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B. H. Jacobsen. 

"Apriori information: Why, which and how?" 

This note is a short review of some problems and solutions from inver­

se theory and from electromagnetics relevant to .the inte_rpretation 

situations discussed at the colloquium in Neustadt 1982. 

After a general introduction we shall discuss the questions of 

the title. and finally indicate a simple way of estimating equi­

valence through the 'ideal .body' concept. 

The general interpretation situation may be given the following 

formulation (Jacobsen, 1982): 

We discribe the earth by some simplified model, which may be pa­

rameterized by M real numbers, x 1 , .• ,~. 

These parameters may be considered as a vector ~ = (x1 , .. ,~). 

Ouring some ~~asurement sequence we collect the new field data, 

which may be represented as N real coordinates, y = (y1 , .. ,yN) . 
From mathematical physics a theoretical noisefree datavector 

Y... (~) = (r.1 (~) , •• ''!...N (~) ) 
may be computed corresponding to any parameter vector ~-

The inverse problem is then to investigate, which parameter vec­

tors are compatible with our information about the earth. 

Part of our information is the new field data, f. 
The rest of our information about the earth is 'known beforehand' 

and is therefore named 'a priori information'. 

'Pure' inverse theory deals with the case where 'new field data' 

are our only information. 

If the statistical properties of the rneasurement error is known 

then the set of 'data compatible' earth rnodels rnay be discribed by 

the concept of confidence regions. 

If ~(~) is a linear function, and the rneasurement error is Gaussian 

distributed, then classical linear regression analysis is appropri~te. 

If further the errors are independent with equal distributions then 

data cornpatibility is simply related to the sum of squared resi­

duals, Q (~) = II f-~ (~) 11
2

• 

The singular value decomposition of ~(~) may in this latter case 

help us to understand the set of solutions in which we have con­

fidence (Pedersen, 1979). 

If however errors are not Gaussian distributed or z(~) is nonlinear 

then the actual cornputation of confidence limits is still an area 

of research in applied statistics. 
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Stabilized linearised iteration for finding models with minimum 

residuals has been in coromon use since the days of Newton (Marq­

uardt, 1963), and some conditions have been found for the validity 

of the well known linear confidence analysis of the resulting 

least squares model (Bates & Watts, 1980). 

For linear problems one should not forget linear programming as 

another powerful tool for finding models which are compatible 

with the data (Cuer & Bayer, 1980). 

From a statistical point of view however, this aigorithm is less 

natural. 

We may summarize that search for a model, which describes given data 

with given error statistics, and analysis of the limits of variabi­

lity of th~ model are well studied though not completely solved issues . 

We learn from experience, that the set of data compatible earth models 

often contain models, which frorn a geologically point- of view are 

very different. This problem called 'equivalence' was illuminated 

for magnetotelluric data and layered earth by G. Fischerat the 

colloquiwn, (cf. Fischer, preprint) . 

Let us review this example to illustrate the general introduction. 

i consists of the measured pa(fi) and ~(fi) at the frequencies fi. 

The measurement errors are (hopefully) Gaussian and independent 

with standard deviations ßp (f.) and ß~(f.). 
a l. l. 

A 'hornogeneous n-layer model' is parameterized in a 2n-l dimensional 

vectors pace : x = ( p 
1 

, h 
1

, . • , P 
1

, h 
1 

, P ) • 
- n- n- n 

The theoretical response, z(~), is computed from the familiar layer 

by layer recursions. This vector function is strongly nonlinear. 

The standard measure cf misfit is 

N ~ 2 2 
Q(~) = I: (y.-y. (x)) /ßy. 

l i i - i 

(G. Fischer (preprint) uses g 2 for a sirnilar measure of misfit). 

If the true earth is really described by n homogeneous layers, ~true' 

then Q(~true) has the expectation value N: 

E (Q (~true)) = N · 

The best fitting model, ~est fit' by definition makes Q(~est fit) 

a minimum. If the theoretical response, z(~), is a linear function, 

then regressian analysis tells us, that 

E(Q(~est fit)) = N-M. 

and therefore 
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where N is ~~e number of data and M is the number of pararneters. 

