Deutsch
 
Datenschutzhinweis Impressum
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT

Freigegeben

Zeitschriftenartikel

Sound speed and refractive index of amorphous CaSiO3 upon pressure cycling to 40 GPa

Urheber*innen

Geballe,  Zachary M.
External Organizations;

Arveson,  Sarah M.
External Organizations;

/persons/resource/speziale

Speziale,  S.
3.6 Chemistry and Physics of Earth Materials, 3.0 Geochemistry, Departments, GFZ Publication Database, Deutsches GeoForschungsZentrum;

Jeanloz,  Raymond
External Organizations;

Externe Ressourcen
Es sind keine externen Ressourcen hinterlegt
Volltexte (frei zugänglich)
Es sind keine frei zugänglichen Volltexte in GFZpublic verfügbar
Ergänzendes Material (frei zugänglich)
Es sind keine frei zugänglichen Ergänzenden Materialien verfügbar
Zitation

Geballe, Z. M., Arveson, S. M., Speziale, S., Jeanloz, R. (2022): Sound speed and refractive index of amorphous CaSiO3 upon pressure cycling to 40 GPa. - American Mineralogist, 107, 12, 2212-2218.
https://doi.org/10.2138/am-2022-8081


Zitierlink: https://gfzpublic.gfz-potsdam.de/pubman/item/item_5014220
Zusammenfassung
Brillouin spectroscopy at room temperature and pressures up to 40 GPa documents nearly identical elasticity and refractive index of amorphous CaSiO3 created by two different methods: temperature-quenching the melt at ambient pressure and pressure-amorphizing crystalline wollastonite at room temperature. We find reproducible hysteresis of 0 to 8% on pressure cycling that is small relative to the 30 to 60% changes in shear and longitudinal wave velocities over this pressure range. Together with observed changes in refractive index and previous results from Raman spectroscopy, these measurements reveal a continuous and reversible change in atomic packing induced by pressure. Unlike many other silicate glasses, amorphous CaSiO3 exhibits highly reproducible properties, behaving smoothly and reversibly under pressure cycling and possessing similar structure and elasticity regardless of synthesis paths for the starting material, which suggests that the amorphous solid may mimic the liquid over the pressure range investigated.