow higher water consumption rates meeting the steadily increasing population. These modernization 
measures include the replacement of traditional sustainable irrigation techniques (e.g. qanats)15 with electric 
pumps for groundwater exploitation, the construction of hundreds of dams with more to come in the future, 
and the realization of large water transfer projects across major drainage  divides9,13,22.

Furthermore, Iran has promoted the paradigm of food self-sufficiency after the Islamic Revolution in 1979, 
due to food shortages during Iran-Iraq war and thereafter decade-long embargo policies against the  country7,9,12. 
To support the agricultural sector, the government has heavily subsidized agricultural water and energy use, 
which led to low prices raising no need to increase agricultural production  efficiency9,23. As a result, the 
agricultural sector is responsible for approx. 90% of the annual water consumption in Iran and thus drives the 
country’s large and unsustainable water  use10,13,18. Approximately 50% of the water used for agriculture comes 
from tapping underground  aquifers13,22 making Iran one of the top groundwater miners in the  world22,24–26 and 
resulting in a severe decline of groundwater levels throughout the  country9,12,22,27,28.

Recent climate change and future climate projections tend towards warmer and overall drier conditions in 
Iran, adding further pressure on available water  resources26,28. The last decades showed a clear trend in rising 
temperature, whereas often no significant trends in annual precipitation could be  observed29,30. Nevertheless 
trends towards less consecutive wet  days31, an increasing share of intense precipitation events on the annual 
 budget29,31, an increase of green water  deficit32,33, and a decrease of precipitation in the warm  season34 were 
identified, which overall have led to less plant-available water. Using integrative drought indices (such as AI, 
IDM, RDI, SDI), several studies showed an increase of dry conditions and more frequent drought  events21,35–39. 
Climate models confirm the recent trends and project further increase in temperature and an overall decrease 
of precipitation leading to extended dry periods interrupted by intermittent heavy rainfalls, increasing the 
potential of flash floods and putting more pressure on water availability for agricultural use in particular and 
the vegetation cover in  general26,32,33,40–42.

Consequences of increasing water scarcity during the last decades are e.g. drying up of lakes and  rivers43–45, 
declining groundwater  resources13,22, land  subsidence27,46–49, water  contamination50,51, water supply rationing and 
 disruptions52–54, formation of soil  salinization55 and  sandstorms56, forced human migration, agricultural losses, 
and widespread ecosystem  damages9,26,37,44,57,58.

In the present study we analyze the interrelationships between vegetation growth, land cover dynamics, and 
continuously increasing water scarcity in Iran on a country-wide scale with the goal of assessing vegetation 
growth dynamics as well as evaluating and quantifying related agricultural developments in high spatiotemporal 
detail. So far, for Iran only province based cumulative statistics about the agricultural development exist in terms 
of total numbers on annual crop yield and harvested area that gets reported by the Ministry of Agriculture-
Jahad59,60. However, a systematic and spatiotemporal explicit analysis of the development of agricultural land 
use and related vegetation growth has been missing on a country-wide scale. Moreover, consequences of the 
increasing water scarcity to natural vegetated biomes have not been analyzed yet for whole Iran. The presented 
study has been carried out in the frame of the BMBF (Federal Ministry of Education and Research of Germany) 
funded SaWaM project (Seasonal Water resources Management in semi-arid regions: regionalized global data 
and transfer to practice) within the GRoW initiative (Global Resource Water) aiming at utilizing and adapting 
global datasets for the needs of regional water resource management in semi-arid regions.

We systematically analyze vegetation growth dynamics between 2001 and 2019 using multi-temporal satellite 
remote sensing data (MODIS), which allow investigation of vegetation conditions in high spatial and temporal 
detail at a country-wide scale. The derived spatiotemporal vegetation growth dynamics are evaluated against 
the dynamics of hydrometeorological conditions (using ERA5-Land, GRACE(-FO)) and land cover changes 
(using ESA-CCI-LC), as major factors controlling vegetation growth changes under Iran’s highly diverse natural 
conditions. Our analysis of global scale reanalysis climate model data and globally available satellite remote 
sensing data and its derived products enables:

• Quantification of spatiotemporal dynamics of vegetation growth, hydrometeorological water availability, 
land cover, and their interrelation,

with special focus on the

• Evaluation of agricultural developments, i.e. gains and losses of agricultural areas, intensification and 
degradation of agricultural land usage, and irrigation intensity of agricultural areas by analyzing vegetation 
growth against meteorological water availability.

Results
Hydrometeorological dynamics. Iran has experienced a country-wide average warming of approx. 1.7 
K between 1982 and 2019 (trend line of air temperature at 2m (t2m) in Fig. 1d). Temperature (t2m) has risen all 
over the country with the highest increase in northwest Iran and lowest in southeast Iran (Fig. 1a). In contrast, 
total precipitation (tp) shows no significant Iran wide trend (Fig. 1d) and mainly statistically insignificant pixel-
based trends (Fig. S7) with spatial variations to drier and wetter conditions. The aridity index (ai), being an 
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integrative measure of dryness as the ratio between water input (tp) and water loss (potential evaporation), 
shows a significant Iran wide trend towards drier conditions (Fig. 1d) and a relatively homogenous distribution 
of dry trends (Fig.  1c), which are however mainly statistically insignificant (Fig.  S7). Figure  1e depicts the 
meteorological dynamics in relation to the availability periods of the global data products used in this study. 
It shows that for Iran, the analyzed period of vegetation dynamics (covered by MODIS data) coincides with 
a pronounced severe dry period between 1999 and 2001 forming the onset of a 20-year warm and dry period 
(compared to 1980–2000) ending with a very wet year in 2019, which was characterized by extensive  flooding61–64. 
Thus, the available MODIS based vegetation growth observations almost exclusively comprise a continuous 
warm and dry period that started in the year 1999.

The total water storage (TWS) measured by the GRACE(-FO) satellite missions has decreased over Iran 
between 2004 and 2019. The strongest decrease occurred in the wetter northern and northwestern basins of 
Iran (Fig. 2a). The main loss occurred between 2008 and 2015 and since then the TWS has been remaining on a 
lower level (Fig. 2b). The nationwide decline of TWS is not refelected by a decrease in freshwater input, since no 
significant negative trend of tp could be observed since 1982 (Fig. 1d) or since the GRACE(-FO) data availability 
since 2003 (Fig. S8d). The basins with the highest loss of TWS in the northwest of Iran show even rather positive 
trends of tp (Fig. 1b, Fig. S8b).

Land cover changes. According to the adapted ESA-CCI land cover data sets (Methods), in 2019 the three 
spatially dominating land cover classes of Iran are bare land, cropland, and sparse vegetation with 62%, 20%, 
and 13% areal coverage, respectively (Fig. 3a). Comparing the annual land cover data sets for Iran between 1992 
and 2019 reveals substantial changes (Fig. 3, Table S2). Urban areas have largely increased (+4037 km2 / +166%) 

Figure 1.  Trends and annual variations of meteorological input parameters from ERA5-Land between 1982 
and 2019. (a)–(c): Trend slope of the gridded data at 0.1 degree. (d): Annual variations to the long-term mean 
(Z-scores of Iran wide averages) with trend line (dashed line) along with associated p-values of the trend using 
Mann-Kendall test. (e): Periods of the analyzed parameter of this study. General note: The colorscale is chosen 
to represent dry/warm conditions as red, thus the colormap of t2m is inverted compared to tp and ai. Maps were 
created using Python 3.9 (https:// www. python. org/).

https://www.python.org/


4

Vol:.(1234567890)

Scientific Reports |        (2022) 12:20784  | https://doi.org/10.1038/s41598-022-24712-6

www.nature.com/scientificreports/

reflecting the enormous population growth and urbanization process of the last  decades8,20. Agricultural areas 
also have expanded substantially (+26,771 km2 / +9%), showing the need to turn non-agricultural land into 
cropland. Moreover, an increase of bare land (+24,033 km2 / +2%) and decrease of sparse vegetation (−49,245 
km2 / −19%) could be observed, which is most likely the result of a combination of anthropogenically induced 
land use changes and the trend towards drier meteorological conditions prevailing during the last decades. 
Figure  3e shows that the change of sparse vegetation into bare ground (40,110 km2 ) is the spatially most 
dominating land cover change type implying a large-scale decrease of plant-available water. The annual net 
change rate of bare ground and sparse vegetation correlates significantly with the water availability (in terms of 
tp and ai shown in Fig. 3g), suggesting that dry conditions result in an increase of bare ground and a decrease 
of sparse vegetation and vice versa in case of wetter conditions. This relationship also gets evident in the large 
decrease of sparse vegetation and large increase of bare ground (Fig.  3c) during the severe drought period 
between 1999 to 2001 (Fig. 1), showing that such pronounced dry periods can have a large impact on vegetation 
cover in such vulnerable (semi-)arid environments.