Models satisfy ing 

Q(~) - Q(~est fit) < K•M 

make up a confidence region, where K is close to land depending 

on the decired confidence level and N and M. 

These results are approximately true for nonlinear ~(~), provided 

~(~) is not too nonlinear (Bates & Watts, 1980). 

Fora typical MT-sounding covering two decades of frequencies we 

may have 40 real data. Suchdata may almost always be modelled by 

4 layers, i.e. 7 parameters. Putting K=l this gives 

Q(~) < Q(~est fit) + M 

or using e = v'Q 

e < 1 · 1 • ebest fit 

1 · 21 · Q(~est fit) 

as also stated on empirical ground by G. Fischer (ibid.). 

We will now discuss the 3 questions proposed in the title. 

We asked, why a priori information should be included when inter­

preting new field data. 

The reason is, that a priori information improve the choise of 

model space and reduce equivalence. 

Thus it is well known, that only the total conductivity, cr•h, of 

a conductive bed is determined by MT data . If however the conductive 

layer corresponds to a certain geological formation with known spe­

cific conductivity, then the thickness, h, will also be well determined. 

This illustrates, how a combination of new field data and one 'key 

piece' of a priori information rnay elliminate equivalence. 

In general however, it is not a trivial question which a priori in­

formation to use. The selection must be founded on a sound intui­

tion for both the geology of the region and the physics of the 

measuring rnethod. 

We will give some examples relevant to MT interpretation. 

For the estimation of .the impedance tensor, physics offers a priori 

constraints. Weidelt (1972) developed several such constraints, pri­

marily connected with the causality and minimum-phase property of 

the earths impulse response, and according to Rokityansky (1982,p89f ) 

$imilar properties are obeyed by the tensor over any 3-D earth. 

Such const~aints rnay help to decide the data quality, for instance 

by discovering bias effects . 

Fora stratified region a 1-D model is appropriate. In this case 
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layer conäuctivities, depths and thicknesses rnay be known from 

seismics or drillings . 

For regions w-ith more complex geology the location of faults and 

the shape of near surface structures (for instance oceans) will 

const1uute important a priori information. 

This kind of information may at first sight seem rnore harmful than 

helpful, as it poses more questions than it answers. 

But to ignore such information in order to stay with a 1-D model 

would of course be 'to wipe the dust under the carpet'. Instead we 

should view a priori information as an aid in the choice of ~ 

model space. 

A simple exarnple will show, that even in the 1-D case this choice 

of model space is not merely a matter of selecting the number of 

homogeneous layers . Assume, that the earth contains an anisotropic 

layer as illustrated in fig. l. This anisotropic layer could be 

sands above the ground water level resting on water saturated clay. 

Audiomagnetotelluric data will be perfectly interpretable by the 

left 3-layer isotropic model, while geoelectric souding data will 

fit the right 3-layer isotropic rnodel. 

To fit both datasets with the same homgeneous n-layer model we will 

need 4 or rnore layers and their parameters will be very ill determined. 

AMT 
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20 m 20 
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m 
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m 
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-' fig. 1 
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If however we know, that unsaturated sands rest on saturated clays 

of great thickness in the region, then this information will lead to 

the forrnulation of a 3-layer model allowing anisotropy in the second 

layer . The parameters of this model will be well determined and geo­

logically rneaningful. 

These examples of a priori information have at the same time shown 

one side of how to include a priori information in the interpretation: 

Apriori information form the basis of the more or less philoso-
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phical choice of model space. 

Now asswne, that a model space has been selected, and parameterized 

by some vector ~- Then some algorithm is required to investigate 

the set of data compatible models in this space. 

This algorithm, which is often implemented on a computer, will be 

named 'the interpretation program'. We assume, that this program is 

capable of selecting models which satisfy our data: 

:1: i=l ' .. N 

subject to some misfit criterion. 

The second way of including a priori information is now to add it 

to this interpretation program as 'a priori data' about some sca­

lar earth property. 