Vegetation growth dynamics. Long‑term spatial distribution of vegetation growth. Annual vegetation 
growth ( NDVIMEAN∗ ) derived from a MODIS NDVI time series is introduced as a measure for green vegetation 
during snow free periods within a water year (Methods). High values of NDVIMEAN∗ correspond to high 
NDVI values during the whole snow free period of a year indicating dense evergreen forest cover or intense 
agricultural land use of multiple crop cycles or orchard cultivation. Medium and lower NDVIMEAN∗ correspond 
to short-term dense vegetation (e.g. single crop cycles, short vegetation periods) or longer-term vegetation 
cover with lower NDVI values due to e.g. sparse vegetation or agricultural fields smaller than the 250 m spatial 
resolution of MODIS. The long-term average of annual NDVIMEAN∗ values between 2001 and 2019 (Fig. 4) gives 
further insights into the inter-annual conditions of intra-annual vegetation growth. High long-term averages 
correspond to permanently high NDVIMEAN∗ values (e.g. agricultural usage of multiple cropping cycles every 
year or dense forest cover) and lower values to less cropping cycles during a year, sparse vegetation, small field 
sizes, or infrequent agricultural usage over the whole time period (2001–2019).

Figure 4a shows clear spatial patterns of long-term vegetation growth, with higher values in the wetter 
northwest, in the north between the Caspian See and the Alborz Mountains, along the Zagros Mountains, and 
in agricultural areas distributed all over Iran, e.g. the large irrigation networks in the Khuzestan plain, in the 
surrounding of Urmia Lake, and in the vicinity of Tehran (Fig. 4b). Very low values can be found in the dry 
central part of Iran with arid and hyper-arid conditions, representing non-vegetated areas (Fig. 4a). In total, a 
third of Iran was at least temporarily vegetated during the period from 2001 to 2019 (Fig. 4b). Moreover, clear 
relationships can be observed between long-term vegetation growth and long-term aridity index (Fig. S5). Under 
more arid conditions, the proportion of non-vegetated areas increases and the vegetated areas are more and more 
the result of agricultural usage (Fig. 4b). In general, agricultural areas show higher long-term annual vegetation 
growth values under more humid conditions, suggesting several cropping cycles within a year for most of the 
years between 2001 and 2019. However, in Iran, such high values can also be found under semi-arid, arid, and 
even hyper-arid conditions, where net water deficits would naturally prevent such intense vegetation growth and 
thus indicate prevailing irrigated agriculture for these areas.

Figure 2.  Total water storage anomalies (TWSA) observed by GRACE(-FO) (Methods). (a): Map showing the 
average annual TWSA for 2015/2016/2019 per basin as an indicator for the most recent situation. (b): TWSA for 
entire Iran and two selected basins; no. 3 with stronger and no. 29 with weaker decreasing TWS (line: monthly 
TWSA; rectangle: annual TWSA, representing an average of monthly data for a water year). Map was created 
using Python 3.9 (https:// www. python. org/).

https://www.python.org/
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Vegetation growth trends. The vegetation trends for the period between 2001 and 2019 (Fig.  5), i.e. linear 
trend slope derived from the annual vegetation growth ( NDVIMEAN∗ ) time series, show that a vegetation 
growth decrease is prevalent along the Persian Gulf southeast of Ahvaz and in agricultural areas distributed 
all over Iran (Fig. 5a’, d). The former corresponds largely with the observed land cover changes from sparse 
vegetation to bare ground (Fig. 3b). The latter corresponds mainly to large irrigated agricultural areas situated 
in predominantly arid regions of the country. The (hyper-)arid central part of Iran, almost completely covered 
by non-vegetated areas, shows largely no vegetation growth trends, also proofing that there are no systematic 
artifacts in the MODIS data forming the basis of the trend analysis. An increasing vegetation growth trend has 
been observed for large areas in the wetter northwestern part of Iran and along the Zagros Mountains from the 
northwest to the southeast reaching almost as far as Shiraz/Marvdasht region. This widespread greening could 

Figure 3.  Land cover dynamics of Iran between 1992 and 2019. (a): Land cover map of 2019. (b): Map of the 
land cover that the pixel changed into from 1992–2019. (c): Annual net rate (annual gain - annual loss). (d): 
Cumulative land cover change. Left: change in percent related to 1992. Right: normalized change curves to long-
term min and max, to highlight change intensities over time. (e): Five most frequent transition types. Double 
bars represent land cover transition from (left) to (right) land cover class. (f): Overall changes (gains and losses) 
during 1992 and 2019. (g): Pearson correlation between land cover annual net rate (Fig. 3c) and meteorological 
parameters (ai, t2m, tp) aggregated over the water year corresponding to land cover year (*_12) and over a 
prolonged time period including previous year’s conditions (e.g., *_15 = *_12 and previous 3 month). Maps were 
created using Python 3.9 (https:// www. python. org/).

https://www.python.org/
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be observed despite the prevailing warm and drier conditions of the last two decades (Fig. 1), implying an at 
least partly decoupled relationship between meteorological water availability and annual vegetation growth, 
and thus to some extent an anthropogenic origin of the observed greening. Estimating the vegetation trends 
without the dry years at the beginning of the analyzed time period and the wet year 2019 at the end (Fig. 1) still 
results in widespread positive vegetation growth trends (Fig. S15), which further supports the hypothesis of 
anthropogenically induced greening.

Iran‑wide vegetation growth dynamics compared to hydrometeorological conditions. Aggregated over entire 
Iran, the annual vegetation growth dynamics are positively correlated to the water availability (Fig. 6b), revealing 
that wetter conditions (higher precipitation (tp) and aridity index (ai)) result in an increased vegetation response 
(higher NDVIMEAN∗ ) and vice versa. This applies very similar for all three analyzed vegetation datasets: 
NDVIMEAN∗ on natural vegetation (vegNat), on agricultural vegetation (vegAgr), and for entire Iran (veg) 

Figure 4.  Long-term vegetation growth, i.e. average of the annual vegetation growth ( NDVIMEAN∗ ) between 
2001 and 2019. (a): Long-term vegetation growth for entire Iran. (b): Vegetation specific statistics related to 
the aridity index (ai). Upper panel: vegetated versus not vegetated areas. Lower left panel: share of natural and 
agriculture vegetation. Lower right panel: Long-term vegetation growth distribution for agricultural areas. 
(c): Long-term vegetation growth for agricultural vegetation, indicating the locations of some large irrigation 
networks. (d): Long-term vegetation growth for natural vegetation. General Notes: Agricultural areas are 
identified by the recent global land cover map of Copernicus Global Land Service (Methods). Natural vegetation 
is defined as being no agricultural land and where the NDVI exceeds 0.25 in at least two water years (Methods). 
Maps were created using Python 3.9 (https:// www. python. org/).

https://www.python.org/
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Figure 5.  Vegetation growth trends of Iran. (a): Vegetation growth trend (trend slope of annual vegetation 
growth NDVIMEAN∗ time series between 2001 and 2019) for Iran with subset around Isfahan (a’). (b): At two 
example pixels A and B the pre-processed MODIS NDVI time series (line plot), the annual vegetation growth 
NDVIMEAN∗ (rectangles), and the trend (dashed line) are given. (c): The footprint of the MODIS example pixel 
A of 250 m × 250 m is overlaid in red on historical high resolution Google Earth imagery, showing the decrease 
in agricultural usage. (d): Vegetation growth trends for agricultural areas. (e): Vegetation growth trends for 
naturally vegetated areas. Maps were created using Python 3.9 (https://www.python.org/).

Figure 6.  Iran-wide aggregated statistics of vegetation and hydrometeorology. (a): Annual Z-scores. Reference 
period to generate Z-scores applies for all parameters to the common data availability (i.e. period of GRACE 
TWS) (b): Pearson’s R values with indication of significance of the correlation (solid boundary: p <0.05, dashed 
boundary: p <0.1, no boundary: p>=0.1).
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including vegetated and non-vegetated pixels. The highest correlation for all three vegetation datasets can be 
observed for the precipitation (tp) as primary water input (Fig. 6b). Inspecting individual years (Fig. 6a) reveals 
that the driest years of the analyzed period (2001 and 2008) result in lowest NDVIMEAN∗ and the wettest year 
of 2019 in highest NDVIMEAN∗ . In case of the total water storage (TWS) the vegetation growth is negatively 
correlated, showing a vegetation growth increase despite decreasing TWS, which suggests unsustainable use of 
groundwater resources to irrigate vegetation.

Natural vegetation growth dynamics compared to meteorological water availability and elevation. Natural 
vegetation is analyzed in relation to meteorological conditions, by correlating the annual vegetation growth 
( NDVIMEAN∗ ) with the annual aggregates of tp, ai, and t2m as three parameters mainly controlling the local 
meteorological water availability. Areas of high correlations between vegetation growth and meteorological 
parameters can mainly be found in the plains and foothills west of the Zagros Mountains and in the northeast 
of Iran (Fig. 7b). These areas correlate the most with ai (Fig. 7a, c). Since ai is a measure of both water input (tp) 
and water loss (potential evaporation), this suggests that such areas are characterized by a rather strong relation 
to local integrative meteorological water availability. Moreover, it could be observed that higher vegetation-
meteorology correlations tend to have decreased vegetation growth trends, with negative slope trends (medians) 
above an R2 of 0.8 (Fig. 7d). Such areas where vegetation growth is controlled by meteorological water availability 
are also potentially vulnerable towards future conditions, which are projected to be increasingly warmer and 
drier. In contrast, there are areas with increasing vegetation growth trends showing low R2 values and thus, seem 

Figure 7.  Natural vegetation growth dynamics versus meteorological conditions. Pearson correlation of annual 
vegetation growth ( NDVIMEAN∗ ) and annual aggregates of meteorological parameters. (a): The map depicts 
the meteorological parameter that correlates the most (highest R2 ) with the vegetation growth dynamics at each 
pixel. (b): Pearson’s R2 value of highest correlating meteorological factor ( R2

Max
 ). Note: individual correlations for 

each meteorological parameter can be found in Figure S15. (c): Proportion of highest correlating meteorological 
factor per R2 bin (black dotted line: number of pixels per bin). (d): Vegetation growth trend (trend slope of 
annual vegetation growth time series) versus R2 of highest correlating meteorological factor ( R2

Max
 ). (Per bin a 

boxplot is shown. Red line: median of the vegetation growth trends per bin. Black dotted line: number of pixels 
per bin). Maps were created using Python 3.9 (https:// www. python. org/).

https://www.python.org/


9

Vol.:(0123456789)

Scientific Reports |        (2022) 12:20784  | https://doi.org/10.1038/s41598-022-24712-6

www.nature.com/scientificreports/

to be decoupled from meteorological water availability. This suggests either anthropogenic influence or relations 
to other explanatory variables.

Relating the vegetation growth trends and the vegetation-meteorology correlations to elevation (Fig. S1), 
reveals that the lower areas (plains) and foothills of the mountains are characterized by (i) lower vegetation 
growth trend slopes (Fig. 8a) and (ii) higher R2 values (Fig. 8b) and thus are more closely related to the 
meteorological water availability. In contrast, higher elevations tend to show (i) higher vegetation growth trend 
slopes (Fig. 8a) and (ii) lower R2 values (Fig. 8b), revealing that the vegetation growth is more strongly influenced 
by altitudinal effects.

Agriculture vegetation growth dynamics compared to water availability. To assess the temporal development 
of agricultural areas, we analyze their vegetation growth trends, whereas a positive and a negative vegetation 
growth trend indicate intensified and reduced agricultural usages, respectively. A third of the vegetation growth 
trends observed within cropland is statistically significant (p-value<0.05), of which approx. 47,500 km2 (83%) 
are positive and 10,000 km2 (17%) are negative. Iran’s intensively agriculturally used northwestern basins show 
a strong dominant proportion of intensified agriculture (Fig.  S19), with up to 97% of the significant trends 
being positive (basin IDs 1, 3, 16, 30). In the (hyper-)arid center of Iran the shares of intensified and reduced 
agricultural areas are more equal, with up to 70% significantly negative trends for basin 24.

To evaluate the role of water availability and water usage for the agricultural development, the agricultural 
areas are characterized by their irrigation intensity (Fig. 9) and aridity (Fig. S5). To characterize irrigation 
intensity of agricultural areas, we relate the monthly vegetation growth to the meteorological water availability. 
The monthly irrigation probability (IrrProb) is thereby defined as the probability that the observed vegetation 
growth has required additional non-meteorological water supply in order to grow. IrrProb is high, if vegetation 

Figure 8.  Altitudinal statistics for natural vegetated areas. (a): Trend slope of annual vegetation growth 
( NDVIMEAN∗ ) in relation to elevation. (b): R2 of the most correlating meteorological parameter ( R2

Max
 ) in 

relation to elevation. General note: per elevation bin a boxplot is shown. Red line: median per bin. Black dashed 
line: number of pixels per bin. A bin represents a 50 m elevation range (e.g. first bin spans from 0 to 50 m 
altitude). The tick labels of the x-axis represent the middle of a bin.

Figure 9.  Irrigation intensity as used in Figures 10 and 11. Average of annual irrigation intensities 
(IrrIntAnn4Q) of the years 2001 and 2003, used to characterize irrigation intensity of agricultural areas already 
existing at the beginning of the time period of MODIS-based vegetation analysis. (a): Map of Iran. Zoom ins: 
(a’): Khuzestan plain (a”): Area around Urmia Lake. Note: Derivation of the irrigation intensity is described in 
methods and in Fig. S20, Fig. S21, and Fig. S22. Maps were created using Python 3.9 (https:// www. python. org/).

https://www.python.org/
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is growing under dry conditions and low if growing under more humid conditions. Based on monthly IrrProb 
we calculate annual irrigation intensities (IrrIntAnn4Q) (Methods). Figure 9 clearly highlights higher irrigation 
intensity values in regions of larger and smaller irrigation networks across Iran, e.g. in the Khuzestan plain 
(Fig. 9a’) and around Urmia Lake (Fig. 9a”). It also allows comparison of irrigation intensities over time, such 
as decreasing or intensified irrigated vegetation growth (Fig. S22). In areas of lower irrigation intensity the 
vegetation might grow mainly under more humid conditions, which however does not exclude the possibility 
of irrigation. Moreover, low irrigation intensities might also occur in areas of very sparse vegetation and/or low 
crop fractions.