In a 1-D MT rnodel a piece of a priori inforrnation may sound 

"The resistivity of Postzechstein is probably around 2 Ohmrn, 

lt may be 4 Ohmm, rnay be l Ohmrn. 11 

If Postzechstein is the first layer in the model, then this infor­

mation ma~ be translated like this: 

" ln ( p ) = ln ( 2 Ohmm) :1: ln ( 2 ) lt • l , 
This relation is now forrnulated as a measurement and may be included 

·1n the interpretation program on a pragrnatic basis. 

Any scalar rneasure, F(~), on which we have inforrnation of a 'most 

probable' value, c, with an 'uncertainty 1
, Ac, may be entered as 

an a priori datum: 

F (~) = c ± Ac 

Notice, that we are not forced to asswne the property known exactly 

and 1 frozen 1
• Instead the a pri?ri datum acts as a 1 rubber band' 

with a 'length' Ac, tapering the variability of ~- The decreased 

variability of the rnodel parameters will then indeed reflect the 

inforrnatio~ content of the extra datwn. It is therefore essential 

that c is reasonable and that Ac has not been chosen too optimist­

ically. 

Same times a more natural forrnulation o f our a priori informatio n 

is in the form of inequality constraints: 

F (~) < c • 

If F(~) is linear and ~ (~) is linear then this k ind o f c onstrain ts 

are· e ·legantly treated by linear progranunin g. 
Weidelt (1972} suggested to use this k ind of cons t rain ts to i mpove 

estimates of the transfe r function in magnetotellurics , and Parker 
(1980 ) has s hown how t o treat the problem of 1-D MT modelling i n 
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the framework of linear progranuning using such a priori constraints. 

The ward 'a priori data' is presented by Jackson(l979), but the con­

cepts have been used for a lang time in statistics under the label 

. 'Bays statistics 1 • 

We have now indicated why a priori information should be included 

in any interpretation, given examples of such relevant information 

and devised methods to implement a priori information in an inter­

pretation program. 

But no matter how careful we are, we will probably still be left with 

a large set of earth structures cornpatible with field data as well 

as all available a priori information. 

It is essential to notice, that this set of solutions is often dif­

ficult to 'understand'. Even simple multidimensional hyper ellip­

soids (for linear problems and Gaussian noise) demand heavy abstrac­

tion. 

However, in certain interpretation situation we often have special 

interest in some particular property of the earth structure. 

Assume, that this property may be expressed as a scalar quantity. 

It could be "depth to the crystaline basement", "integrated conduc­

tivity of the graben structure" or "lateral coordinate of the deep­

seated conductivity structure". It would then be interesting to 

know the extreme values of such scalar measures compatible with the 

field data and all available a priori information . 

A simple trick is now to include the interesting scalar as an a pri­

ori datum with small.variance in the interpretation program. Fixing 

this scalar at still larger (smaller) values until compatibility is 

lost will give upper (lower) bounds to the interesting earth pro­

perty (Jacobsen,1982,Chap.8). 

Notice, that these intervals of variability are not baaed on any 

linear approximation close to some optimum model . 

An earth model for which a scalar measure is extreme is called an 

'ideal body' . 

Inspection of the ideal bodies corresponding to extreme values of 

the scalar measures may give valuable insight into the physics of 

the measurements and the nature of the entered a priori information. 

This technique may also be used to analyze what the resolving power 

of a planned measurement sequence would be on the expected earth 

structure. 

The name 1 ideal bodies ' is presented by Parker (1974) . Jackson 

(1976,1979} name a similar approach the 'most~squaresc method, but 
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the concept of 'extreme solutions' is old. 

The problems and solutions reviewed in this note are obvious and 

trivial from a theoretical point of view. 

The actual translation of a priori i~formation to a priori data 

may pese problerns from ·time to time, partly because the transla­

tion forces us to consider the reliability of a priori information. 

But the applicability of the concept was impressively demonstrated 

by G. Fischerat the colloquium for ·the case of MT data and an 

n-layer earth. 

For the much more complex problems of 2-D and 3-D modelling using 

MT profiles and grids the described techniques should be even rnore 

helpful in selecting the modelspace, reducing equivalence and es­

timating the variability of key properties. 
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