Analyzing the vegetation growth trends versus irrigation intensities (Fig. 10a), shows that independent from 
the irrigation intensity most agricultural areas are characterized by a positive vegetation growth trend, indicat-
ing an intensified agriculture such as more annual cropping cycles, longer cropping periods, or less periods of 
no cultivation. However, towards higher irrigation intensities an increasing share of negative vegetation growth 
trends could be observed implying that high water demand caused by intensive irrigation could have resulted 
in problems maintaining the agricultural areas. The share of negative vegetation growth trends for intensely 
irrigated areas (irrigation intensity > 50) are 69% and 51% in hyper-arid and arid areas, respectively (Fig. 10b). 
In such areas of high aridity, water supply is limited and intense irrigation causes strong unsustainable water 
usage, resulting in potential longer-term water shortages for agricultural areas, which then are reflected by the 
observed negative vegetation growth trends.

To get a deeper insight, where water shortages might have been the controlling factor for a decrease of 
cropping intensity (i.e. negative trend in annual vegetation growth) we correlate the annual total water storage 
(TWS) of GRACE(-FO) to the annual vegetation growth dynamic ( NDVIMEAN∗ ) (Fig. 11). Since the TWS is 
decreasing in Iran (Fig. 2), high positive correlations reflect vegetation growth decreases that are probably related 
to water losses. Areas of high positive correlations can be found especially in the (hyper-)arid central part of 
Iran (Fig. 11a,b), e.g. around Isfahan (Fig. 11a’). Such high positive relationships get more frequent towards 
higher irrigation intensities (Fig. 11d) and towards higher aridity (Fig. 11e), suggesting that unsustainable 
water usage in arid areas results in unsustainable cropping potential/intensity. In contrast, negative correlations, 
displaying intensified agriculture despite decreasing TWS, are dominant in the wetter areas of northwestern 
Iran (Fig. 11a). Although to a lesser spatial extent, high negative correlations could also be observed in the 
(hyper-)arid southeastern basins of Iran (Fig. S23), suggesting an intensified cultivation despite its already dry 
meteorological conditions and a decreasing total water storage.

Discussion
We have investigated the spatiotemporal dynamics of the last 20+ years of Iran’s land cover, vegetation growth, 
hydrometeorological quantities, and their interrelations at local and country-wide scales analyzing freely avail-
able global climate models, satellite remote sensing data, and its derived products.

Hydrometeorological developments. Since 1980, Iran has been facing an overall trend towards 
drier meteorological conditions, whereas an increase in temperature proved to be the main driver rather than 
a decrease in precipitation (Fig. 1). Thus, our ERA5-Land-based findings go in line with many other studies 
analyzing long-term meteorological changes in  Iran21,29,30,35,38. Since the severe drought period from 1999 to 
2001, Iran has experienced a 20-year warm and dry period (compared to 1980–2000), with a less pronounced 
drying trend or even a reverted trend towards wetter conditions. Mehravar et al. (2021)65 analyzed integrative 
drought indices for Iran from 2001 to 2020 and reported trends to wetter conditions even in most basins of Iran.

At the same time, the total water storage (TWS) derived by GRACE(-FO) decreased significantly. This strong 
decrease of TWS is not driven by a decrease of precipitation as the primary water input parameter (Fig. 1) 
and thus is an example of an anthropogenic drought, where water stress is caused or intensified by human 

Figure 10.  Vegetation growth development on agricultural areas. Trend slopes of annual vegetation growth 
( NDVIMEAN∗ ) are analyzed versus irrigation intensity (a) and aridity (b). General Notes: Only significant 
vegetation growth trends (p < 0.05) are considered. Agricultural areas which were cultivated after the start of the 
analyzed period are excluded (Methods). Irrigation intensity of an agricultural pixel is thereby characterized at 
the beginning between 2001 and 2003 (Fig. 9). The analysis related to aridity focuses on rather highly irrigated 
areas (irrigation intensity > 50). Black dots: medians of all data points. red dots: medians of negative trends. red 
crosses: proportion of negative trends.
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 activities66,67. For Iran, it was recently shown that the water withdrawal dominates climatic and hydrologic 
processes as influence on surface water  availability68 and groundwater  depletion69,70. In this context, Iran is 
part of the bigger Middle East region showing an overall strong water storage depletion, especially after 2000, 
whereas Iran is one of the regions with the highest water  losses71. This unsustainable water withdrawal, especially 
by groundwater retrieval beyond recharging  capacity9,12,13,22,26, is known to be driven by the agricultural sector, 
which is responsible for more than 90% of Iran’s total water  consumption22.

Agricultural areas and associated vegetation growth. In Iran an increase of cultivated areas and/or 
an intensification of existing agricultural areas has been a declared political and economic  aim7,9,11,72, in order 
to meet food demands of the increasing Iranian  population8 under the policy of self-sufficient agriculture, and 
at the same time to pursue an increase of revenue from the export of agricultural  goods24,72. We hereby could 
confirm and spatiotemporally quantify an increase of agricultural areas by 26,771 km2 (9%) from 1992 to 2019 

Figure 11.  Annual vegetation growth ( NDVIMEAN∗ ) on agricultural areas compared to annual total water 
storage anomalies (TWSA). (a): Map of Pearson correlations between NDVIMEAN∗ and TWSA. (b): Share of 
highly positive correlated (R>0.6) pixels per basin. (c): At an example pixel A, the NDVIMEAN∗ and TWSA 
time series and the associated Pearson’s R is plotted. (d): R values versus irrigation intensities. e: R values versus 
aridity. General Notes for d, e: Agricultural areas which were not existing at the start of the analyzed period are 
excluded (see methods). Irrigation intensity of an agricultural pixel is thereby characterized at the beginning of 
the period (average irrigation intensity of 2001–2003, see Fig. 9). The analysis versus aridity focuses on rather 
highly irrigated areas (irrigation intensity > 50). Black dots: median of all data points. red crosses: proportion of 
negative trends. Maps were created using Python 3.9 (https:// www. python. org/).

https://www.python.org/
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by examining the ESA-CCI land cover datasets (Fig. 3, Table S2). In contrast, the data about annual harvested 
areas, provided by Iran’s Ministry of Agriculture -  Jahad59, shows a slight declining trend for a comparable time 
period between 1990 and 2015. This discrepancy implies that the share of existing farmland being actually 
harvested is reducing, which could be explained by the fact that agricultural areas are located in unsuitable  areas7 
that do not allow cultivation every year due to unfavorable conditions.

In most agricultural areas positive vegetation growth trends could be observed during 2001 to 2019, imply-
ing their intensified cultivation and irrigation. Approximately 47,500 km2 of cropland show significant positive 
vegetation growth trends, representing 83% of the significant agricultural vegetation growth trends and 28% of 
the whole agricultural area in Iran. A positive vegetation growth trend (i.e. increase in annual vegetation growth 
NDVIMEAN∗ ) can thereby be associated with more annual cropping cycles, longer cropping periods, less peri-
ods of no cultivation, or a change towards crop types characterized by higher NDVI response. In accordance, 
Iran’s Ministry of Agriculture - Jahad reported a stable increase of total crop yield between 1990 and  201559. 
Such agricultural intensification got particularly evident in the widely cultivated wetter northwestern basins of 
Iran under mainly semi-arid conditions, where the positive share of significant agricultural vegetation growth 
trends exceeds 95% per basin (Fig. S19). Besides these wetter and thus more suitable areas for agricultural 
usage, positive vegetation growth trends are also evident in the center and southeast of Iran under (hyper-)arid 
conditions, where limits in natural surface water availability and high evapotranspiration rates require intense 
irrigation for vegetation growth. The long-term average of the annual vegetation growth (Fig. 4) also reveals that 
with increasing aridity vegetation growth is more and more confined to agricultural usage, with a more than 
80% share under hyper-arid conditions. Although, the long-term vegetation growth values generally decrease 
towards higher aridity, high values, representing long intra- and inter-annual vegetation periods, are also present 
under such unfavorable arid and hyper-arid conditions. Overall, our study reveals an agricultural expansion and 
intensification despite long-term decreasing meteorological water availability and a cultivation of (hyper) arid 
land despite its natural unsuitability for vegetation growth.

Besides the main tendency towards intensified agriculture, a degrading agricultural usage (i.e. cropland with 
negative vegetation growth trend) could also be observed. In total, 17% (10,000 km2 ) of the significant agri-
cultural vegetation growth trends are negative, representing 6% of all agricultural areas in Iran. The analysis of 
the vegetation growth trends versus aridity and irrigation intensity (Fig. 10) has revealed an increasing share of 
negative agricultural vegetation growth trends towards more arid conditions and higher irrigation intensities. 
The share of significant negative vegetation growth trends on intensively irrigated areas reached approx. 50% 
and 70% under arid and hyper-arid conditions, respectively. This suggests that in such dry areas unsustainable 
water use has reached a level of unsustainable cultivation, eventually resulting in reduced agricultural intensity or 
even uncultivated abandoned fields. Examples where unsustainable water usage led to temporary or permanent 
abandoned agriculture are e.g. the region around  Isfahan43,73–75 (Fig. 5) and around Marvdasht and  Shiraz76,77 
(Fig. S22).

The reasons that a former irrigated area cannot be cultivated anymore can be manifold. It is often driven by 
the reduced water availability and the associated rising efforts to meet the water demand, e.g. accessing deeper 
ground water horizons or implementing water transfer projects. In the central basins of Iran (Fig. 11) up to 30% 
of the agricultural area is highly positively correlated with decreasing total water storage (TWS), supporting the 
relation of negative agricultural vegetation growth trends and reduced water availability, mainly due to reduced 
groundwater storage. However, there are more processes related to irrigation and reduced water availability 
that might lead to unusable agricultural land, such as degradation of soils (e.g. salinization)55,  subsidence47,78, 
 desertification79,80, and sink hole formation because of lowered groundwater  tables81,82. Until recently, the share 
of degrading crop areas in the wetter northwest of Iran is rather low, however it might increase in the future if 
water will continue to be used as unsustainably as in the last decades. The strongly declining water volume of 
Urmia Lake is one prominent consequence of the intense agricultural water consumption under current climatic 
 conditions45,83–87.

Natural vegetation growth response. This study also analyzed the consequences for natural vegetation 
under the long-term trend towards drier and warmer meteorological conditions and the ongoing anthropogenic 
drought. Between 1992 and 2019, formerly sparse vegetation has degraded into bare ground in an area of 
approx. 40,000 km2 , dominantly located along the Persian Gulf coast (Fig. 3). For Iran, such large land cover 
transitions could also be observed by Minaei et al. (2018)88, although they were mainly focused on central Iran 
by comparing two independently generated land cover data sets of GlobeLand30 in 2000 and 2010. In contrast, 
the ESA-CCI-LC data used in this study has been especially designed for land cover change analysis by relating 
the annual data classifications to each other and thus, obtaining a data product of high temporal  consistency89. 
In addition, we partly validated our land cover data by field visits, visual inspections, and cooperation with local 
partners, and thus consider our findings more reliable. It needs to be noted, that global land cover data are bound 
to uncertainties, especially in sparsely vegetated  areas90, which we cannot sufficiently quantify in this study. 
However, the identified degrading regions were found to largely correspond to the MODIS-derived negative 
vegetation growth trends in naturally vegetated areas, confirming the classified land cover transitions towards 
bare ground.

The analysis of annual natural vegetation growth and meteorological conditions showed stronger correlation 
if (i) the regression slope of the vegetation growth trends are lower (Fig. 7d), (ii) the aridity index, as an 
integrative measure of precipitation and temperature-driven evaporation, plays a dominant role (Fig. 7c), and 
(iii) the areas are located in lower elevations (Fig. 8b). These areas characterized by such strong vegetation-
meteorology correlations are also expected to be vulnerable to future climatic changes, which are predicted 
towards future drying and  warming26,32,33,40–42, and thus put further pressure on these areas. In contrast, the lower 
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vegetation-meteorology correlations are located at higher elevations (Fig. 8b) and are also characterized by higher 
vegetation growth trend slopes (Fig. 7d). Thus, the widely observed natural vegetation greening trends (Fig. 5e) 
are somehow decoupled from the trends in meteorological water availability. This goes in line with the widely 
reported global trends towards vegetation  greening84–86, which are accepted as evidence of anthropogenic climate 
 change91. Besides this overall long-term greening, Pan et al. (2018)92 reported an increasing share of browning 
trends in the more recent times and argues that greening trends will probably be more and more reverted in a 
warmer future. At global scale, the main drivers of these greening developments are found to be CO2 fertilization, 
nitrogen deposition, climate change, and land use  changes91,93–95.

However, especially the widely positive vegetation growth trends in the Zagros Mountains, still seem to be 
in contrast to the widely reported dieback of the Zagros Oak tree  forests96–100. Besides a potential role of CO2 
fertilization, land use changes might have played the biggest role. Since part of the trees have been substituted by 
agriculture, horticulture, and managed  pastures99,101,102, the NDVI-based vegetation growth trend of the 250 m 
MODIS pixels could have increased even if the forest cover got sparser. In this study, the influence of agricultural 
areas on vegetation growth might be underestimated in the Zagros Mountains, because the dominantly small 
fields in this area (average sizes of Iran’s irrigated and rainfed farms are 2.9ha and 6.9ha,  respectively11) could 
have been missed by the crop fraction layer of 100 m pixel size used in this study to distinguish between culti-
vated and natural vegetation. Sadeghi et al. (2017)102 attributes low classification accuracies of agricultural areas 
in parts of the Zagros Mountains also to insufficient spatial resolution even in case of 30 m Landsat imagery. 
Another potential reason for the increasing trend of seasonal vegetation indicators, such as the used NDVIMEAN∗ , 
could be a prolonged growing season of grassy and bushy vegetation in higher altitudinal ranges caused by the 
temperature increase of the last  decades103.

Iran-wide relations of vegetation and hydrometeorology. At a country-wide scale it could 
be shown that the annual vegetation growth has a significant positive correlation to annual variations of 
precipitation and the aridity index (Fig.  6), which applies for both natural and agricultural vegetation. This 
strong relationship of annual vegetation growth and meteorological water availability also becomes evident 
in the drastic reduction of vegetation growth in the drought year of 2008 and strong increase of vegetation 
growth in the wet year of 2019. However, at a local scale this relationship is less clear and as shown in this study, 
strongly depends on local conditions determined by natural predisposing factors (e.g. lithology, relief (Fig. 8)), 
local hydrometeorological conditions, and anthropogenic influences (e.g. land management strategies, water 
withdrawal). By comparing a managed and unmanaged watershed in Iran, Kazemzadeh et  al. (2021)104 also 
found strong vegetation cover response to changes in annual natural water availability, but revealed that long 
term trends were mainly influenced by human activity. For Iran, Dameneh et al. (2021)105 also showed that trend 
estimations for vegetation and climate indices during 2001 and 2015 strongly vary between annual and seasonal 
aggregates as well as country-wide and pixel-based analysis. Overall, this shows that care needs to be taken in 
interpreting the influence on vegetation changes, and that factors such as spatial scale, temporal scale (long-term 
trend vs short-term variability), and observed time period always need to be considered.

Conclusion
This study enabled detailed insights in spatiotemporal dynamics of water availability and vegetation growth in 
Iran assessed between 2001 and 2019 for natural and agricultural land on local and country-wide scales. For this 
purpose we analyzed global data sets on meteorological water availability, total water storage, land cover changes, 
and vegetation growth dynamics. In conclusion, the study’s main findings are:

• Substantial decline of total water storage is not represented by a decline of meteorological water input (pre-
cipitation), suggesting an unsustainable use of groundwater as driver and thus an anthropogenically induced 
water scarcity in Iran.

• Confirmation and spatiotemporal quantification of agricultural expansion and intensification, playing a 
key role towards increasing water scarcity due to large and unsustainable consumption of surface water and 
ground water for irrigation purposes.

• Loss of agricultural areas or reduction of cultivation intensity, as a consequence of water scarcity, especially 
in former intensely irrigated croplands in (hyper-)arid regions of Iran.

• Widespread degradation of natural sparse vegetation to barren land in the plains west of the Zagros Moun-
tains and at the same time

• Widespread greening of natural biomes especially in higher altitudinal zones following the general global 
trend towards a greening vegetation.

Such detailed insights in agricultural and natural vegetation developments as well as their interrelation with 
hydrometeorological factors are an important foundation to support water and ecosystem management plans 
in  Iran11,19 to adapt towards a more sustainable future.

Data and methods
Hydrometeorology. Meteorological data from ERA5‑Land. The meteorological data in this study is 
obtained from the European Center for Medium Range Weather  Forecasts106. In particular, we are using the 
land-surface offline re-run of ECMWFs latest atmospheric reanalysis, namely ERA5-Land107. ERA5-Land 
uses atmospheric forcing from the ERA5 reanalysis to consistently estimate hourly land surface variables at an 
enhanced spatial resolution of 0.1◦ . While no observations are directly assimilated during the production of 
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ERA5-Land, they indirectly influence the simulation through the atmospheric forcing of  ERA5106. Furthermore, 
air temperature, humidity and pressure are corrected to account for the altitude differences between ERA5 
and ERA5-Land  grids107. Since its release, ERA5-Land has been extensively compared to similar datasets or 
in situ  data108–110 while other studies used ERA5-Land as hydrometeorological reference data for bias-correcting 
seasonal  forecasts111, as driving data for modeling photovoltaic  power112, or for deriving agricultural drought 
 indicators113,114. Within a similar context, Zandler et  al. (2020)115 compared the performance of ERA5-Land 
for assessing NDVI anomalies across peripheral conservation areas of Central Asia and concluded that such 
reanalysis-based datasets outperform gauge- or satellite-based products and their combinations as they are highly 
variable and may not be applicable in the analyzed regions. This is somehow expectable as ERA5-Land provides 
a wide set of consistent land-surface parameters from a single model system while combining parameters from 
different datasets can introduce further inconsistencies and biases. For this study, we have hence obtained hourly 
ERA5-Land  data116 for total precipitation (tp), air temperature at 2m (t2m) and potential evapotranspiration 
(pev). From this hourly data, we then calculate annual averages for the water year in Iran, which covers the period 
from October to September. The aridity index (ai) is calculated as the ratio of annual aggregates of tp/pev117. 
While the analyses in this study are based on ERA5-Land only, we also evaluate long-term trends from other 
precipitation datasets in order to verify our findings. In particular, we apply the widely used global precipitation 
data from the Global Precipitation Climatology Centre (GPCC full data monthly version  2020118) as well as 
the Multi-Source Weighted-Ensemble Precipitation dataset  (MSWEP119), which merges gauge, satellite, and 
reanalysis data for deriving a global precipitation dataset with high spatial and temporal resolution. Comparison 
of the trends of the different precipitation products shows a generally good spatiotemporal fit (Fig. S6) and thus 
supports the reliability of our meteorological analysis performed in this study.

Total water storage from GRACE and GRACE‑FO. The Gravity Recovery And Climate Experiment (GRACE) 
satellite mission was launched in March 2002 within the collaboration between the National Aeronautics and 
Space Administration (NASA) in the US and the German Aerospace Center (DLR)120. The mission has provided 
unprecedented observations of the time variable Earth’s gravity field by tracking changes in the inter-satellite 
distance between twin satellites via microwave  measurements121. The GRACE mission has observed the Earth 
for more than 15 years and ended in June 2017. Its legacy is continued by the successor GRACE Follow-On 
(GRACE-FO) mission starting in June 2018. The GRACE and GRACE-FO missions provide a unique opportunity 
to assess and quantify anthropogenic and climatic impacts on the water  system122–124. In this study, we obtain 
the Total Water Storage Anomaly (TWSA) from GRACE and GRACE-FO level 2 products (unconstrained fully 
normalized spherical harmonic coefficients) from the ITSG-Grace2018  solution125,126 and apply the following 
corrections known as post-processing  steps127:

• C20 and C30 are replaced by the estimation from Satellite Laser Ranging (SLR)128,129

• Degree 1 coefficients are added to the  solutions130

• Correcting spherical coefficients to ellipsoidal coefficients following the approach proposed  by131

• Removing the long-term mean (2004–2010) as a representative of the static field to calculate anomalies
• Removing the remaining primary and secondary tidal aliasing errors using a least-squares spectral analysis 

 following132

• Applying Gaussian filter with radius 400  km133 and the de-striping proposed  by134

• Correcting leakage by applying the data-driven approach developed  by135

• Removing the GIA using the ICE6G-D model provided  by136

The aggregated TWSA time series are calculated for the entire Iran and its 30 major river basins at monthly time 
steps. The GRACE mission does not provide solutions for 24 months, leading to a data outage in the time series 
mainly after 2011 that are filled using the Spline interpolation  method137. Moreover, an 11-month gap (July 
2017–May 2018) exists between the GRACE and GRACE-FO missions. Several studies have already proposed 
methods to bridge the gravity data gap e.g. using Swarm orbital  measurements138–141, Singular Spectrum Analy-
sis (SSA)  by142, and machine  learning143,144. In this study, we did not fill the mission gap because none of the 
studies have shown convincing superiority, and it is not possible to examine the uncertainties in the absence of 
independent other data sources. Therefore, two water years (2017 and 2018) are excluded from our analysis. To 
obtain the annual Total Water Storage Anomaly (TWSA), monthly data is averaged for a water year (Oct–Sept). 
It should be also noted that the boundaries of the basins are the same as already been employed  in28.

Land cover. The analysis of land cover developments uses the global ESA-CCI land cover datasets (ESA-
CCI-LC v.207 & v2.1)145, which comprise annual land cover data sets from 1992 to 2019 with a pixel size of 
300 m. It distinguishes 22 classes, which have been defined using the United Nations Food and Agriculture 
Organization’s (UN FAO) Land Cover Classification System. It is a well-established land cover data product 
enabling analysis of large areas up to global scale land cover  changes89 related to different applications, such 
as the impact of land cover changes to different  landscapes146, plant functional  types147, and the consequences 
of global urban expansion to cropland  productivity148. To create this dataset, the entire Medium Resolution 
Imaging Spectrometer (MERIS) Full and Reduced Resolution archive from 2003 to 2012 was first classified 
into a unique 10-years baseline land cover data set. Changes from this baseline are detected from Advanced 
Very-High-Resolution Radiometer (1992–1999), SPOT-Vegetation (1998–2012), and PROBA-Vegetation and 
Sentinel-3 OLCI data (since 2013). Changes need to be present at least for two years to be identified as change. 
Thereby, longer lasting abrupt changes are better identified than gradual changes. In 1994 AVHRR data is missing 
and thus changes around that year could not reliably identified. We validated the ESA-CCI-LC by field work in 



15

Vol.:(0123456789)

Scientific Reports |        (2022) 12:20784  | https://doi.org/10.1038/s41598-022-24712-6

www.nature.com/scientificreports/

Khuzestan in 2019, local expertize, and high resolution optical satellite data, and decided to merge the original 
22 classes to 7 compound classes in order to eliminate misclassifications between some of the 22 original classes. 
Frequent misclassifications could be found e.g. between irrigated and rainfed agriculture, and between different 
sparsely vegetated land cover classes. Table S1 gives an overview on the reclassification scheme resulting in the 
used 7 classes: crops, trees, shrubs/sparse vegetation/grassland, inundated, urban, bare, and water. However, 
even after reclassification some limitations exist, which have to be taken into account when analyzing land cover 
from a global product in a regional context. The forest in the Zagros Mountains e.g., with sparse trees and lower 
canopy cover of trees, is not mapped as forest, since it does not meet the applied forest definition of a closed 
canopy of trees.

Vegetation. Data and pre‑processing. Analysis of vegetation dynamics is based on the MOderate Resolution 
Imaging Spectroradiometer (MODIS)149. It provides consistent nearly daily acquisitions of 250 m pixel size since 
2000 and thus the best compromise of long-term consistency and duration, temporal repetition rate, and spatial 
resolution for the purpose of analyzing dynamics of vegetation patterns at country-wide scale. Landsat data, with 
spatial resolution of 30 m and data coverage exceeding the last two decades seems to be the better choice for 
analyzing local patterns over longer periods of time. However, the 16 days repeat cycle in combination with cloud 
cover and in earlier times’ occasionally missing data acquisitions, lead to larger temporal gaps of up to several 
months in the time series introducing potential artifacts in the analysis of vegetation dynamics. Hence, this study 
is based on the 16 days composites of the daily NDVI (Normalized Difference Vegetation Index) measurements 
provided by the MOD13Q1 V6  product150,151. To reconstruct high-quality NDVI time series from the original 
MODIS product, the local kernel-based time series smoothing algorithm from Chen et al. (2004)152 is applied. 
Compared to global smoothing algorithms that  fit predefined functions to the time series (e.g. asymmetric 
Gaussian function fitting, and double logistic function fitting) to emulate seasonal phenology, local smoothing 
algorithms are better suited to preserve intra-seasonal variations and variable time series  patterns153–155, which 
both are common for agricultural areas representing the main focus of this study. As a drawback, local smoothing 
algorithms are more susceptible to  outliers156. Thus, we combine the local smoothing algorithm of Chen et al.152 
with a preceding outlier removal technique to create high quality NDVI time series. The workflow comprises the 
following steps: (I) Pixels representing clear outliers are masked based on the Detailed QA layer of the MODIS 
product using the parameter setting: VIQuality > 2 & Possible snow/ice == 1 . This masking approach allows 
to exclude outliers and at the same time to maintain as many as possible pixels in the time series for further 
analysis. (II) The masked pixels are reconstructed by applying a linear interpolation using the closest in time 
non-masked acquisitions in the NDVI time series. (III) The resulting reconstructed NDVI time series represents 
the input for the local time series smoothing algorithm of Chen et al. (2004)152, which is based on the Savitzky-
Golay filter to iteratively make the data approaching the upper NDVI envelope, assuming that noise such as 
clouds or poor atmospheric conditions decrease NDVI values.

Derivation of annual vegetation growth. The estimation of vegetation dynamics and trends is based on annual 
aggregated time series rather than the complete time series. In Forkel et al. (2013)157 such annual aggregates (e.g. 
maximum, or mean NDVI value per year) have proven to allow a more robust trend estimate compared to the 
decomposition of the full time series. This study introduces the annual aggregate NDVIMEAN∗ , which represents 
the average NDVI during the snow free period of a water year (Oct–Sept). The snow period is excluded to 
account for artifacts in the NDVI time series introduced by large negative NDVI values resulting from snow 
cover. The duration of the snow period is derived from the MODIS snow cover product (MOD10A1 V6)158, and is 
defined as the highest number of annual snow days from all water years between 2001 and 2019 (MaxSnowDays)
(Fig.  S13). A snow day is thereby determined by the parameter NDSI_Snow_Cover of the MODIS product 
( NDSI_Snow_Cover > 20 ). The NDVIMEAN∗ of a pixel is defined as the average of the highest X NDVI values 
of the available 23 acquisitions during a water year (Oct-Sept), whereas X = 23−MaxSnowDays/23− 1 . Thus, 
X as the number of MODIS NDVI values that are included in the annual aggregate NDVIMEAN∗ varies in space 
(per pixel) but not in time (same for each year). The inter-annual fixation of X allows for a robust determination 
of vegetation growth dynamics under annually differing snow conditions.

The integrative nature of the NDVIMEAN∗ (i.e. averaging over the full vegetation period) reflects also changes 
in the length of vegetation season or the number of cropping cycles, which is not possible by using a single param-
eter, such as the maximum of the season. The restriction to the snow free period allows to exclude interpolation 
artifacts introduced by long snow periods and supports the robust application of this parameter to the entire Iran.

The long-term vegetation growth (Fig. 4) is defined as the average of annual vegetation growth values 
NDVIMEAN∗ between 2001 and 2019. This parameter is introduced to analyze the spatial patterns of vegetation 
growth and its relation to aridity conditions.

Differentiation between agricultural and natural vegetation. A pixel is defined as vegetated if the annual NDVI 
maximum ( NDVIMAX ) of that pixel exceeds 0.25 in at least two years between 2001 and 2019. These vegetated 
pixels are further differentiated between agricultural and natural vegetation based on the fractional cropland 
layer of the land cover product of the Copernicus Global Land Service (CGLS-LC100)159,160. The fractional 
cropland layer has a spatial resolution of 100 m and provides fractions of that pixel being  cropland161. In contrast 
to discrete classes, these fractions allow a smooth spatial resampling to the MODIS resolution using an average 
interpolation approach. The land cover product is available annually since 2015. This study bases the decision 
of a pixel being cropland on the maximum cropland fraction between 2015 and 2019 (Fig. S14), ensuring also 
the integration of infrequent cultivation. A MODIS pixel is considered as cropland if the resampled aggregated 
cropland fraction (CropFrac) exceeds 20%. This rather low threshold is selected to account also for the small field 



16

Vol:.(1234567890)

Scientific Reports |        (2022) 12:20784  | https://doi.org/10.1038/s41598-022-24712-6

www.nature.com/scientificreports/

sizes frequently existing in  Iran11. In contrast, a MODIS pixel is defined as natural vegetation if CropFrac falls 
below 40%. Hence, the definitions of agricultural and natural vegetation slightly overlap, and pixels characterized 
by a CropFrac between 20% and 40% are included in both definitions. This overlap is chosen to account for 
mixed pixels and for uncertainties in the CGLS-LC100 product generation.

Vegetation growth trend estimation. Based on the time series of annual vegetation growth NDVIMEAN∗ from 
2001 to 2019, the vegetation growth trend estimation is performed by a Mann-Kendall trend  test162 along with 
the Theil-Sen’s slope  estimator163,164 to obtain the magnitude of trend. The non-parametric Mann–Kendall 
trend test is used to test for monotonic trends (consistently increasing or decreasing) within a time series. In its 
original version the test requires the time series being free of autocorrelation and seasonality. Through annual 
aggregation, the used time series is free of seasonality. However, the vegetation growth dynamics over time can 
partially be autocorrelated, e.g. a severe drought event in one year can have effects on water availability and 
thus also on vegetation development during the next years. Therefore, we apply the Mann–Kendall trend test of 
Hamed and Rao (1998)165, which addresses autocorrelation by a variance correction approach.

Iran wide correlation of vegetation growth and hydrometeorological variables. The correlation of vegetation and 
hydrometeorology (Fig. 6) is based on a Pearson correlation between the time series of the annual vegetation 
growth NDVIMEAN∗ and the annual averages of the hydrometeorological parameters (tp, t2m, ai, TWS). Both, 
vegetation and hydrometeorological parameters, are averaged over the entire Iran for each year. The vegetation 
parameter is distinguished in three classes, (i) veg: all pixels in Iran, (ii) vegAgr: agricultural areas, and (iii) 
vegNat: natural vegetation.

Natural vegetation growth versus meteorological water availability. For pixels defined as naturally vegetated 
a Pearson correlation is performed between the NDVIMEAN∗ and annual averages of the meteorological 
parameters (tp, t2m, ai), controlling the meteorological water availability. To allow for a pixel-to-pixel based 
correlation, the pixels of the meteorological parameters of 0.1◦ spatial resolution are resampled to MODIS’ 250 
m spatial resolution using nearest neighbor interpolation.

Altitudinal analysis. This study uses the MERIT DEM (Multi-Error-Removed Improved-Terrain Digital 
Elevation Model)166. The MERIT DEM is a global DEM at 3 arc second resolution produced by eliminating 
major error components (absolute bias, stripe noise, speckle noise, and tree height bias) from existing DEMs 
(NASA SRTM3 DEM, JAXA AW3D DEM, Viewfinder Panoramas DEM). The MERIT DEM is resampled to 
MODIS resolution using bilinear interpolation.

Agricultural vegetation growth versus hydrometeorological water availability. The agricultural areas are analyzed 
in regard to their vegetation growth trends in order to determine intensified or reduced agricultural usage. For 
a consistent analysis, the agricultural areas already need to exist at the start of the analyzed vegetation time 
period (2001–2019). Areas which were turned into cropland afterwards, are excluded from the analysis to avoid 
misinterpretations of the related vegetation growth trends. Agricultural pixels (for definition see above) are 
defined as newly cultivated when: (MedNDVIMAXf 3−MedNDVIMAXl10) > 0.1 & MedNDVIMAXf 3 < 0.3 , 
whereas MedNDVIMAXf 3 is the median of the annual NDVI maximum of the first 3 years (2001–2003) and 
MedNDVIMAXl10 is the median of the annual NDVI maximum of the last 10 years (2009–2019). Applying 
these criteria excludes clear transitions of bare land into cropland. It also excludes cropland which has not been 
cultivated at the beginning of the time period but turned into cultivated cropland later on (Fig. S18). Thus, the 
definition of early-on existing agricultural areas utilizes both, the recent high resolution CGLS-LC100 product 
and the MODIS based NDVI change analysis. This combined approach is chosen over a customized cropland 
identification based on the MODIS NDVI data itself due to expected high cropland classification uncertainties, 
because of the wide range of existing variable crop types and management processes under Iran’s diverse natural 
conditions and due to common field sizes smaller than the MODIS pixel  size11.

The vegetation growth trends of agricultural pixels are further analyzed in regard to their long-term aridity 
and irrigation intensity (Figs. 10, 11). The long-term aridity is defined by the annual (water year) average of the 
aridity index between 1982 and 2019 (Fig. S5). The parameter irrigation intensity is originally defined within 
this study. It represents an aggregated measure of monthly irrigation probabilities (IrrProb), which describe 
the probability that observed vegetation growth of a month has required additional non-meteorological water 
supply in order to grow. The IrrProb of a pixel is defined as: VegProb ∗ CropProb ∗WaterProb (Fig. S20, S21). It 
is scaled between 0 and 1, whereas 1 is the highest probability being irrigated. It is based on the assumption that 
vegetation on cropland under dry conditions is irrigated. VegProb is the probability of a pixel being vegetated. 
For VegProb the 16 days MODIS NDVI data is resampled to monthly composites using the maximum monthly 
NDVI. The probability is scaled between 0 and 1 and is defined by a cumulative distribution function of an 
exponential distribution: VegProb = 1− exp(−(NDVI − 0.2)/0.08, 0 if NDVI < 0.2 (Fig. S20). CropProb is the 
probability of a pixel being cropland. It uses the resampled fractional cropland layer (CropFrac) (Fig. S14) and is 
scaled between 0 and 1: CropProb = (CropFrac − 20)/(40− 20)+ 1,NaN if CropFrac < 20, 1 if CropFrac > 40 
(Fig. S20). WaterProb is the probability that crops need to be irrigated to grow. WaterProb is based on the 
meteorological water availability defined by the two month aridity index ( ai2 ), calculated over the current 
and previous month, following the assumption that vegetation growth is largely driven by cumulative water 
availability. The probability is scaled between 0.2 and 1, allowing a small probability of the need for irrigation 
also in wetter conditions: WaterProb = 1− (ai2 − 0.2)/(0.65− 0.2) ∗ 0.8, 1 if ai2 < 0.2, 0.2 if ai2 > 0.65 
(Fig. S20). Annual aggregates are derived from the monthly irrigation probability (IrrProb) to define annual 
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irrigation intensities by averaging the upper 4th quantile of the 12 IrrProb month values (IrrIntAnn4Q) (Fig. S21). 
To analyze the agricultural vegetation growth development in regard to its irrigation intensity (Figs. 10, 11), 
agricultural pixels are characterized by its initial state of irrigation intensity at the beginning of the MODIS 
time period (2001–2019). The initial state of the irrigation intensity is thereby defined as the average of annual 
irrigation intensities (IrrIntAnn4Q) of the years 2001 and 2003, and is described by the term irrigation intensity. 
It needs to be noted that a scaling factor of 100 is applied to the irrigation intensity depicted in Figs. 9, 10 and 11.

The correlation between total water storage (TWS) from GRACE and vegetation development (Fig. 11) is 
based on the Pearson correlation between the annual (water year) time series of TWSA (annual averages) and 
the annual vegetation growth NDVIMEAN∗ . The NDVIMEAN∗ of a MODIS pixel is correlated against the TWSA 
of the basin the pixel is located in.

Data availability
The datasets used and/or analysed during the current study available from the corresponding author on 
reasonable request. All datasets are also publicly available. Meteorological data from ERA5-Land are accessed 
from the Copernicus Climate Change Service (https:// cds. clima te. coper nicus. eu/ cdsapp# !/ datas et/ reana lysis- 
era5- land, DOI: 10.24381/cds.e2161ba). GRACE(-FO) data are accessed from the Hydrosat repository (http:// 
hydro sat. gis. uni- stutt gart. de, DOI:10.5194/essd-2021-174). MODIS 16 day vegetation composites (MOD13Q1 
V6 product) used for vegetation analysis are accessible at https:// lpdaac. usgs. gov/ produ cts/ mod13 q1v006/ (DOI: 
.5067/MODIS/MOD13Q1.006). MODIS daily snow cover product is accessible at https:// nsidc. org/ data/ MOD10 
A1/ versi ons/6 (DOI: 10.5067/MODIS/MOD10A1.006). The annual land cover datasets (ESA-CCI-LC v2.07 & 
v2.1) are accessed from the Copernicus Climate Change Service (https:// cds. clima te. coper nicus. eu/ cdsapp# !/ 
datas et/ satel lite- land- cover). The fractional cropland layer of the land cover product of the Copernicus Global 
Land Service (CGLS-LC100) is available at https:// zenodo. org/ record/ 39390 50 (DOI: 10.5281/zenodo.3939050). 
The MERIT DEM (Multi-Error-Removed Improved-Terrain Digital Elevation Model) is accessible at http:// 
hydro. iis.u- tokyo. ac. jp/ ~yamad ai/ MERIT_ DEM/.
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